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Two stocbastic approximation type algorithms applied to parameter identlfication of a......ci.oslo 

input-single output dynamic system are analysed in this paper. The corrections at time k are compu
ted knowing, what is belived, to be the gradient direction of a given quality function. Ljung's ordinary 
differential equation method is applied to the algorithms analysis. The algorithms are proved to 
converge with probability 1. Computer simulation results are presented and the qualitative analysis 
of algorithms behaviour is made. 

l. Introduction 

This paper analyses two stochastic approximation type algorithms applied to 
parameter identification of a dynamic system. The identification problem involves 
minimizing the expectation of a quadratic function 

W (s (iJ (k)))=er (iJ (k)) Ae (e (k)), 

where the output prediction error e ( ·) is a function of the estimation error iJ (k)= 
=fJ(k) - 0, ~is an unknown parameter vector and A is a weighting matrix. 

The corrections at time k are made in a "stochastic gradient" direction, denoted 
by 1J (k). 

The first algorithm's search direction at time k is simply -17 (k), which gives 

(*) 8(k+1)=8(k)--r(k)17(k+I), (1) 

where • (k)>O is a stepsize coefficient. 
The second algorithm's search direction at time k is found by filtering the direc

tions negative to those of the "stochastic gradients" 17 (i) i= O, 1, 2, ... , k . That gives 
the algorithm 

(u ) f e (k+ I) = B (k) + -r (k) a (k) 
\ d (k+ l)= d (k)+ ex · • (k) ( -17 (k+ 1) -d (k)) 

(2) 
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where • (k)>O denotes the stepsize and p=a. • • (k) E (0, 1) is the coefficient of 
filtering. 

Algorithms (1) and (2) will be further called algorithm with no filtering and 
algorithm with filtering, or shortly: algorithm ( *) and algorithm ( ** ), respectively. 

Let the sequence of stepsize coefficients { r (k)} satisfy the conditions 

r (k+1)~• (k), for k = l, 2, ... 
00 

}; • (i) = oo, 
i=l 

00 (3) 
}; .-v (i)<oo, for some p>O, 
i=l 

lim sup 11/-r (k+l) - 1/-r (k)j <oo . 
k->00 

We shall prove that, if { -r (k)} fulfils (3), then the sequence {8 (k)} generated b'y 
the algorithms (1) and (2) converge to {J wpl (with probability 1). 

This is a generalization"--of the well-known results [l] and [2]) concerning the 
"'-convergence of stochastic approxim'lffiona:tgoritfuns in the case when the sequence 

{• (k)} satisfies some stronger assumptions for example ?-(*) decreases in a way 
00 00 

that yields 2 • (i) = oo and 2 r 2 (i)<oo, or simply r (k)=1/k, k= I, 2, .... 
1=1 i=l 

Convergence of algorithm (1) when the stepsize sequence satisfies (3) is discused 
in [6]. We are not aware of analogous results for algorithm (2). 

The ordinary differential equation method is reviewed in section 2 and then 
applied to prove the algorithms convergence. 

In many practical applications of algorithms (1) and (2) (in tracking problems, 
for instance, when {J is a function of k, r (k) is chosen to have a small constant 
value) so that conditions (3) cannot be fulfilled. It is known that many properties 
of the algorithms can be also in that case studied with the ODE method. 

Algorithms (1) and (2) with constant stepsize coefficients were simulated in a few 
simple cases. Simulation results made the comparison of the algorithms possible. 

2. Ordinary diferential equation method 

We shall now present the method of Ljung [6] for studying asymptotic pro
perties of stochastic algorithms. Instead of a given stochastic algorithm we can 
deal with an ordinary differential equation (ODE) associated with the algorithm. 
The trajectory of ODE approximates the path of the stochastic algorithm (if, of 
£ourse, some assumptions on the algorithm hold). 

