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An iterative procedure meant to approximate the optimal reward function of infinite-horizon
discounted dynamic programming problems with Polish state and action spaces is considered.
The procedure is then used to determine an asymptotically optimal policy and it is also combined
with a consistent parameter estimation scheme to determine an asymptotically optimal policy for
decision models depending on unknown parameters. The latter policy is compared with the “prin-
ciple of estimation and control” recently introduced by Schél (1981), which is extended here to
Polish state-space decision problems.
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1. Introduction

In this paper we consider an iterative procedure meant to approximate the
optimal reward function of infinite-horizon discounted dynamic programming pro-
blems with Polish (i.e., complete separable metric) state and action spaces. The
procedure is then used to: (i) determine an asymptotically optimal policy, and (ii)
it is combined with a strongly consistent parameter estimation scheme to determine
an asymptitically optimal (adaptive) policy for decision models depending on un-
known parameters. The policy obtained in (ii) is compared with the *principle of
estimation and control” introduced by Schil [22] for the adaptive control of de-
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numerable-state semi-Markov processes and extended here to Polish state-space
Markov decision problems.

Our motivation in considering the problems indicated in the previous paragraph
was born from our interest in Markov decision processes with incomplete state
information (MDP-ISI) and depending on unknown parameters. We are thus con-
fronted with a decision problem combined with state identification (sometimes
called a filtering problem) and parameter estimation. However, it is weli-known
[11, 18, 20, 21, 23] that in many cases of interest a MDP-ISI can be reduced to
a Markov decision process (MDP) in the usual sense, but in which the state space,
say, S, of the original problem is replaced by the space S’ of probability measures
on S. Therefore, since S’ turns out to be a Polish space in most of the usual cases
(cf. cited references), it seemed natural to begin by extending to the case of a Polish
state-space previously known results for MDP’s with unknown parameters and
denumerable (possibly finite) state space. And this is essentially what we do in the
present paper: the nonstationary value-iteration (NVI) scheme introduced by Fe-
dergruen and Schweitzer [2] for MDP’s with finite state and action spaces, as well
as the adaptive policies considered by Schédl [22] and Hernandez-Lerma and
Marcus [5, 9] are extended here to the case of Polish state and action spaces. This
is a first step towards the solution of the MDP-ISI and unknown parameters;
the main difficulty involved in obtaining a complete solution is briefly discussed in
Section 6.

Qur results are also related to approximations of dynamic programs obtained
under quite general conditions by Langen [15] and Whitt [24]. However, by restricting
ourselves to discounted dynamic programiming models we are able to show (uniform)
convergence of our approximation schemes with very simple and short proofs.

We begin in Section 2 by introducing the decision models we are concerned with.
In section 3, the N'VI scheme of Federgruen and Schweitzer [2] is extended to de-
cision models with Polish state and action spaces. The NVI scheme is used in Sec-
tion 4 to determine an asymptiotically optimal (AO) policy for adaptive decision
models, i.e., decision models depending on unknown parameters. Also in section 5,
our results are briefly compared with the ““principle of estimation and control” [22].
extended here to MDP’s with Polish state space.

2. The decision model

To avoid unnecessary repetitions we shall agree that a topological (respectively,
product) space is always endowed with the Borel (respec., product) c-algebra. The
Cartesian product of the sets 4 and B is denoted by AB.

As usual [3, 10, 11, 16, ...] to state the (discounted) dynamic programming pro-

‘blem we need to specify a decision model, the collection of admissible policies,
and the objective function. This is done as follows.
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The decision model (S, A, q, r, B) satisfies:

(A1) (a) The state space S is a Polish (=complete separable metric) space.

(b) The action set A is Polish. For each x € S, the set of admissible actions
in state x, denoted by A (x), is a nonempty measurable subset of 4. Let
K:={(x,a):xe S, ac A(x)} be a measurable subset of (the product
space) SA.

