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Let w, and b, be independent Wiener processes, and consider the task of estimating a diffusion 
x, solving the stochastic DE dx,=f(x,) dt+ dw., x0 = x, at the moment or, -r> t, on the basis of noisy 
observations {y, O~s~t} defined by dy,=x, dt+ db,. 

THI!ORBM. lf f'+J1=az2 + bz+ c, a;a:. -1 then the uni/Crmalized conditional density 

q',(z,x)ccP {x, e dz l y., O~s~ t. T>t} 

.can be wri11e11 explicitly in terms of a finite number of sufficient statistics. 

1. Introduction 

We shall be concerned with the estimation of a "system process" x,, O~t~T 
which we assume to be defined as a stochastic diffusion process on the known pro
bability space (Q, F, P) solving the stochastic DE 

dx,=f(x,) dt+dw,. x 0 =x. (1.1) 

It is further assumed that the system process cannot be observed directly. Instead 
we have available an "observation process" y, which is given by 

dy, =x, dt+db,, y0 =0. (1.2) 

where (w, b,, F,) is a 2-dimensional Wiener process with respectto Fu F, c F 0~ t~ T, 
1;ystem of non-decreasing sub-a-algebras of F. 

Our available data is {y., O~s~t} and x, and using this data we wish to estimate 
x., at the moment T, O~T~T. 

This problem will be called as follows 
- the prediction problem if T> t 
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- the filtering problem if -c=t 
- the smoothing problem if -c < t. 

Virtnally the only solutions of the prediction problem have been obtained to date 
for the linear dynamics casef(z)=rxz+fJ, but after Benes paper [I) it became quite 
obvious, that even for some nonlinear f the problem is finite-dimensional. 

In his excellent paper [1], Benes has solved the filtering problem, under condition 

writing explicity q: (z, x). In this paper we will study the prediction problem and 
under "Benes condition" ( *) we will exhibit its exact solution. It turns out that 
q; (z, x) depends on a drift fin exactly the same way as ·q: (z, x) does. Dependence 
on sufficient statistics is obviously more complicated but the number of statistics 
is finite (the finite-dimensional computable solutions of the prediction problem are 
called finite-diemensional predictors). Applications of the solutions in real situations 
is considered and connection with smoothing is pointed out. 

2. Solution of tbe prediction problem 

Our main resnlt is: 

THEOREM. Let f'+J2=az 2 +bz+c, a~ -1. Then 

(2.1) 

where 

r=r (-c)=a- 112 th a112 (-e-t) (2.2) 

a=a(t)= (a-I)- 112 th(a-1)112 t (2.3) 

A=A (-c, t)=exp {-a j r (s) ds} (2.4) 

b < 

B=B(-c, t)=2 J A (r, s) ds (2.5) 
t 

1 : 
A 1 =A 1 (-c, t)=2 J [c+ar (s)-bB (-c, s)+aB2 (-c, s)] ds (2.6) 

t 

• 
A 2 =A2 (-c, t)= -B+a J A (r, s) B (-c, s) ds (2.7) 

1 • 
A 3 =A3 (-c, t)=2a J A 2 (-c, s) ds (2.8) 

t 
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R=R (r, t)=:ra [r+aA2 +2raA3 ] - 1 (2.9) 

C=C(t,s)=exp{-(a-1) j a(u)du} (2.10) 

1 I I 

p.=p.1=xC(t,0)-2b J a(s)C(t,s)ds+ J a(s)C(t,s)dys (2.11) 
0 0 

1 
K=K (r, z, t, x)=2 [raA2+ w+(z+B) a A] (ra)-l (2.12) 

1 
Tf=Tf (<, z, t, x) =2 (p.2 a- 1 +(z+B)2 , -l] (2.13) 

For definition of QJ (t) see proof. 

Proof. Under condition (*) Benes {1, Theorem 8) showed that 

q:(~. x)=QJ (t)exp {-se;:>
2 

+ jf(u)du} (2.14) 

where (/J (t) is time- function which dOeS not depend On X and/Or e, U and I' are 
statistics satisfying (2.3) {2.11). We shall show now that 

+eo 

q; (z, x) = I r(r, z, I, 0 q: (c;, x) d~ (2.15) 
-oo 

where F(r, z, t, c;) is the fundamental solution of the PDE 

ou I iP u a 
Tt= 2 oz2 - a;(fu). (2.16) 

To do this, let us denote 

A1=:exp {/ x. dy,- ~ j x; ds} . 