Let us consider the general case of the stochastic approximation algorithm 

X (k+ l)= X (k)+r (k+ 1) Q (k, X (k), rp (k+ 1)). (4) 
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Here the sequence of N-dimensional vectors {x (k)} is intended to converge to the 
unknown vector x, • (k)>O is a stepsize Q (k, x (k), tp (k+ 1)) is the "stochastic 
gradient" tp (k) is the m-dimensional vector of observations usually input and output 
of the system. tp (k) is generated by 

rp (k+ l)=A (x (k)) tp (k)+B (x (k)) e (k+ 1), (5) 

where A and B are matrices of the appropriate dimensions e (k) is the white noise 
uncorrelated with tp (k). Such algorithms often appear in identification or adaptive 
control. 

Since Q (k, x (k), tp (k+ I)) is a random vector (with nonzero variance) the 
following condition is needed for the algorithm's convergence 

• (k)~o as k~oo. (6a) 

In tracking problems (when x becomes a function of k) condition (6a) do not 
imply the convergence, so we need 

• (k)~•>O as k-.oo. 

Let x (k)~x (k) wpl, and let 

•(k)=a·k-8 O< {J:;;; l. 

Then (under some other assumptions) the process 

I' (k) = (x (k) -x (k))/ V -r (k) 

converges weakly to a Gaussian diffusion [4). 

(6b) 

(6c) 

It is known (6] that some properties of the algorithm (4), (5) (if condition (6a) 
and some other assumptions on the function Q (·)hold) such as: convergence wpl, 
stationary points and asymptotic behaviour of the algorithm, can be deduced from 
the analysis of the deterministic differential equation associated with the algorithm 

d 
dt XD (t)=f(X0 (t))' (7) 

where 
f(x) der limE {Q (k, x, rp)}+o (t) , lim o (t)/t=O 

k->00 

The proofs of the theorems giving the precise relationships between the algorithm 
(4), (5) and its ODE need some assumptions on the functions Q (·),A ( · ), B ( ·) 
and the noise e ( ·) [6]. Some of them are technical but do not limit the applicability 
of the method. 

Let s (A) denote the spectrum of matrix A. Define 

D,.={x: X E s (A (x))=>!J.I < I }. 

Let now take x E D •. We define random variables iP (k, x) and v (k, l, c), ). < 1, c is 
a constant 

q; (k+ 1, x)= A (x) iP (k, x)+B (x) e (k+l), q; (0, x)=O 

v (k+ 1, }., c)=lv (k, 1., c)+c le (k+ 1)1, v (0, i., c)=O 

(8) 

(9) 
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Let DR denote an open subset of Ds. The following regularity conditions [6] are 

assumpted to be satisfied by the algorithm (4), (5) for all xEDR (S(x,p) denotes 

p-neighbourhood of x). 

AI: {e ( • )} is a sequence of independent random variables, 

A2: {le (k)IP} exists and is bounded for all p> I. 

A3: Q (k, ·, ·) is locally Lipschitz continuous, i.e. for any x E DR and rp there 

exist p (x)>O, v>O such that IQ (k, x 1 , rp 1)-Q (k, x 2 rp2 )1 <K1 (x, rp, p, v) {lx1 + 
- x 2 1 + lrp 1 - rpzl} for all x1 E s, (x, p) and rpi E S (rp, v). 

A4: ForallxEDR, rp,p>O,v>O and w>O IK1 (x, rpl>p,v1)-K1 (x, rp2 ,p,v2 }1< 
<K2 (x, rp, p, v, w) • {lrp1 - rp2 l + lv 1 - v2 l} for rpi E S (rp, w) and viES (v, w). 

A5: A ( ·) and B ( ·) are Lipschitz continuous on DR. 

A6:f(x) = lim E {Q (k, x, rp (k, x))} exists for all x E DR. 
k-+oo 

A7: _For x E DR the following random variables Q (k, x, ip (k, x)), K1 \X, ip (k, x)\, 
p (x), v (k, A, c)) and K 2 (x, ip (k, x), p (x), v (k, },, c), v (k, A, c)) have p-moments 

bounded for all p> 1 and all A< 1, c<oo. 