(c) g(x,a, ), for (x,a) =K, is the transition law: when the system is in
state x and action a € 4 (x) is chosen, the system moves to a new state
according to the probability distribution ¢ (x, a, *) on S.

(d) r: K=R is the (measurable) reward function.

(e) 0< <1 is the discount factor.

In addition, we shall assume the following.

(A2) (a) There exists a constant R such that |r (x, @)|<R for all (x, a) e K. More-
over for each xe S,
(b) 4 (x) is compact,
(c) a—r(x,a) is continuous on A (x), and
(d) a- [q (x, a,dy) u (y) is continuous on A (x) for each bounded measurable
function u: S—»R.

Let X, and A, be the state and action at the n-th stage, respectively, n=0, 1, ...
A given realization of (X, Ag, X1, Ay, ...) I8 denoted by (xo, @, Xy, @y, ...).

A policy d is a sequence d=(d,, d,, ...), where d, (h,, *) is a conditional pro-
bability measure on the Borel sets of A4, given the history of the process h,=(xg, ag, ...
wioy Xy—15 Gn—1, Xn), and it satisfies

d, (he A (x))=1, n=0,1, ...

A Markov policy is a sequence (fo, fi, -..) of functions f, € F, where F is the collec-
tion of all measurable functions f: §—4 such that f(x)e 4 (x) for all xeS. As
usual we identify F with the set of stationary policies, i.e., Markov policies of the

form (f.f, ...), fe F.

Finally, the objective function is
v (d, x): =E;‘[Z B r (X, A,,)] ()
n=0 4

the expected total discounted reward when policy d is used and the initial state
is x. A policy d is said to be optimal if it satisfies v (d, x)=v* (x), x € S, where v*
is the optimal reward function defined by

o* (x)=supwv (d,x), x€eS. 2)

As mentioned in the Introduction, we are interested in obtaining a procedure
approximating o* and in determining an asymptotically optimal stationary policy,
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which is done in Sections 3 and 4, respectively. The results are then applied (Sec-
tion 5) to decision processes depending on unknown parameters. An important
role is played by the following well-known result [3, 4, 10, 11, 16]:

ProrosiTioN 1. Assume (Al, A2). Then (a) v* is a bounded measurable function
and it satisfies the optimality equation

o* (x)= sup [r(x, a)+ﬁsfq(x, a,dy)v* ()], xeS. -

acd(x)

(b) A stationary policy fe F is optimal if, and only if, it satisfies
v* ()=r (%, /(X)) +B [ q(x.fx), dy)o* (»), x€S.

The existence of an optimal stationary policy is ensured under (Al, A2).
NOTATION. B (S) denotes the space of real-valued bounded measurable functions
u on S with the supremum norm |[ul|=sup, |u (x)|. M (S) is the space of finite signed
measures g on S with the total variation norm ||| (see, e.g., [19]). :
We shall use further the following obvious facts. For any u € B(S) and ue M (S),
| [ | <l 1] e
If u,veB(S), then (see, e.g., [11, Lemma 3.3])

Isup u (x) —sup v (x)|<sup |u (x) —v (x)]. ©®)

3. Nenstationary value-iteration

The nonstationary value-iteration (NVI) scheme introduced by Federgruen and
Schweitzer [2, Theor. 3.1 (a)] for finite state and action spaces is extended in The-
orem 1 below to the decision model (S, 4, g, r, f) described in Section 2.

Consider a sequence of decision models (S, 4, g,, r., ), n=0, 1, ..., each of
which satisfies Assumptions (Al) and (A2), and such that they ‘converge” to
(S, 4, q,r, B) in the following sense.

(A3) As n—oo0,

(a) 7 (i’t): =Sup(x,a)eK !rn (x: (l)-—l" (xs a)l_*o’
and

(b) T (ﬂ) =Sup(x, aye K “‘b] (x, a- )_q (x, a,: )”_’O’
where || || denotes the total variation norm.

