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1. Introduction 

T n. this paper we consider an iterative procedure meant to approximate the 
optimal reward function of infinite-horizon discounted dynamic programming pro­
blems with Polish (i.e., complete separable metric) state and action spaces. The 
procedure is then used to: (i) determine an asymptotically optimal policy, and (ii) 
it is combined with a strongly consistent parameter estimation scheme to determine 
an asymptitically optimal (adaptive) policy for decision models depending on un­
known parameters. The policy obtained in (ii) is compared with the "principle of 
estimation and control" introduced by Schal [22] for the adaptive control of de-
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numerable-state semi-Markov processes and extended here to Polish state-space 
Markov decision problems. 

Our motivation in considering the problems indicated in the previous paragraph 
was born from our interest in Markov decision processes with incomplete state 
information (MDP-ISI) and depending on unknown parameters. We are thus con­
fronted with a decision problem combined with state identification (sometimes 
called a filtering problem) and parameter estimation. However, it is well-known 
[11, 18, 20, 21 , 23] that in many cases of interest a MDP-ISI can be reduced to 
a Markov decision process 1MDP) in the usual sense, but in which the state space, 
say, S, of the original problem is replaced by the space S' of probability measures 
on S. Therefore, since S' turns out to be a Polish space in most of the usual cases 
(cf. cited references), it seemed natural to begin by extending to the case of a Polish 
state-space previously known results for MDP's with unknown parameters and 
denumerable (possibly finite) state space. And this is essentially what we do in the 
present paper: the nonstationary value-iteration (NVI) scheme introduced by Fe­
dergruen and Schweitzer [2] for MDP's withfinite state and action spaces, as well 
as the adaptive policies considered by Schal [22] and Hernimdez-Lerma and 
Marcus [5, 9] are extended here to the case of Polish state and action spaces. This 
is a first step towards the solution of the MDP-ISI and unknown parameters; 
the main difficulty involved in obtaining a complete solution is briefly discussed in 
Section 6. 

Our results are also related to approximations of dynamic programs obtained 
under quite general conditions by Langen [15] and Whitt [24]. However, by restricting 
ourselves to discounted dynamic programming models we are able to show (uniform) 
convergence of our approximation schemes with very simple and short proofs. 

We begin in Section 2 by introducing the decision models we are concerned with. 
In sectio:-1 3, the NVI scheme of Federgruen and Schweitzer [2] is extended to de­
cision models with Polish state and action spaces. The NVI scheme is used in Sec­
tion 4 to determine an asymptiotically optimal (AO) policy for adaptive decision 
models, i.e., decision models depending on unknown parameters. Also in section 5, 
our results are briefly compared with the "principle of estimation and control" [22]. 
extended here to MDP's with Polish state space. 

2. The decision model 

To avoid unnecessary repetitions we shall agree that a topological (respectively, 
product) space is always endowed with the Borel (respec., product) a-algebra. The 
Cartesian product of the sets A and B is denoted by AB. 

As usual [3, 10, 11, 16, ... ] to state the (discounted) dynamic programming pro­
blem we need to specify a decision model; the collection .of admissible policies, 
and the objective function. This is done as follows. 
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The decision model (S, A, q, r, fl) satisfies: 

(A I) (a) The state space S is a Polish (=complete separable metric) space. 
(b) The action set A is Polish. For each x E S, the set of admissible actions 

in state x, denoted by A (x), is a nonempty measurable subset of A. Let 
K:={(x,a):xeS, aeA(x)} be a measurable subset of (the product 
space) SA. 

(c) q (x, a, · ), for (x, a) s K, is the transition law: when the system is in 
state x and action a E A (x) is chosen, the system moves to a new state 
according to the probability distribution q (x, a, ·) on S. 

(d) r: K-tR is the (measurable) reward function. 
(e) 0~/1<1 is the discount factor. 

In addition, we shall assume the following. 

(A2) (a) There exists a constant R such that lr (x, a)I~R for all (x, a) E K. More-
over for each x E S, 

(b) A (x) is compact, 
(c) a-tr (x, a) is continuous on A (x), and 
(d) a-t J q (x, a, dy) u (y) is continuous on A (x) for each bounded measurable 

function u: S-tR. 