A8 : 2; -r (i) = oo. 
i= 1 

00 

A9 : ]; -rv (i)<oo for some p>O. 
i=1 

AIO: -r ( • ) is a decreasing sequence. 

All : lim sup 11/-r (k+ 1) -1/-r (k)l <oo. 
k-->00 

Let 15 denote a compact subset of DR such that the trajectories of (7) that start 

in 15 remain in some closed subset i5R of DR for t>O. 

A12: In the set of all realizations of process (5) there exists a subset Q (P (Q)= l)~ 

and random variable C (w) such that for all wE Q x (k) E 15 and Jtp (k)l < C (w} 

io (infinitely often) with k. 

Al3: The set of stationary points of (7), denoted by De, has its domain of attrac~ 

tion D A s11ch that 15 cD A' 

Theorems giving the precise relationships between the algorithm. (4), (5) and its. 

ODE (equation (7)) are given in [7]. They can be shortly formulated in the following; 

way. 

THEOREM 1 (Ljung). If algorithm (4), (5) satisfies Al-A13 then 

1° x (k) can converge only to stable stationary points of (7). 

2° If x ( · ) belongs to the domain of attraction of a stable stationary point x* E De· 

then x (k) converges to x* wpl as k~oo. 

It is also known [6] that the trajectory of (7) approximates, in a certain sense 

the asymptotic path of x (k) generated by the algorithm (4), (5). 
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Conditions A8 + All concerning the stepsize sequence {r (k)} limit the applica
bility of the ODE method. They are satisfied, for example, by sequence (6c). But 
any sequence fulfilling (6b) does not satisfy them. 

In [5] asymptotic properties of x (k) in the case • (k)=•=const are considered. 
It is proved that if the ODE associated with the algorithm (4), (5) is globally asymp
totically stable about point x, then (under some additional assumptions) the follo
wing process 

1-' (k)=(x (k)-.i)/J[i 

converges weakly to a Gauss-Markovian process as T-+0. 

So the ODE method can also be applied in the case when • (k) satisfies (6b). 

3. Analysis of the algorithms 

3. t. The problem formulation 

Let a single input-single output dynamic system be• given by 

y (k)+t11 y (k-l)+a2 y (k - 2)+ ... +8n y (k-n)= 

=b1 u (k-I)+b2 u (k-2)+ ... +b1 u (k-l)+e1 (k), (10) 

where 11 (k) and y (k) are the input and output signals, respectively, e1 (k) is a sta
tionary white noise, O=(iit. a2 , ••• , ii~, bt. b2 , ••• , h,)r is the vector of unknown pa
rameters. We assume that the parameters iJ make the dynamic system (JO) stable. 

Having undisturbed measurements of inputs and outputs of the system till 

moment k -1, we are to find an estimate 0 (k) of D. 

3.2. Prediction error identification algorithms 

We shall use the Robbins-Monro Stochastic approximation procedure (see [7]) 

and its modification for solving the problem considered. 

Let us denote 

'If (k)=( -y (k - 1), -y (k-2), ... , -y (k-n), u (k-1), u (k -2), ... , u (k-l)}T, 

(/J (k)=(y (k), "'1" (k))T . 

Knowing(} (k) and rp (k+ I) at moment k we can compute the prediction of the 
next output 

y (k+ I,(} (k))=OT (k) • 'If (k+ 1). 

The error of that prediction at time k+ I is 

e (k+ I,(} (k))=y (k+I) - y (k+ I, 0 (k))=(iJ-0 (k))T · 'I' (k+l)+e1 (k+I) 
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The criterion to be minimized is 

l N 

Jw = lim N}; W(e(k+l, B(k))), 
N-oo k=O 

where 
1 

W (e (k + 1, (} (k))) =2 E {eT (k+ 1, (} (k)) ·A· e (k+ 1, (} (k))}. (11) 

At the k-th step of the algorithm B (k) is changed so as to minimize the expected 

value of the second power of the prediction error at time k+l, i.e. to minimize 

W(e (k+1, (} (k))). So we have the following direction, a step along which should 
improve the estimates 

1J (k+ l)=lf/ (k+ 1) •'e (k+ 1, e (k)) (12) 

This direction is opposite to that of the "stochastic gradient" of (11) (i.e. to the 
gradient of the function that appeared in (11) under the expected value). 