Note that (A3) is equivalent to:
(A3). As y—o0,
fi(n): =supy (m)—»0 and 7 (n): =sup = (m)—0.

m=n mzn
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Also note that both sequences #7 (n) and 7 (1), n=0, 1, ..., are non-increasing.
Now let v, (), n=0, 1, ..., be the functions in B (S) defined by

9y (X): =SUPgca(x)To (x,4), Xx€S,

and for n=1, 2, ...,

v (x): = sup [ra(x,@)+F [gu(x,a,dy) v ()], x€S. ©

atAd(x)

Note that, for all n, v, and the optimal reward function v* in (2) are bounded:

lo¥<er and Jul<R D} f<es, @
k=0
where ¢;=R/(1—p).

TueorReM 1. If (Al, A2, A3) hold, then |jv,—v*||—0. More precisely,

(@) loa—v*| < ¢+ max {7j ([n/2]), #7([n/2]), P™*1}, n=0, where c=(14fcy)/
(1= +2¢, =14 e, +2R)/(1 —p), and [r] denotes largest integer <r. Morcover,
if the sequences n (n) and = (n) in (A3) are themselves non-increasing, then i and 7
can be substituted by n and =, respectively, to obtain:

(®) llva—v*|<c*max {7 ([#/2]), =([n/2D, "}
Proof. The proof is essentially the same as that of Theorem 3.1 (a) in [2], but
is included here for completeness. First note that, by (7), we can apply (5) to func-
tions v, and o* (with ©* as in (3)). That is, for any x in S,

[Tns 1 (X)—v* (¥)}<

< SUP [Faes (0, @) =1 (%, @)+ B [ Gusr (%, 0, dY) 2, (3) =B [ 9 (x, @, dv)o* ()] .

ac A(x)

Now inside the absolute value on the right-hand side, add and substract the term
B [ Gusr (x, @, dy)v* (¥), and then use the triangle inequality, the inequality (4),
and take the supremum over all x € S, to obtain

lwns 1 —2*l[<n (1D +B 0¥l (1+ 1)+ £ [[va—2*]].

Therefore, for all m=1,2, ...,

m—1

¥4 m—2*I< 2 B [n (n+m—k)+pey m (n+m—k)1+ | v, —v*|. ®

Now, since |,—v*||<2¢, and 7 (#)=n (n+k) and 7 (W)=x (n+k) for all k,
it follows from (8) that
n+m—0*I<[7] (0)+ Py T (M))/(1 = f)+2¢, f

8’
<c+max (i (n), % (n), B} A2
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Then making the substitution k=n-+m with n=[k/2] and m=k—[k/2]1>[k/2],
inequality (8') reduces to

llo —v*||< ¢ » max {77 ([k/2]), 7 ([k/2]), B2},
which proves (a). Finally, to obtain (b) just note that if # (n) and = (n) are non-in-

creasing, then (8") holds when # and 7 are substituted by # and «, respectively. i

Several interesting applications of the NVI scheme are mentioned by Feder-
gruen and Schweitzer in [2, Section 1]. Here we will use it to obtain asymptotically
optimal policies (Section 4 below) and to obtain adaptive policies for decision
processes depending on unknown parameters. A similar approach has been used
in [6] to obtain finite-state approximations for denumerable MDP’s.

4. Asymptotically optimal policies

Consider function ¢: K—R defined by
9 (x, A)=r (x,)+p [ 9 (x, a, dy) v* () —0* (x). ©

This function has been widely used [3, 4, 5, 17] as a measure of the “difference”
between an optimal action in state x and any other action a4 (x). For instance,
in terms of ¢, Proposition 1 can be restated as follows:

PROPOSITION 1’. Assume (Al, A2). (a) Optimality equation: SUpye 4 (xy ¢ (X, @)=0.

(b) Optimality criterion. A stationary policy f is optimal iff ¢ (x,f(x))=0 for
all xeS.
Here we use ¢ to define asymptotic optimality.