Let X, and A, be the state and action at the n-th stage, respectively, n=O, 1, ... 

A given realization of (X0 , A 0 , XI> A1, ... ) is den~ted by {x0 , a0 , x" a~> ... ). 

A policy d is a sequence d=(d0 , d1o ... ), where d, (h,, ·) is a conditional pro-
bability measure on the Borel sets of A, given the history of the process h,=(x0 , a0 , ... 

... , x,. _1, a,_ I> x,), and it satisfies 

d, (hn, A (x,.))=l , n=O, 1, ... 

A MarkO'V policy is a sequence Uo./1> ... ) of functions J,. E F, where F is the collec­
tion of all measurable functions f: S-tA such that f(x) E A (x) for all x E S. As 
usual we identify F with the set of stationary policies, i.e., Markov policies of the 
fonn (f,f, ... ), f E F. 

Finally, the objective function is 

v (d, x): =E~ [ i; fl" r (X,, A,)] 
n=O ... 

(1) 

the expected total discounted reward when policy d is used and the initial state 
is x. A policy d is said to be optimal if it satisfies v (d, x)=v* (x), x E S, where v* 
is the optimal reward fwzction defined by 

v* {x)=sup v (d, x), "" E S. (2) 
d 

As mentioned in the Introduction, we are interested in obtaining a procedure 
approximating v* and in determining an asymptotically optimal stationary policy, 
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which is done in Sections 3 and 4, respectively. The results are then applied (Sec­
tion 5) to decision processes depending on unknown parameters. An importan~ 
role is played by the following well-known result [3, 4, 10, 11, 16]: 

PROPOSITION 1. Assume (AI, A2). Then (a) v* is a bounded measurable function 
and it satisfies the optimality equation 

'1J* (x)= sup [r (x, a)+ (3 J q (x, a,
1
dy) v* (y)], x E S. (3) 

aEA(x) S 

(b) A stationary policy jE F is optimal if, and only if, it satisfies 

v* (x)=r (x,J(x))+f3 J q (x,J(x), dy) v* (y), x E S. 

The existence of an optimal stationary policy is ensured under (A1, A2). 

NoTATION. B (S) denotes the space of real-valued bounded measurable functions 
u on S with the supremum norm llull=supx lu (x)l. M (S) is the space of finite signed 
measures p, on S with the total variation norm II P-11 (see, e.g., [19]). 

We shall use further the following obvious facts. For any u E B (S) and p, EM (S), 

I J udp, I ::;;; ll ulll lp, ll . (4) 

If u, v E B (S), then (see, e.g., [11, Lemma 3.3]) 

I sup u (x)- sup v (x) l::;;; sup lu (x) -v (x)l. (5) 
X X 

3. Nonstationary value-iteration 

The nonstationary value-iteration (NVI) scheme introduced by Federgrueu and 
Schweitzer [2, Theor. 3.1 (a)] for finite state and action spaces is extended in The­
orem 1 below to the decision model' (S, A, q, r, (3) described in Section 2. 

Consider a sequence of decision models (S, A, qm rm (3), n=O, 1, ... , each of 
which satisfies Assumptions (AI) and (A2), and such that they "converge" to 
(S, A, q, r, (3) in the following sense. 

(A3) As n-HX), 

(a) 11 (n): =SUP(x,a)EK irn (x, a)-r (x, a)l--40, 

and 

(b) n(n): =SUP(x,a)EKI Iqn(x,a,·)-q(x,a,·)ll-40, 

where 11 11 denotes the total variation norm. 

Note that (A3) is equivalent to: 

{A3'). As 11--400, 

ij (n): =sup 11 (m)--40 and n (n): =sup n (m)--40. 
m :;:, n m;<!:tl 
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Also note that both sequences ii (n) and it (n), n=O, 1, ... ,are non-increasing. 