So from the general models (1) and (2) we get the following two algorithms for 
indentifying the parameters {): 

the algorithm with no filtering 

f e (k+ 1) = 0 (k)+• (k) 1J (k+ I) 

t (} (0)=80 

and the algorithm with filtering 

I

() (k+ !)=() (k)+• (k) d (k) 

( **) d (k+ 1)=d (k)+ca (k) (11 (k+ 1) - d (k)) 

0(0) = ()0 , d(O) = O. 

We shall assume that the sequence {-r (k)} satisfies (3). 

3.3. Convergence of the algorithms 

We shall apply the ODE method to the analysis of the algorithms convergence. 
We shall first reformulate both algorithms to the standard form (equality (4)), 
and then we shall specify the rule for generating rp (k) (equality (5)) . 

For (13) we get ~ 

X (k)=B (k)' 

Q (k+ 1, X (k), rp (k+ 1)) = 1f1 (k+ 1) (y (k+ 1) -XT (k) If/ (k+ 1)). 
(15) 

The observation vector rp (k) is generated as follows 

rp (k+l)=A · rp (k) + B· (e1 (k+1), e2 (k+I)Y, (16) 



Analysis of two identification algorithms ll 

where 
- -91 &2 {}3 ... {}, 0 &11+2 ... 9,+1 0 l &,.+1 
-1 0 0 0 0 0 ... 0 0 0 0 

0 1 0 0 0 0 ... 0 0 0 0 
0 0 1 0 0 0 ... 0 0 0 0 

A= 
0 0 ... 1 0 0 ... 0 0 

B= 
0 0 0 

0 0 0 . .. 0 0 0 ... 0 0 0 1 
0 0 0 0 0 l ... 0 0 0 0 

0 0 0 0 0 0 . . . l 0 0 0 -
e1 (k) and e2 (k) are stationary white noises tmcorrelated with y (i), i=O, I, 2, ... , k, 
having zero expected values and .finite variances. The matrices A and B can be easily 
f01md using the rp (k) definition and equation (10). 

For algoritlun (14) we have 

X (k)=(BT (k), dT (k)Y. (17) 

Q (k+ 
1
' X (k), ((J (k+ 

1))= [ :~~ (k+ J) (y (k+ J)-()T (k) 1J1 (k+ 1))-d (k)}] • 

The observation vector rp (k) is generated in the same way as in the case of al
gorithm (13) (equation (16)). 

We shall now prove the convergence of the algorithms 

THEOREM 2. Algorithm (13) identify ing parameters of the dynamic system (10) gene
rates a sequence { 0 (k)} such that 

0 (k)-+0 wpl as k-+B 
for all 00 E Rn+l 

The theorem will be proved in the following way 
- we shall prove that the algorithm considered satisfies Al + A13, 
- we shall find an ODE associated with the algorithm, 
- D will be shown to be the only stable stationary point of ODE with its domain 

of attraction eq·ual to R"+ 1 , 

- the desired conclusion will then follow from Theorem 1. 

P r o o f o f The o r e m 2 Let us consider algorithm ( t3), (16) (with notation 
(15)). D 3 =R"+ 1, since A does not depend on x. For x e D, we can now define the 
following random variables (see equations (8) and (9)) 

~ (k+l, .~)=AqJ (k, x)+B (e1 (k+ t), e2 (k+1)y, ~ (0, x)=O, 

v (k+ 1, J., c)=). · v (k, )., c)+c l(e1 (k+ 1), e2 (k+ l)YI, v (0, i., c)=O 

Let DR.=D5 . We shall show that Al-:-Al3 are satisfied for all xe DR. 

(18a) 

(18b) 
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The assumptions on e1 (·)and e2 ( ·) imply AI and A2 From (15) we get 

Q (k, X, rp) = ljl (y-()T If/). 