DEerINITION 1. A Markov policy {f,}, i.e., a sequence of functions f, € F, is asympto-
tically optimal (AO) if, for each x€ S, ¢ (x,/, (x))—0 as n—co.

COMMENT. Asymptotic optimality is related to the following concept due to Schil
[22]. A policy d is asymptotically optimal in the sense of Schil if, for every x €S,

Vy (d, x)—Ei0* (X))—0 as N>, (10)
where

VN (da X): =E£ [Z ‘Bn—N r (Xm An)]

is the expected total reward from stage N onwards discounted at stage N. This
concept of asymptotic optimality can be related to that in Definition 1 by the fact
that [22, Theor. 4.12] (see also [5, 9]) the left-hand side of (10) can be written as

Vi (d, x)—E%o* (Xy)=E¢ [Z ¥ ¢ (X, A,,)].

n=N
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Thus a sufficient condition for (10) is the following: ¢ is a bounded function and
@ (X A,)—0 P — almost surely as n—»w. [ |

We now use the NVI scheme (6) to define an A0 policy. First note that under
Assumptions (Al) and (A2), for each n=0, 1, ..., there is a measurable function
Ju: S—A such that f, (x) € 4 (x), and

vo (X)=ro (x, /o (x)), x€S
O (X) =1, (%, o (X))<B [ G (x. fo (x)s dY) vay (), x€S.

This follows from standard measurable selection theorems; see, e.g., [3, 10, 16].
Thus {/,} is a Markov policy and we also have the following:

(1n

THEOREM 2. Under the assumptions of Theorem 1, {f,} is AO. Furthermore, the asymp-
totic optimality is uniform in the sense that

[lplly: =supyes |¢’ (xsf;l (\))[ -0 as n—o.
Proof. From (9) and (11),

¢ (5 /o ())=9 (x, 1, () +0. () —va (x)=
=r (x,fu () =1 (%, fa ()45 [ g (x, /s (x), dy) o* (»)+
=B [ @n (%, /o (%), dY) Vay ()0, () —2* (x).

On the right side, add and substract the term

B [ n (x. fu (x), dv) o* (3);

then a simple calculation (which uses (4)) shows that
lpla<n ()48 [o*]| & () + B lvn— 1 —0*||+ljva —2*]],
from which the desired result is immediately concluded. i

5. Adaptive policies

A Markov decision process, say (S, 4, ¢ (0), r (0), ), depending on an unknown
parameter @ is called an adaptive MDP (The name is sometimes used to include
MDP’s with incomplete state information, as in [11].) To solve these problems,
a decision-maker has to identify or estimate the unknown parameter 0 while seeking
the optimal policy. Thus at each decision epoch, he has to estimate the parameter
and “‘adapt”™ his actions to the estimated value; policies combining these two func-
tions — parameter estimation and control actions — are called adaptizve policies.
An extensive survey on adaptive decision problems has been given recently by
Kumar [13]; additional references can be found in [4, 5, 7-9, 17, 22].

In this section we consider an adaptive MDP (S, 4, ¢ (6), r (0), .8), where the
transition law ¢ (x, a, 8, +) and the reward function r (x, a, 0) depend on an unknown
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parameter 6. In contrast to Bayesian problems [13, 11], we do not have a priori
information about the true parameter value, except that it belongs to a given para-
meter set 7, which is assumed to be a Polish space. For each 0 e T, the decision
model (S, 4, g (0), r (), B) is assumed to satisfy conditions (A1) and the analogue
of conditions (A2), namely:

(A420) (@) |7 (x, a, O)|<R for all (x, a) e K, 6 € T. Moreover for each xe Sand 0T,
(b) 4 (x) is compact,
(©) a—r(x,a,0) is continuous on 4 (x), and
(d) a— f q(x, a, 0,dy)u(y) is continuous on 4 (x), for each u € B (S).
Under these assumptions, Proposition 1 (or 1) holds for each fixed 0 € 7. In par-
ticular, if we define (cf. (1), (2) and (9))

v (d, x, 0): =E;'"’[Z B ri( X A 0)],

n=0
¥ (x, 0): =sup,v (4, x, 9),
and
9 (x,a,0):=r(xa0)+8 [ q(x, a0, dy)o* (y0)—v*(x,0), (x,a)€eKk,

we can rewrite Proposition 1’ as follows.

