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A plane free boundary value problem is formulated describing the osmotically induced con
vective-diffusion transfer of non-electrolytes along two narrow compartments separated by a de
formable semipermeable membrane of a fairly general linear rheology. The concrete model under 
consideration is chosen with the aim to imitate the process of the passive water transfer through 
plane epithelial tissues taking into account data reported in papers [19], [23), [25). 

1; Introduction 

There exist in biology a broad class of transport phenomena characterized by the 
presence of volume fiuxes along narrow compartments, induced by strong discon
tinuities in the concentration fields, located on the boundaries of membranes, se
parating these compartments. This class of phenomena includes the process of 
osmotically induced mass transfer through rigid membranes, diffusion mass trans
fer, accompanied by volume fiuxes induced by jumps of concentrations on bounda
ries of deformable membranes not resisting deformations, and the intermediate 
class of processes of mass transfer through deformable membranes, appreciably 
resisting defonnations. This latter class of processes is the most important in biology, 
but its mathematical aspects apparently remain almost untackled. In such slow 
convective-diffusion problems the main interest consists in determining volw11e 
fiuxes and their dependence of the changes of the s'hape and location of the deform
able membrane. This relates, in particular, to the process of a passive water transfer 
through plane epithelial tissues where the main passway for water is the lateral 
membrane, separating cells of these tissues from the intercellular space, and where 
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the transfer of hyper /hypo tonicity from the serosal to the mucosal side of the 
tissue implies drastic changes of volume fluxes [10], [19, [25]. Although the rheo
logical nature of plasmatic membranes remains unknown in its quanitative details, 
one may assert that they are liquids, possessing appreciate elasticity [11 }. This· 
means that water transfer through epithelial tissues has to be put to the aforement
ioned intennediate class of transport phenomena. 

In what follows we formulate a boundary value problem, modelling water and 
low-molecular non-electrolyte transfer trough epithelial tissue. Our model is chosen:r 
with the aim to perform in the future numerical computations, roughly repreducing 
conditions described in papers by Wright et al [25], Smuglers et al [19] and Van Os 
[23]. These experiments seemingly are the most informative among others, men
tioned for example in Krolenko's monograph [9] or Stefenson's review [21]. 

We mainly use the same approach as in the previous author's papers [15], [16}, 
[18]. The theory presented there is oriented towards description of non-electrolyte 
transfer through deformable membranes not resisting deformations. In such a case 
the whole system of equations and boundary conditions of the problem is proved 
to be decomposed into two groups of conditions. The first one (we call it "kinematic") 
serves for determining the concentration distribution and the membrane shape, 
whereas the second group of "dynamical" equations serves for determining the 
hydrostatic pressure and deformation stresses in the system under consideration. 
The main peculiarity of that theory is that the kinematic equations and boundary 
conditions are independent of dynamical variables and may therefore be solved 
prior to the solution of the group of dynamical equations. Such a split of the problem 
into the "kinematic" and "dynamical" parts is evidently unphysical and wrong 
when one deals with the mass transfer through membranes resisting deformations. 
One has, therefore, to reconsider the main assumptions of the theory in order to 
exclude the very possibility of the mentioned split, making the kinematic part of 
the problem ipdependent of the dynamical one. 

Let us recall the basic assumptions of the theory we are refrerring to. 
\ 

1. The system was considered, consisting of two solutions filling narrow com-
partments separated by a deformable semipermeable membrane. These solutions 
were supposed to be perfect mixture*) of n+ 1 incompressible liquid components 
ai> of which a0 was an impermeant with respect to the membrane, and the rest 
of them were involved into a convective-diffusion transfer through the membrane 
and along the compartments. 

2. The membrane was considered as a diluted solution of all aJ> j=l, 2, ... , n, 

in the main membrane constituent an+1· 

3. Conditions of a local thermodynamic equilibrium, expressed in the form of 
the Nernst distribution theorem [13] were assumed to be valid on the membrane 
boundaries. Coefficients of distribution were taken constant, which is admissible 

*)We use Prigogine's terminology, according to which the solution is called "perfect" if the 
coefficients of activity of all components of the solution are equal to 1 in a whole range of the possible 
changes of concentrations [13]. 
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if the molar fraction of every penetrating component remains practically constant 
as well as the jump of pressure on the membrane boundaries. 

4. Since the membrane boundaries are surfaces of concentration discontinuity 
conditions of dynamical compatibility for the convective-diffusion mass transfer, 
velocity of solution motion and momentum transfer had to be valid on these boun
daries. The process was assumed to be isothermal so that condition of dynamical 
compatibility for energy transfer could be omitted. 

5. All diffusion fluxes defined in the system of the average volume velocity 
[5], [15] were described by the simple Pick's law with constant coefficients of di
ffusion and with neglect of all cross-effects, including that of barodiffusion*) 

Besides these basic assumptions the theory employed the following ones: 
5. Two points p 1 and p2 are called congruent if they belong to the same normal 

to one of the membrane boundaries. The difference between directions of normals 
to the membrane boundaries in their congruent points were assumed to be negli
gible, as well as the change of the membrane thickness due to its shrinking or swelling. 