In the appendix we prove that functions 

K1 (x, qJ, p, v) = (lrpl+v) (2+1rpl + v+2101+2p) 

and 

K 2 (x, rp,p,v, w)=2lq.~l+4w+2v+2101+2p,+2 

satisfy A3 and A4, respectively A and B ate constant, and this implies A5 

Since dynamic system (10) is stable, the following limits 

f(i'J) = lim E {ill (k) (y (k) - lJT ill (k))} 
k-->00 

G (O) = lim E {ill (k}· illr (k)} 

exist, so A6 is satisfied. 

(19a) 

(19b) 

The definitions of functions K 1 ( ·) and K 2 ( ·) imply A7, since p-moments of 
random variables (18) exist. The stepsize sequence fulfils A8 ...;-All. 

We shall now evaluate limits (19). Matrices A and B do not depend on 0, so 
ip (k, x) = rp (k) and j (k, x)= y (k). The limits are then input-output covariances of 
dynamic system (10). G ( • ), in particular, does not depend on 0. 

so 

From the definition of e 1 ( • ) we get 

E {1p (k) • e1 (k)}=O, 

j(()) = G (0-0), 

G (()) = G. 

ODE associated with algorithm (13) is then 

d ~ 
dt O(t)= -G (O(t)-0). 

(20a) 

(20b) 

(21} 

{}is, of course, the only stable stationary point of (21). To show the stability of (21} 
we define the function 

V (A())=A(JT • AO, 

where 0 (t) = O (t)- 0. Since G is positive definite and 

d 
dt V(AO (t))= -2A£JT (t) GLJO (t)~O, 

(22) 

function (22) defines a Lyapunov function for equation (21). This also implies 
that DR is the domain of attraction of e, so A13 is satisfied. 
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To prove A12 let us take equation (13) for large 0 (k) 

0 (k+ J):::::(J -7: (k) If/ (k+ 1) lf/T (k+ J)) 0 (k), 

Since lfl . lflr tends to G and • (k) tends monotonously to zero there is a compact 
set DcDR such that 0 (k) e D io wpl, e1 ( ·) and e2 ( · ) have finite moments so 
there exists constant C such that I If/ (k)l < C and ly (k)l < C io wpl, which implies 
19' (k)l <2C io wpl. A12 is then satisfied. 

We have proved that algorithm (13) fulfils Al7A13, so the sequence {0 (k)} 
converges to e wpl as k~ CO. This completes the proof. • 

THEOREM 3. Algorithm (14) identifying parameters of the .dynamic system (10) gene
rates a sequence {0 (k)} such that 

0 (k)~~ Y.'Pl as le-+ co 
for all 00 e R"+l. 

P r o of o f T h e o r e m 3. The proof is analogous to the proof of Theorem 2. 
Let us consider algorithm (14), (16) (with notation (17)). A does not depend on x, 
so Ds=R2" + 2 1• Random variables iP (k, x) and v (k, A, c) are defined by equations 
(18). 

Let Dtt=D5 • We shall prove that conditions Al-7-A 13 are fulfilled for all 
X E Dtt. 

Assumptions on e1 (· )and e2 (·)imply AI and A2. We get from equation (17) 

Q (k, X, rp) = [:(If/ (y-OT 1{1)-d)] . 

A3 and A4 are satisfied by the functions 

K1 (x, 9J, p, v)=tX Ci9'1+v) (2+ 1911+v+2 l01+2p)+ 1 

K2 (x, ({J, p, v, w)=tX (2 1'fJI+4w+2v+2101+2p+2). 

which are easy to find, since K1 ( ·) and K 2 ( ·) for algorithm (13) are known (see 
the proof of Theorem 2). 