From Kallianpur-Striebel formula ([4], Corollary, pp. 800) we have 

(2.15') 

where lA is an in.dicator of the set A. 

Using welt known properties of Markov processes we can express the right hand 
side of (2.15') as follows 

C=+oo 

f £1 {( o; x,<C+.t~ } A,= 
C• -oo :o;(x,-x1)+x,<:+d: 

~=+oo 

= f El<~~x,<~+ ~~~~A,·EI{"•=~ }' 
C=-oo z-co;x,-x, <:-~+tl(r-C) 
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Now we recognize from K-S formula that • 

and from the Markov diffusion theory that 

El{x,=l: }=T(r, z, t, ~) dz, 
z-;:.;x,-x,<z-;:+ d (z-;:) • 

This completes the proof of (2.15), Note that the equality (2.15) has an obvioys 

interpretation from parabolic PDE theory point of view namely, it is a solution 

of the Cauchy problem for (2.16) with the initial condition u (t, ~)=q: (~, x), see [3]. 

Equation (2,16) is not directly integrable, but let us define v (r, z)=u ('r, z) exp { + 
z 

- J f(u) du} and calculate both sides of (2.16) 
{ 

ou OV { : t 
-=-exp j f(u) du 
07: 07: ;: J 

o2 
U [ o2 

V OV ] { z } 
ozz = ozz + 2f oz + (f' +JZ)v exp f f(u) du 

iJ(fu) [ ov] { z } -----;;~= (f'+JZ)v+f oz exp j f(u)du . 

Substituting this formulas into (2.16) we get the equation for v (1:, z): 

OV 1 i32 
V 1 1 i32 

V 1 

(2,16') 

ar=T azz -T<f'+f
2
)v=T oz2 - 2 (az

2
+bz+c)v (2J7) 

which is now directly integrable in view of the quadratic potential term. 

Integrating (2, 17) we get the formulas: 

{ 
(z-m)z z } 

T(•,z,t,~)=(2nr)- 1 ' 2 exp-
2
, +A.+ jf(u)du 

where r is given by (2.2), 

dm 1 
-= -arm--br m(t)=;: 

d-,; 2 ' <, 

dJ. 1 
-= - - (c+ar+bm+am 2

) J.(t)=O. 
d• 2 ' 

(2J8} 

(2.19) 

(2.20) 

Using formulas (2.6), (2.7), (2.8), (2.19) we can express the solution of (2.20) in the 
form 

(2.21) 
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which together with (2.14), (2.18), (2.19) makes it possible to use (2.15). Simple 
manipulations show that the right hand side of (2. J 5) 

(2.nr)- l /l qJ (t) exp {A1 + j f(u) du} x 

+oo { (f. -p)2 (z+B- Ae)2
} 

x _£ exp A 2 f.+A 3 f.
2

- 2a - 2, df. · (2.22) 

This last integration leads directly to (2.1). 

3. Reduced density 

Examination of the formula (2.1) for the unnormalized conditional density 
shows that normalization will reduce dependence on all the sufficient statistics 

I 

except: 

depending on the observation process y, (through p.) and 

a, r, A,B, C, R, N=(l-RA 1) , - 1 

which are deterministic time functions. 

After a bit of simple calculation one can express the reduced density as 

::: 

(z-M)l = l 
2N2 + J f(u) duJ. 

(3.1) 

(3.2) 

(3.3) 

Except for the part involving J f(u) du, the reduced conditional density is determined 
X 

like the Gaussian, by the quadratic function in its exponent. 

4. Applications 

Jt is almost trivial to say that the linear stochastic diffusion process (called also 
the Ornstein-Uhlenbeck process) is very popular in many areas of investigations. 
The linear models used in control, filtering and prediction theories allow to formulate 
and solve relevant problems rigorously. What is even more important for appli
cations, many problems not of this (linear) form are approximately modelled as 
linear and the solutions are used as approximations of the solutions for the original 
s ituations. However, assumption of linearity is a serious restriction imposed on 
the model of a systems. It is very important to extend the scope of the relevant 
mathematical methods and explicity obtained results. We begin this section by 
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presenting examples of functions f satisfying the Ben:es condition ( *) · (other exan1.:. 
ples and extensions to the multidimensional case can be found in [l]) 

(!) L 
for which a= b= O, c= 02

, For A=B, f(z) = B th B. 