Prorosition 17", For fixed 0 €T, () sup,ea(xy ¢ (X, a, 0)=0; and (b) a stationary
policy f(-, 6) is optimal if, and only if, ¢ (x,f(x, #), §)=0 for all xe S.
Note that equation (a) in Proposition 1'’ is equivalent to

v* (x, O)=sup [r (x,a, O)+8 [ 9 (x,a,0,dp)v* (»,0)], x€S;

cf. [4] section 1.1.

If 0 € T'is the true (but known) parameter value we can approximate the optimal
reward function o* (-, @) using an appropriate version of Theorem 1, and an asymp-
totically optimal policy can be obtained from Theorem 2. To do this, the idea (ro-
ughly) is to consider the sequences

r.(x,a): =r(x,a,0,),q.(x,a, *): =q(x,a,0, *),n=0,

where (x, @) € K and {6,} is a sequence in 7 converging to 6. We require the -ana-
logue of assumptions A3.

(A30) for any 6 €T and any sequence {6,} in 7 such that 6,—0 as n—o,
1@, 6): = sup [r(x,a,6)—r(x,a, 0)]-0, and

(x,a)eK

an,0): = sup llg(x,a, 0, *)—q(x,a,0, *)|-0.

(x,a)eK

The #-analogue of (A3’) holds for the non-increasing sequences

1l (n, O)=sup 7 (m, 6), 7@ (n, 6): =sup x (m, 0).

m=n mz=n
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Similarly, instead of the functions , in (6), we now consider
Yo (X., 00): =SUPgea(xy T (I, a, 80)’ X€eS,
and for n=1,2, ..,

O (X, 0n): =SUPac axy [r (%, @, 0)+8 [ g (x, @, On, dy) vay (1, 0a-y)]
=r (x!f;! (x' 0!!)’ en)""ﬁ 'r q (—‘:nﬁu (xs 6&!)’ 9,.. d}’) U1 (.vv 91— l_}s (] 2)

where, for each xe S, f, (x, 8,) is a measurable maximizer of the right hand side
of (12). Note that the right hand side of (12) depends on 6™: =(6,, 6,. ..., 6,),
so that, strictly speaking, we should write o, (x, 0™) (respectively, f, (x, 6)) in-
stead of o, (x, ,) (vespect., f, (x, 6,)). However, we shall keep the latter, shorter,
notation. Then Theorems 1 and 2 can be summarized as follows.

COROLLARY 1. Assume (A1, A20, A30) and let {0,} be any sequence in T converging
to 0. Then
(@) |, (*,0,)—v*%(+,0)|—=0 as n—w, and
(b) {fa(+,0,)} is asymptotically O-optimal in the sense that
SUDxes | @ (x, £ (x, 6), 9)| -0 as n—ow.
Furthermore, (with the obvious changes in notation) the inequalities in Theorem
1 (a) and (b) also hold in the present case.

To define adaptive policies we first introduce the following definition, where P%?
denotes the probability measure when policy d is used, x is the initial state, and &
is the true parameter value; cf. [4, 12, 22).

DEFINITION 2. A sequence 8,=0 (X,, Ag, ..os Xoe1s Au_y, Xo) Of T-valued measur-
able functions is said to be a sequence of strongly consistent (SC) estimarors of
0eT if, as n— o, 0, converges to @ P*%almost surely for any x€ S and any
policy d.