Now let v,. ( • ), n=O, 1, ... , be the functions in B (S) defined by 

v0 (x): =SUPae .t(.r) r0 (x, a), xe S, 

and for n= 1, 2, ... , 

39 

v,. (x): = sup [r,. (x, a)+ P J q,. (x, a, dy) v,._ 1 (y)], x e S. (6) 
aE A(.<) 

Note that, for all n, v,. and the optimal reward function v"' in (2) are bounded: 

11 

Uv*ll~cl and !lv,.!I~R }; (Jk~c1 , (7) 
.~: ~o 

where c1 =R/(1 - ,8). 

THEOREM I. If (AI, A2, A3) hold, then !lv,. -v*U-.0. More precisely, 

(a) llv,. -v*ll ~ c • max {ij ([n/2)), it ([n/2]), ,8["/21}, n~O, where c=(l + {3cJ/ 
/(1-,8)+2c1 =(1+,8c1 +2R)/(l-,8), and [r] denotes largest integer ~r. Moreover, 
if the sequences tl (n) and n (n.) in (A3) are themselves non-increasing, then ii and it 
can be substituted by '1 and n, respectively, to obtain: 

(b) llv,.-v*ll~c • max {'1 ([n/ 2)), n ([n/2]), ,Bf"'2l}. 

Pro of. The p:-oof is essentially the same as that of Theorem 3.1 (a) in [2], but 
is included here for completeness. First note that, by (7), we can apply (5) to func­
tions t'•+ 1 and v* (with v* as in (3)). That is, for any x in S, 

lvn+L (x)-v* (x)l~ 

~sup lr,.+1 (x,a)-r(x,a)+,B J q,.+ 1 (x,a,dy) v,.(y)-,8 J q(x,a,dy)v*(y)i. 
a & A (x) 

Now inside the absolute value on the right-hand side, add and substract the term 
P J q,+ 1 (x, a, dy) v* (y), and then use the triangle inequality, the inequality (4), 
and take the supremum over all x e S, to obtain 

llvn+1 -v*ll~ll (n+ l)+.B IIv*lln (n+ 1)+ Pllv,, -v*!l. 

Therefore, for all m=l, 2, ... , 

m-1 

Uv,+m-v*ll~ }; ,Bk ['! (n+m-k)+{Jc1 n (n+m-k)]+{Jmll v,-v*ll. (8) 
k;O 

Now, since llvn-v*ll~2c1 and fi (n)~'l (n+k) and 1f (n)~n (n+k) for all k, 
it follows from (8) that 

llvn+m-v*ll~[ii (n)+ ,Bcl it (n)]/(l-P)+2cl fJ"' 

~c • max {fi (n), it (n), fJ"'}. 
(8') 
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Then making the substitution k=n+m with n=[k/2] and m=k- [k/2];::, [k/2J, 
inequality (8') reduces to 

!lvk -v*ll~ c • max {il ([k/2]), n ([k/2]), plk/ 2J}, 

which proves (a). Finally, to obtain (b) just note that if 17 (n) and n (n) are non-in­
creasing, then (8') holds when i7 and n are substituted by 17 and n, respectively .• 

Several interesting applications of the NVI scheme are mentioned by Feder­
gruen and Schweitzer in [2, Section 1]. Here we will use it to obtain asymptotically 
optimal policies (Section 4 below) and to obtain adaptive policies for decision 
processes depending on unknown parameters. A similar approach has been used 
in [6] to obtain finite-state approximations for denumerable MOP's. 

4. Asymptotically optimal policies 

Consider function rp: K-t R defined by 

rp (x, a)='=r (x, a)+ P J q (x, a, dy) v* (y) -v* (x). (9) 

This function has been widely used [3, 4, 5, 171 as a measure of the "difference" 
between an optimal action in state x and any other action a EA (x). For instance, 
in terms of rp, Proposition 1 can be restated as follows: 

PROPOSITION 1'. Assume (AI, A2). (a) Optimality equation: SUPxEA(x) rp (x, a)=O. 

(b) Optimality criterion. A stationary policy I is optimal iff rp (x,J(x))=O for 
all X E S. 

Here we use rp to define asymptotic optimality. 

DEFINITION 1. A Markov policy {111}, i.e., a sequence of functions In E F, is asympto­
tically optimal (AO) if, for each x E S, rp (x,fn (x))-tO as n-too. 