(!!) the linear case f(z)=cxz+{J meets the hypothesis(*), with a=IX2
, b= 2cx{J, 

c= cx+f32
• 

As we see, the condition ( *) is satisfied for large classes of interesting non:linear 
drifts f including the linear case (! !) and this fact implies usefulness of the diffusion 
{1.1), ( * ). Statement of the prediction problem and its solution presented in section 
2 and 3 allows us to refer to some practical situations. Two of them are shown below: 

A. Delayed observations 

Let us assume that the signal process x, is- as previously - given by (1.1), 
( * ), but the observation process · 

t 

y,= J Xs-h ds+b, 
0 

(4.1) 

and initial condition x = Xs for - h,;;s,;;O, where h>O is the time delay appearing 
in a information channel and/or a computational machinery calculating the . con-
ditional density q~ (z, x). Now let us define the "new" observation process · ' 

t-h 

Yr-h = J x, ds+bt-h 
0 

of the form {1.2), where h,_h =. b,. 

Introducing the new variable u=s+h we have from (4.2) 

t 

Yt-:-h = J Xu-h du+bt-h · 
h 

(4.2) 

Defining y,=.ji,_h - xh, we see that )), =.y,, hence for the problem of estimating x; 
on the basis of observations (4.1) our formulas (2.1), (3.3) are applicable with the 
substitutions ?: =. t+ h and y,=.ji,= xh+y,. 

B. Double observations 

For the same signal process x, as previously, we have available data which 
consist of two components, the first 

• 
{y., O,;;s,;;t} where y,= J Xu du+b. 

0 
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and the second 

{x .. , O~a~t-h, h>O}. 

This model of observation is useful, for instance, in certain economical situations 

which occur oftentimes in practice Following [2], [5], [6J we only mention demand 

processes which are perfectly observable up to (for example) yesterday, are noisy 

today and have to be predicted for the next few days Obviously our result applies 

with the substitutions "h" instead of "t" and "x,_ h" instead of "x" in the formulas 

of sections 2 and 3 

5. Smoothing 

Let r ('r, z, t, c;), 1:<t, be the fundamental solution of the backward PDE: 

cu 1 i32 u ou 
-;-+ -2 ----;;-? + J-~ = 0 
v't vz- Oz 

From the theory of PDE ([3], theorem 15 pp. 28) WC know that r (r, z, t, c;)= 
=T (t, c;, •, z) where r ('r, z, t, 0 is given by (2.18), (2.2), (2.l9), (2.20). Again using 

formula (2.15) " 'ith {' (•, z, t, c;) instead of F(r. z, t, c;) we can calculate q; (z, x) 

for -c<t. 
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Dokladne prodyktory skonczenie wymiarowe 
dla pewnych procesow dyfuzji z nieliniowym dryftem 

W pracy podano rozwi'!zanie problemu prognozy (exstrapolacji) dla pewnej klasy nieliniowych 
proces6w dyfuzji z liniow'! obserwacj'!. Om6wiono takie zastosowanie otrzymanego rozwi'!zania 
oraz wskazano ze nieznaczna modytikacja dowodu zasadniczego twierdzenia prowadzi do rozwi'!
zania problemu wygladzania (interpolacji). 

To'IHLie KOHe'IHOMepHbie npe~nKropbi ~JIB ueKoropbiX ~n$$pnii 
c uemmeiiubiM ~pu«!JroM 

PaccMOTpeHo 3ap:aqy oneHHBamrH perneHHH x, CToxacTH'leCKoro ypaBHeHHH 

dx, = f(x,)dt+dw,, x 0 = X B MOMeHT r, r>t. 

0JJ,eHHBaHHe Bep:eTCll Ha OCHOBe B03MYIT(eHHOfO npou;ecca Ha6mop:eH!Il! y,. .lJ:aHO )J;OCTaTO'lHDe 
yCJIOBl'Ie TOTO, 'lT06bi <f?YHKI\HH yCJIOBHOll TIJIOTHOCTH BepOHTHOCTH X 1 MOrJia 6biTh Bbipa)KeHa 
npH ITOMOllUI KOHe'!HOfO 'lHCJia .l(OCTaTO'!HbiX CTaTHCTHK. 