A5 is fultilled . As in the proof of Theorem 2, A6 is satisfied, that is the following 
limits exist 

f(x)= k-oo ' 
[

Iim E {d (k)} ] 

~~~E {a: (ifi (k) (y (k) - lJT • ifi (k)) -d(k -1)]} 
(23a) 

G (x)=lim E {If! (k) "'r (k)}. (23b) 

Assumptions on the noises e1 ( ·) and e2 ( ·) and definitions of functions K1 ( · ) 

and K2 ( · ) implies A7, stepsize sequence {r (k)} fulfils A8~All. 
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Limits (23) are evaluated like in the proof of Theorem 2 

f(x)=[ ~ (G (0-0)-d)] 

G (x)=G, 

which gives the ODE associated with algorithm (14) 

d 

{ 

dt () (t) =d (t) 

d A 

dt d (t)=a (G (0 -0 (t)) - d (t)) 

(24a) 

(24b) 

(25) 

Equation (25) has one stationary point i=(Or, ory. We shall show it is stable. 
Let Ax=x-x. The following function 

V (Ax)=A()T • aG • AO+ Adr • Ad (26) 

is a Lyapunov function for equation (25). In fact, since a>O and G is positive de
finite we have 

V(L1x);;;:O for all Ax, 

and 

d 
dt V(Llx (t))=2AOT (t) • aG • LJd(t)+2Adr (t) • a ( -GAO (t)- Ad (t))= 

= - 2aAdT (t) • Ad (t)~ 0 

So :X is a stable stationary point of (25) and DR is its domain of attraction, and this 
means A13 is statisfied. 

We shall now prove Al2. Algorithm (14) can be written for large x (k) in the 
approximate equation form 

X (k+1)= 
[ 

I 

-ar (k) lfl (k+1) lf!T (k+1) 

T (k) I ] 

(1- aT (k)) I 
X (k). (27) 

(we used the definition of "stochastic gradient" (12) and neglected elements with 
e (k+ 1) in equation (14)). 

We shall deduce that the approximate relation (27) determines a contraction 
"mapping" for large values of k. Let F (k+ 1) denote its matrix 

F(k+1)= 
[ 

I 

-aT (k) lf/ (k+1) 'lf/T (k+l) 

T (k) I ] 

(1-aT(k))I · 

We shall prove that if A: is an eigenvalue of F (k+ 1), then lA. I< 1 for large k, 
that is the solutions of the equation 

det (F(k+l)-M)=O (28) 
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are inside the unit circle. Let 

Glt.+ 1 =IJI (k+ 1) IJIT (k+ 1). 

Applying the well-known properties of the determinant, we get 

[ 

(1-A.) I 
det (F(k+ 1)-J.I)=det 

-<n Gt+t 

[ 

(1-J.)J 
=det 

-GtT Gk+l 

TJ ] 
(1-a.r-J..)/ = 

(I -oT-1) f+Q i~l • oTG,. J= 

15 

=(«T2)n+l, det (GH 1-p/)=0, (29) 
where 

1-J. 
p,=-2- (J.+o:-r-1). 

o:r 
(30) 

Since G" tends to G, all eigenvalues of Gk+ 1, that is solutions of (29), are positive 
for large k. From (30), we than have 

J.2 +A. (2-aT)+1-aT+o:-r2 p=O, p>O 

Let L1=a2 T 2 -4o:T2 p. Two cases are possible: 

}
0 .J;;::: O (o:;;:::4p), which gives},, E ( -1, 1), i=l, 2, since 21 , 2=(2-o:r±yA)/2. 

2° .!1<0 (cx<4p), which gives .?.1 , 2 =(2-a-r±iJ!'=Li)/2, T(k) tends to zero as. 
k -+etJ, so for large k we have p- T (k) < 1. This implies lA., I< I, i= 1, 2. 

We have proved that for large k solutions of (28) are inside the unit circle, i.e. 
the approximate equation (27) determines a contraction "mapping". Hence there 
exists a compact set J5 cDR such that x (k) E D io wpl. As in the proof of Theorem 2, 
we find that there exists C<o::> such that lq1 (k)l <2C io wpl, which yields Al2. 