Examples of SC estimators in adaptive Markov or semi-Markov decision pro-
cesses can be seen in [4, 7, 8, 12, 14, 17, 22]. Given a sequence of SC estimators, an
adaptive policy is obtained as follows.

DerNiTion 3. Let {0,) be a sequence of SC estimators of 0 &7. The policy d=
=(d,, n=0, 1, ...) defined by

d; (xO! AU: . T Xll)=j; (Xm all)
is called the NVI adaptive policy.
Note that, since the convergence in Corollary 1 (b) is uniform in x, we obtain:
COROLLARY 2. Asn— o0,

|0 (Xas fo (X, B, )| =0 P*°-almost surely. (13)
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We can state (13) by saying that the NVI adaptive policy d is asymptotically
optimal, although strictly speaking Definition 1 is not applicable here, since d is
not a Markov policy. g

To appreciate the goodness of the NVI policy, let us briefly compare it with the
“principle of estimation and ccntrol (PEC)” introduced by Schél [22], and which
we now describe.

I. For cach 6€T, let g(+,0)< F be an optimal stationary policy (cf. Pro-
position 17).
. Let {6,} be a sequence of SC estimators of ¢, the true parameter value.
L. Define a policy d'=(d.) by ]
dr: (XOs Ao, ...y Xn—-la Ay, Xn)=g (Xm én) (14)'
d’ is called the PEC policy.

The PEC policy is known in adaptive control under the various names of ‘naive
feedback controller”, “self-turning regulator”, and others, but is very well described
as [17] “the method of substituting the estimates into optimal stationary control”.
The PEC policy has been widely used in decision processes with average-reward
criterion [4, 7, 8, 14, 17], but to the best of our knowledge, Schal’s paper [22] was.
the first application to discounted-reward problems (with denumerable state space).
To prove that d’ is asymptotically optimal (see Theorem 3 (b) below) we need the
following: \

LemMA 1. Assume (Al, A20, A36). If 0,0, then
lo* (-, 6)—2* (-, O)]|-0. 15y
Proof. For any x in S, we obtain from (5),
lo* (x, 0,) —0* (x, 0)|<SUPe 4 vy |7 (¥, 4, B) =1 (x, a, O)+
+8 [ q(x, a, 0, dp) o* (3, 0,) =B [ g (x, a, 0, dy) v* (7, 0)
and therefore (using (7)),
o* (=, G —o* (+, O)I<n (1, O)+ ey = (n, O)+B o™ (+, ) —0* (=, O)lI,
that is,

5

A=p) lle* (-, ) —v* (+, O)lI<n (n, )+ Pey = (n, 6). B
THEOREM 3. Under the assumptions of Lemma 1 we have:
() If 0,—86, then
o (+>g (500, 0)|=sup o (x, 8 (x, 0,), 0)| >0 as n>c0
(b) The PEC policy d' is as}mptatically optimal in the sense that, as n— oo,
lo (X g (X5, B, 0)||»0 P&*-almost surely for any x e S.

Proof. Part (a) can be proved as Theorem 1. First note that (cf. Proposition 1'”
and I above) since ¢ (x, g (x,6,), 0,,)=0, we can write

9 (x, g (v, ), O)=9 (x, g (x, 6.),0) — ¢ (x, g (x, 6,), 6,).
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Next, using the definition of ¢ (x, 4, 0) to expand the right hand side, a straight-
forward calculation shows that

lle(-.g(, 02, 0)||<n@)+81o* (-, 0) = (m)+
+(l+ﬁ) Iéﬂ‘ ( *a 0,)—{?* (. » 0)1.1’

50 that (a) can be concluded from (A30) and (15). Finally since (a) holds, uniformly
in x, for any sequence 6,—8, (b) holds for any sequence {0,} of SC estimators.