CoMMENT. Asymptotic optimality is related to the following concept due to Schiil 
[22]. A policy d is asymptotically optimal in the sense of Schiil if, for every x E S, 

(10) 

where 

VN (d, x): =E~ L~ pn-N r (X11 , A,)] 
-

is the expected total reward from stage N onwards discounted at stage N. This 
concept of asymptotic optimality can be related to that in Definition 1 by the fact 
that [22, Theor. 4.12] (see also [5, 9]) the left-hand side of (10) can be written as 

VN (d, x)-E~v* (XN)=E; L~ pn-N rp (Xno An)]. 
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Thus a sufficient condition for (10) is the following: rp is a bounded f'Unction and 
rp (X., A.)-+0 P: - almost surely as n-+c:o. • 

We now use the NVI scheme (6) to define an AO policy. First note that under 
Assumptions (AI) and (A2), for each n=O, 1, ... , there is a measurable function 
f,.: S-+A such that f,. (x) EA (x), and 

v0 (x)=r0 (x,/0 (x)), x E S 

v. (x)=r. (x,f,. (x))~ fJ J q. (x,f,. (x), dy) v._ 1 (y), X E S. 
(11) 

This follows from standard measurable selection theorems; see, e.g., [3, 10, 16]. 
Thus {J,,} is a Markov policy and we also have the following: 

TnEOREM 2. Under the assumptions of Theorem 1, {J,.} is AO. Furthermore, the asymp~ 
totic oplimafity is uniform in the sense that 

Jlrpll,: =SUPxes I(/) (x,f,. (x))l->0 as n-+c:o. 

P r o of. From (9) and (11), 

rp (x,f,. (x))= (/) (x,J,, (x))+z•11 (x) - v, (x)= 

=r (x,f,. (x)) - r, (x,f,. (x))+P J q (x,f,. (x), dy) v* (y)+ 

- fJ J q, (x,f,. (x), dy) v._ 1 (y)+v, (x)-v* (x). 

On the right side, add and substract the tenn 

{J J q, (x,f,. (x), dy) v* (y); 

then a simple calculation (which uses (4)) shows that 

llrpll.~'l (n)+{J llv*l! :o (n)+{J llvn- 1 -v*ll + llv,-v*ll, 

from which the desired result is immediately concluded. 

5. Adapth•e policies 

• 
A Markov decision process, say (S, A, q (fJ), r(O), P), depending on an unknown 

parameter 0 is called an adaptive MDP (The name is sometimes used to include 
MOP's with incomplete state information, as in [I l ].) To solve these problems, 
a decision-maker has to identify or estimate the unknown parameter 0 while seeking 
the optimal policy. Thus at each decision epoch, he has to estimate the parameter 
and "adapt" his actions to the estimated value; policies combining these two func­
tions - parameter estimation and control actions - are called adapti·ve policies. 
An extensive survey on adaptive decision problems has been given recently by 
Kurnar [13]; additional references can be found in [4, 5, 7-9, 17, 22]. 

In this section we consider an adaptive MDP ( S, A, q (8), r (0), fJ), where the 
transition Jaw q (x, a, 0, · )and the reward function r (x, a, 0) depend on an unknown 
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parameter e. In contrast to Bayesian problems [13, 11], we do not have a priori 
information about the true parameter value, except that it belongs to a given para­
meter set T, which is assumed to be a Polish space. For each e ET, the decision 
model (S, A, q (e), r (e), f:J) is assumed to satisfy conditions (Al) and the analogue 
of conditions (A2), namely: 

(A2e) (a) lr (x, a, e) i ~R for all (x, a) E K, e ET. Moreover for each x E Sand 0 ET, 
(b) A (x) is compact, 
(c) a--+r (x, a, 0) is continuous on A (x), and 
(d) a-+ J q (x, a, e, dy) u (y) is co11.tinuous on A (x), for each u E B (S). 

Under these assumptions, Proposition 1 (or 1 ')holds for each fixed e ET. In par­
ticular, if we define (cf. (l ), (2) and (9)) 

and 

V (d, x, 0): =E:· 6 [,~ (:J" r (Xn, A"' e)], 
v* (x, 0): = supd v (d, x, e), 

rp (x, a, e): =r (x, a, 0)+ fJ J q (x, a, e, dy) v* (y, 0) - v* (x, e)' (x, a) E K, 

we can rewrite Proposition 1' as follows. 