We have proved that algorithm (14) satisfies AH-Al3, so it converges to f) wpl 
as k--+ oo, as desired. • 

Observe that, since the sequence {'r (k)} satisfies (3), the trajectories of (21) 
and (25) aproximate, in a certain sense, the asymptotic path of algoritluns (13) 
and (14), respectively. 

As we have already said, many properties of the algorithms (13) and (14) with 
constant stepsize coefficients can also be studied with the ODE method. In parti
cular, the trajectories of (21) and (25) approximate the algorithms' asymptotic paths. 

4. Simulation results 

There are two different stages in the algorithms' behaviour: the first one, in 
which the error fJ (k) quickly decreases, and the second one, in which 0 (k) randomly 
oscillates around zero. 
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Since our interest here lies in the first stage of the algorithms' behaviour, we shall 
compare their initial rates of convergence. To make the analysis easier, we shall 
use an algorithms' performance index of the form 

T 

l=}; 1\0(i)-&11 2
, (31) 

i=O 

where T is the time when the first stage finishes. 

Algorithms (13) and (14) with constant stepsize coefficient were simulated in 
many different cases [3]. 

b( 1<).100 t 
b 
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Figures 1 and 2 present the results for n=2, 1 =0, 9=( -1/10,- 8/9)T. They 
show the normalized error · 

b(k) 
--·100 

bmax ' 

where b (k)=I!O (k)-011 and bmax= max b (k). 
k 

Both in the case • =0.02, p= a•=0.25 (a= 12.5) (presented in Fig. 1), and in 
the case •=0.03, p=ar=0.2 (a=6.7) (presented in Fig. 2), algorithm (u) is better. 
in the sense of (31), then algorithm ( * ). 

So the filtering procedure of algorithm (14) can improve the parameter iden
tification of the dynamic system. But there is a problem with finding a priori the 
value of coefficient a, which will yield improvement. There are only heuristic methods 
for finding such a coefficient a [3]. 

5. Conclusions 

Algorithms (1) and (2) applied to the parameter identification of a single input
single output dynamic system, are proved to converge wpl when the sequence { • (k)} 
satisfies conditions (3). 

The ordinary di.fferential equation (ODE) method is found to be the convenient 
tool for analysing the algorithms asymptotic properties. Verifying the assumptions 
necessary for the application of the method may need some effort, since they are 
technical. 

The solution of the ODE associated with a given algorithm approximates its 
path. This makes the niunerical quality analysis of algorithms possible. We can, 
in partict•lar, replace (31) by 

1= f IILfO (t)ll2 dt, 
0 

where .JB (t) is the solution of the appropriate ODE. This solution can be found 
analitically or, if it is impossible, numerically. 

Simulation results discussed in section 4 are representative for aU numerical 
analysis of the algorithms (presented in [4D. They show that applying the filtering 
procedure to the algorithm with a constant stepsize can accelerate its convergence. 