If follows from Corollary 2, Theorem 3 (b) and the comment following Defi-
nition 1, that the NVI and the PEC adaptive policies are both asymptotically optimal
in the sense of Schil [22]. Note also that our proof of the asymptotic optimality
of d’ (Theorem 3 (b)) is much more elementary than Schil’s proof [22, Theorem 5.21].
This is mainly due to the fact that, instead of the recurrency assumption 2.5 in [22],
we have introduced the “uniform continuity”™ conditions (A30).

Finally, note that, from the point of view of applications, the main disadvantage
of the PEC policy d’ with respect to our NVI policy d is in step 1 above: d’ requires
to determine in advance the optimal stationary policies g (», #) for all values of 6.

6. Concluding remarks

As noted in the Introduction the underlying motivation for the present work
was our interest in Markov decision processes with incomplete state information
(MDP-ISI) and depending on unknown parameters. Having transformed the ori-
ginal MDP-ISI to a MDP with complete state information in which the new state
space is a space of probability measures [11, 18, 20, 21, 23] it might be thought
that the adaptive policies (NVI and PEC) in Section 5 above are applicable. How-
ever, these adaptive policies are defined in terms of a sequence of SC estimators
with are based on complete observations of the state (and action) sequence(s). Thus
application of the results in Section 5 to an MDP-ISI there still remains the problem
of showing that a sequence of SC estimators, based on incomplete state observations,
can be constructed. We do not have an answer to this problem, at present, but
perhaps results like those of Baum and Petrie [1] for finite-state non-controlled
partially observed Markov chains might be extended to an MDP-ISI.
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Aproksymacja i strategie optymalne
w programowaniu dynamicznym z dyskontem
W pracy przedstawiono iteracyjna metode aproksymacji funkcji Bellmana w zadaniach pro-

gramowania dynamicznego z dyskontem przy nieskoficzonym horyzoncie czasowym w niezupelnych
Banacha (polskich) przestrzeniach standw i sterowania. Opisana metoda jest nastepnie zastosowana
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do okreslenia asymptotycznie optymalnego rozwiazania a po polaczeniu ze zbieing metoda esty-
macji parametréw takze do okre§lenia optymalnej sirategii podejmowania decyzji. Otrzymana
strategi¢ porOwnano ze strategia wynikajaca z zaproponowanej przez Schila w 1981 r. zasady
estymacji i sterowania, ktéra w pracy uogdlniono na zagadnienia decyzyjne w przestrzeniach nie-
zupelnych Banacha.

AnmpoxcumManus H a1aNTAHOHHEIE CTPATErHH
B JUHAMHYECKOM NPOrPAMMHPOBAHHH C IePeoleHKoi

B pabote paccMatpuBaercs HTepaTHBHBI MeTON ammpokcumaumy (gynkuuw bensmana ans
33144 JHAAMHMECKOr0 OPOrPAMMMPOBAHEA C TEPEOUEHKOH npH OCeCKOHEYHOM BPEMEHHOM To-
PHIOHTE B HENOJHBIX GAHAXOBBIX MOJBCKHX TPOCTPAHCTBAX COCTOAHWI M ynpasjieuwil, Paccmo-
TPEHA NMPOUEAYPA MCIOIB3YETCA TAKKE [JIsA ONpejelieHHs ONTHMAJLHOW cTparerdn. PaccMaTpr-
BAIOTCHA TOKE MOACIH C HEHM3BECTHBIMH Hapamerpamd, Haiy HrepaumoHHylo npoueaypy obbe-
JIMHEHO € HEKOTOPLIM METOAOM COCTOSTENBEHOTO OLEHHBAHMA M IOAYYCHO IPOLEIYpPY HAXOMXK-
JICHHA ACHMITTOTHYECKH ONTHMANBHOM CTpaterdd. DTY CTPATCTHIO CPABHCHO C ,,IPHHLMIIOM Ole-~
HuBauua v yupapnexns’’, speaénusiv Meném. IMpusuun Iens obobieno wa Ganaxoseie oMb~
CKHE MPOCTPaHCTBa.
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