PROPOSITION 1 ". For fixed 0 ET, (a) SUPaeA(x) rp (x, a, e) = O; and (b) a stationary 
policy f( ·, 0) is optimal if, and only if, rp (x,J(x, 0) , 0) = 0 for all x E S. 

Note that equation (a) in Proposition 1" is equivalent to 

v* (x, O) = SUp [r (x, a, O) + f:J J q (x, a, e, dy)v* (y, e)], X E S; 

cf. [4] section 1.1. 

If 0 E T is the true (but known) parameter value we can approximate the optimal 
reward function v* (·,e) using an appropriate version of Theorem 1, and an asymp­
totically optimal policy can be obtained from Theorem 2. To do this, the idea (ro­
ughly) is to consider the sequences 

rn (x, a): = r (x, a, e,), q, (x, a, • ): = q (x, a, 0"' • ), n~O, 

where (x, a) E K and {e,} is a sequence in T converging to e. We require the 0-ana­
logue of assumptions A3. 

(A3e) for any 0 ET and any sequence {0,} in T such that 0,--+0 as n--+oo, 

17 (n, 0): = sup lr (x, a, 0,) - r (x, a, 0)1--+0, and 
(x, a)EK 

:n; (n, 0): = sup llq (x, a, en, • ) - q (x, a, e, . ) 11 --+0. 
(x. a) E K 

The 0-analogue of (A3 ') holds for the non-increasing sequences 

if (n, O) = sup 17 (m, 0), n (n, 0): =sup n (m, 0). 
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Similarly, instead of the functions"" in (6), we now consider 

Vo (x, Oo): = SUPae A (x) r (x, a, 00 ), X E S, 

and for n= I, 2, ... , 

v, (x, On): =SUP .. eA (x) [r (x, a, 8,)+ {J I q (x, a, 0,, dy) v,_ 1 (J, 0,_ 1)] 

=r ( x,J,. (x, 0,), 0,) + {J I q (x,J,. (x, 0,), (),, dy) v,_ 1 (y, 0, _ 1), (12) 

where, for each x e S, J,. (x, (},) is a measurable maxi:mizer of the right hand side 
of (12). Note that the right hand side of (12) depends on e<n>: =(00 , (}~> ... , (),), 

so that, strictly speaking, we should write v, (x, ()(n)) (respectively, J,. (x, e<n>)) in­
stead of v, (x, 0,) (respect., J,. (x, (),)). However, we shall keep the latter, shorter, 
notation. Then Theorems l and 2 can be stmunarized as follows. 

COROLLARY I. Assume (A 1, A2(), A3()) and let { 0,} be any sequence in T converging 
to 0. Then 

(a) Uv. ( • ,0,)-v* ( · , 0)11-+0 as n-+oo, and 

(b) {f, ( ·, 0,)} is asymptotically 0-optimal in the sense that 
SUP.xe s I rp (x,J,. (x, 0,), B)i-+O as n-+oo. 

Furthe1more, (with the obvious changes in notation) the inequalities in Theorem 
1 (a) and (b) also hold in the present case. 

To define adaptive policies we first introduce the following definition, where P~· 9 

denotes the probability measure when policy d is used, x is the initial state, and () 
is the true parameter value; cf. [4, 12, 22]. 

DEFINlTION 2. A sequence &,=& (X0 , A 0 , ••• , Xn_ 1, A,_t. X,) of T-valued measur­
able functions is said to be a sequence of strongly consistent (SC) estimators of 
0 eT if, as n-+ eo,&, converges to 0 P~· 0-almost surely for any x e S and any 
policy d. 

Examples of SC estimators in adaptive Markov or semi-Markov decision pro­
cesses can be seen in [4, 7, 8, 12, 14, 17, 22]. Given a sequence of SC estimators, an 
.adaptive policy is obtained as follows. 