I would like to thank dr K. C. Kiwiel from Systems Research Institute of Polish 
Academy of Sciences for his helpful comments on this paper. 
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Appendix 

We shall prove that functions 

K1 (x, ~,p,v)=(l~l+v)(2+1~1+v+2IOI+2p) 

K2 (x, ~' p, v, w)=21~1+4w+2v+2IOI +2p+2 

satisfy conditions A3 and A4 for algorithm (13). We have 

Q (k, X, ~)=If/ (y-OT If/) 

Let 01 ES(O,p), p= p(x)>O, ~1 ES(~,v), "<'>0 for i=1,2. The above assump 
tions imply 

1Yt -Y21<1~t-~21, llf/t-lf/21<1~1-~21 

llf/tl < l~tl <l~l+v, lvtl <l~tl <l~l+v 

lfJ1I<IfJI+P for i=l,2 

From these inequalities and the properties of a norm we get 

IQ (k, Xh ~1) - Q (k, X2, ~2) I~ llf/1 Y1 -ljfl Y2+1f/1 Y2 -lf/2 Yzl + 
+ llf/1 lf/i Ot-lf/t lfli 02+1f/tlf/i 02 -lf/1 If/; 02+1f/tlf/; 02 -lf/2 If/; 02l~ 
~llflti 1Yt-Y21+ 1Y21·11f/t-lf/21+ 

+ llf/tl· llf/ti·IOt-02l+llf/t l · llf/t -lf/2l·I02I+IIflt -lfl2 l · l lfi2I·I021~ 

~( l ~l+v) I ~Pt - ~21+(J~ I + v) l ~1-~2 l + 

+(l ~l+v)2 I 01 -021+2 (l~l+v) (IOI+p) l ~1-~2l~ 

~( l ~l+v) (2+ 1 ~1+v+218 1 +2p) · {IOt-02l+ l ~t-~211, 

which completes the proof of A3. 

Next, let ~~ E S (~, w), v1 E S (v, w), i=l, 2. 

Then 
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We have 

I Kt (0, ffJl, p, vl)-Kt (0, ~2. p, Vz)l~ 

~ 1<19'11 +vt)2 -(l~zl +vz)21 +(2101+2p+2) ll9'tl-1~21+vt -vzl ~ 
~(1 9't l + l ~21) ' 1 9't -~21+(v1 +v2) lvt -v2 1+219't llvt -v2 1 +2v2 1~t -~2l+ 

+(2101+2p+2) { 1~1 -972l+ lv1 -v21}~ 

~(21 9'1 +2w) 19't -9'21+(2v+2w) lvt -v21 +(21 ~1 +2w) lv1 - v21+ 

+(2v+2w) l ~ 1 -~21+(2101 +2p+2) {!~1 -~2 l + lv1 -v2l}~ 

~(21~1 +4w+2v+2181+2p+2) {l9'1 -9'21+1vt-v21} 

so A4 is proved. 

Analiza dwoch algorytmow aproksymacji stochastycznej 
zastosowanych w problemie identyfikacji 
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W pracy tej analizowane S!l dwa algorytmy typu aproksymacji stochastycznej zastosowane do 
idcntyfikacji parametr6w uktadu dynamicznego o jcdnym wejsciu i jcdnym wyj!iciu. K-ty krok al
gorytm6w wykonywany jest w kierunku przeciwoym do kierunku ~d~tcego dost(tpnl\ w danej chwili 
ocen:t gradientu danej funkcji celu. Do analizy algorytm6w zastosowano opracowan:t przez Ljunga 
melod~ stowarzyszonego r6wnania r6Zniczkowego. Udowodniono zbicino~ algorylm6w z prawdo
podobicilstwem J. Praca prezentuje wyniki symulacji oraz jakosciow~ analiZ(t algorytm6w. 

Alla.JD13 .IO'YX a.11ropHTMOB croxaCTB'IecKoii anupoKCHMal{Jtn 

DpiiMeHellhiX IC H.ll.eHTUtf»HKill{Bll 

UccneAYIOTCJI caoifcrsa .nsyx anropHTMOB croxacnfliCCKolt annpoxcnMaJJJUt npMMeuem.oc 
X napaMeTpH'i.CCKOI! Hl{CJiTHcj>H.KauBH AH:BaMH'iCCKOH CUCfCMbl. Ha K·TOM lfTCpaQ.IIOHHOM wary 

anropKTMa Bbi'i.HCJtliCTCH oueuKa rpamreaTa J..~cneeoA cj>yHKL\IIB. Tc!CYW.aH TO'iKa npo.o.eBTaeTCJl 

B BarrpaOJlCfllUt npOTHBDOnmKHOM 3TO:it OJ..ICHKC. TipJ£BO,uHTCJl' 31i3mt3 3JlbTOP11TMOB C llCCDOJJ:b-

30B3RBCM MCTO.D,a .lOI«}l<l>epelil.lllaJibROTO ypaBHCIDnt J.boRra. )l,OK333RO 'ITO aru.rOpHTMbt CXO· 

.D.HiiTCH c eepo11n10cno 1. B pa6oTe npHee,n:eBt.J PeJYJTLTaTbi MO,n:enHposaHBR ua 3BM K xaqe
cTBerncbllt auamt3 anropHTMOB. 



I . !' 