DEFJNITfON 3. Let {&,}be a sequence of se estimators of 0 ET. The policy a= 
=(d,, n=O, I, ... ) defined by 

J" (xo, Ao, ... ,X,_ t> A,_ 1 , X,)=J,. (Xn, {Jn) 

is called the NVI adaptive policy. 

Note that, since the convergence in Corollary 1 (b) is uniform in x, we obtain: 

CoROLLARY 2. As n-+oo, 

(13) 
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We can state (13) by saying that the NVI adaptive policy d is asymptotically 
optimal, although strictly speaking Definition 1 is not applicable here, since d is 
not a Markov policy. 

To appreciate the goodness of the NVI policy, let us briefly compare it with the 
"principle of estimation and central (PEC)" introduced by SchiU [22], and which 
we now describe. . 

I. For each BET, let g (·,B) E F be an optimal stationary policy (cf. Pro-
position 1"). 

H. Let {On} be a sequence of se estimators of B, the true parameter value. 
Ill. Define a policy d' =(d;,) by 

d~ (Xo, Ao, ... , X,,_ 1 , A 11 _ 1 , Xn)=g (Xn. 011). 

d' is called the PEC policy. · 

(14} 

The PEC policy is known in adaptive control under the various names of "naive· 
feedback controller", "self-turning regulator", and others, but is very well described 
as [17] "the method of substituting the estimates into optimal stationary control". 
Tbe PEC policy has been widely used in decision proc;esses with average-reward 
criterion [4, 7, 8, 14, 17], but to the best of our knowledge, Schal's paper [22] was 
the first application to discounted-reward problems (with denumerable state space). 
To prove that d' is asymptotically optimal (see Theorem 3 (b) below) we need the 
following: 

LEMMA 1. Assume (Al, A2B, A3B). If Bn~B, then 

llv* ( ·, B") - v* ( ·, tm~o. 

Pro of. For any x in S, we obtain from (5), 

Jv* (x, B,) -v* (x, B) I::::;; SUPaE A (x) I r (x, a, Bn)- r (x, a, B)+ 

+ fJ J q (x, a, Bn, dy) v* (y, B11)- fJ J q (x, a, B, dy) v* (y, B) I, 
and therefore (using (7)), 

liv* ( •, Bn) -v* ( •, B) JJ ::::;;?J (n, B)+ {Jc 1 n (n, B)+ f3 llv* ( •, Bn) -v* ( •, B)ll, 

that is, 
(1 - {3) llv* ( · , B,) -v* ( · , B)JJ::::;; 1J (n, B)+ {3c 1 n (n, B). 

THEOREM 3. Under the assumptions of Lemma 1 we have: 

(a) If Bn~B, then 

1 1~ ( ·, g ( ·, Bn), B) ll=sup 1~ (x, g (x, B,.), B)I~O as n~co 
X 

(15) 

• 

(b) The PEC policy d' is asymptotically optimal in the sense that, as n~ oo, 

~~ (Xn, g (X,., On), B) II ~o p~·· 0-almost surely for any x E S. , 

Proof. Part (a) can be proved as Theorem 1. First note that (cf. Proposition 1" 
and I above) since ~(x,g(x,B11),B,)=0, we can write 

~ (X, g (x, 811), B)= rp (X, g (X, Bn), B)- rp (x, g (x, B11), Bn). 
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Next, using the definition of rp (x, a, 0) to expand the right hand side, a straight­
forward calculation shows that 

119' ( · , g ( · , 0,.), O) ll ~11 (n)+ P l!v* ( · , O)tl n (n)+ 

+(I +P) Uv* ( ·, 0,.) -v* ( ·, 8)11 , 

so that (a) cao be concluded from (A38) and (15). Finally since (a) holds, uniformJy 
in x, for any seq11ence 8,.--+8, (b) holds for any sequence {0,.} of SC estimators. 

If follows from Corollary 2, Theorem 3 (b) and the comment following Defi­
nition 1, that the NVI and the PEC adaptive policies are both asymptotically optimal 
in the sense of Schal [22]. Note also that our proof of the asymptotic optimality 
of d' (Theorem 3 (b)) is much more elementary than Schiil's proof [22, Theorem 5.21]. 
This is mainly due to the fact that, instead of the recurrency assumption 2.5 in [22], 
we have introduced the "uniform continuity" conditions (A30). 

Finally, note that, from the point of view of applications, the main disadvantage 
of the PEC policy d' with respect to our NVI policy J is in step 1 above: d' requires 
to determine in advance the optimal stationary policies g ( . ' 0) for all values of e. 

6. Concluding remarks 

As noted in the Introduction the underlying motivation for the present work 
was our interest in Markov decision processes with incomplete state information 
(MDP-lSI) and depending on unknown parameters. Having transformed the ori­
ginal MDP-JSI to a MDP with complete state information in which the new state 
space is a space of probability measures [11, 18, 20, 21, 23] it might be thought 
that the adaptive policies (NVI and PEC) in Section 5 above are applicable. How­
ever, these adaptive policies are defined in terms of a sequence of se estimators 
with are based on complete observations of the state (and action) sequence(s). Thus 
application of the results in Section 5 to an MDP-ISI there still remains the problem 
of showing that a sequence of se estjmators, based on incomplete state observations, 
can be constructed. We do not have an answer to this problem, at present, but 
perhaps results like those of Baum and Petrie [I] for finite-state non-controlled 
partially observed Markov chains might be extended to an MDP-ISI. 
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Aproksymacja i strategie optymalne 
w programowaniu dynamicznym z dyskontem 

W pracy przedstawiono iteracyjn'l metod~ aproksymacji funkcji Bellmana w zadaniach pro­
gramowania dynamicznego z dyskontem przy nieskonczonym horyzoncie czasowym w niezupelnych 
Banacha (polskich) przestrzeniach stan6w i sterowania. Opisana metoda jest .nast~pnie zastosowana 
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do okre$lenia asymptotycznie optymalnego rozwillzania a po poll}czeniu 7.e zbieinll metodll esty­

macji parametr6w takZe do okre51enia optymalnej strategii podejmowania decyzji. Otrzymanll 

strategi~ por6wnano ze strategiq wynikajl\Clt z zaproponowanej przez Schiila w 1981 r. zasady 

estymacji i sterowania, kt6Cll w pracy uog61niono na zagadnienia decyzyjne w przestrzeniach nie­

zupelnych Banacha. 

AnopoKCIL'\lal.IIUI B 3AaiiT~OHHLie crpaTef'Hil 
B Anua~m'lecKOM nporp~~mpoBaUBB c nepeol(eJD;:oii 

B pa6ore pacCMaTpHBaetCJI HTepaTHBB:&Iii MetO.ll amipOKCifMauuu cj>yuKL(Itll bcJlbMaua .liJlJl 

33,tl8'1 ABnaMK'ICCKOrO' OpOrpaMMHpOB8BJUI C nepeOU,CtfKOR Opll 6ccKOHC'IHOM BpeMCI'JROM ro­

pff3011TC B lJCOOilH.btX 6aaaXOBbiX UOJibCilliX npOC'rpaFtCTBax COCTOlltliiA H ynpaaneHHit P acCMo­

TpeHa npou.e.nypa ucnom.3yetcll TaJOKe .[IJIJ{ onpe.D;eneHIDI orrrKManbtroii crpareriDt. PaccMarpn­

BaiOTCll TOJKC MOAC.flli C liCii3BecTH.biMfl JiapaMerpaMH. H amy HTepaUII'OtiHYIO npoue.zzypy 06'be­

,!(HIICIIO C HCKOTOPLIM MCTO.D;OM COC'COllTCJibHOTO OUCtiHB8 1111JI ll OOilY'ICiiO OPOUCAYPY H3XOX<­

.D;CH1ill UOIMnTOTH'!CCKJJ OIITIIM8JlbHO.il: CTpaTCfllll. 3ry CTp8TCTI110 Cp8BHCHO C ,npHHL\HOOM OUC­

HlfBaHH$1 H ynpauneHJnl", BBCAeHll:biM IDeneM. ITplUJJ.J.HO lllenn o6o6111euo Ha 6aHaxODbJc nom.­

CJW.e npocrpatJcraa. 