*)Let Pt be the chemical potential of a., p.~ its standard value, Ct- the molar concentration 
of a., Yt its coefficient of activity, n.- the partial molar volume of Ot. p - pressure, v1 - the 
local average velocity of a. in the laboratory coordinate system, iii - the average volume velocity 

of the solution under consideration and;. the diffusion flux of a. in the system of the average volume 
velocity. According to the thermodynamics of irreversible processes 

Ji•=P~+!2•p+RTln Xt 

and the flux of a. in lhe laboratory system of coordinates is equal to 

" 
c. v. = 2 L",. grad Jl,. 

0 

Here x. is. the molar fracture of the a. activity, i.e. 

" 
x.=Y• c./X; X= 2 y., c.,, 

0 

and L.., are so called reversed phenomenological coefficients [7]. 

(o) 

(oo) 

(ooo) 

Note that Yt are functions of all c.,, p and of the temperature T which is now considered to be 
constant. 

By the definition 
ll 

w=2Q.c.v.; J.= c.(ti.-iii) 
0 

we find, comparing (o), (oo) and (0) that 

J1= -DJ grad c1+ 2 D1m grad c,.-LJ gradp 
w # j 

(0) 

(00) 

Here the first term of the right hand side describes the simple Fick's diffusion, the second - all 
diffusion cross-effects and the third one- barodiffusion. If all coefficients of activity arc equal to 1, 
then 

" " L.= - _2 n,. (L...,- c. 2 L,,.Q,); D1 = - Du; 
0 0 

D ... =(RT/c.) (Lh,- c .. j; z_.Q,)-{RT/ .Y) j; (r.,-c. j; L,,n,); 
0 0 0 

(000) 
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6. Diffusion fiuxes and the average volume velocity within the membrane were 
regarded as quasistationary. Tangential components of diffusion fluxes within the 
membrane were regarded as negligible. 

A careful consideration of the' basic assumptions of the theory we are referring 
to shows that two of its positions need reconsideration: 

1. The use of the approximate values of the coefficients of distribution taken 
constant. 

2. The neglect of the effect of barodiffusion. 

The relinquish of both these inaccuracies would imply the abolishment of the 
aforementioned split of the problem into kinematic and dynamical parts with the 
former independent of the latter. At the same time one cannot expect that in con
ditions imitating those reported in the experimental papers [19], [2~], [25] the use 
of the approximately constant coefficients of distribution may yield an essential 
quantitative inaccuracy. Indeed, computations performed in [4] with the aim of 
modelling the process of swelling and shrinking of the single muscle fibres accom
panied by the change of the shape of tubulus of the T-system have withstood the 
comparison with experiments. These computations have used the aforementioned 
approximation and the input data were there similar to those in the papers we are 
referring to. On the other hand barodiffusion in bulk flows, as well as all diffusion 
cross-effects are known to be of smaller importance compared with that of the 
simple Fick's diffusion in solutions having no elastic properties. However within 
the membrane, exhibiting an appreciable elasticity the effect of barodiffusion may 
appear to be large enough in order to motivate taking it into account. Taking into 
account the contribution of barodiffusion through the membranes into volume 
fiuxes and determining the membrane shape and location, affected by bare-di
ffusion , is the main goal of this paper. Besides, in contrast to [15], [16], [18] we 
now consider not only the swelling and shrinking of the whole cell due to the motion 
Df the apical membrane, but also the change of the lateral membrane thickness 
.due to its swelling or shrinking and its curving. 

The material presentation is as follows. First (section 2) we introduce the geo
metrical model we deal with and the equations of the general theory. The rest of 
the paper is devoted to derivation of equations of the one-dimensional formalism 
Df the theory, appropriate for describing transport phenomena in narrow channels 
(section 3) and to derivation of the equations of the membrane approximation, 
where all values, defined within the membranes, are eliminated ,(section 4). Con
clusive remarks are made in section 5. Appendices 1 and 2 contain the table of 
notations, numerical data and scaling. Appendix 3 contains the collection of all 
normalized equations of the one-dimensional membrane approximation of the 

theory, describing the process in the case of a bicomponent solutions: water+an 
impermeant. 
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2. Geometrical model, basic assumptions and equations 

As it is pointed out in the introduction we fonnulate the problem in a version 
allowing to imitate the water transfer through epithelial tissues. The latter may be 
considered as a periodic structure, consisting of cells, bounded by basal, apical 
and lateral membranes, intercellular space and unstirred layers, washing the basal 
and apical sides of the tissue. At the apical side of the intercellular space there are 
tight junction.s, connecting every two adjacent cells, but permeable for low-molecular 
nonelectrolytes and water. For the sake of simplicity we restrict our consideration 
with a plane model whose schematic structure is presented in Fig. I. 
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Fig. 1. 

D1 =(x,y: O<x<l(t); Y1 (x, t)<y<A), 

D2 =(x,y: O<x<l(t); O<y<Yl (x, t)), 

I 
I 

x=L 1 

Do=(x,y: -2Lf<x<0; Y2 (0, t)<y<A)), 

D3=(x,y: O<x<l(t); Y2 (x, t)<y<y 1 (x, t)), 

D4=(x,y: /(t)<x<l(t)+2A; Y2 (!(t), t)<y<A) 

-y 

- -Y= 

=A 

h 
X 

(2.1) 

represent the cell, the intercellular space, the basal, lateral and respectively apical 
membrane. Regions 

D_ 1 =(x, y: - L 0 <x<O; 0<y<A)'\..D0 , 

Ds=(x,y: I (t)<x<L 1 ; 0<y<A)'\..D4 
(2.2) 

imitate unstirred layers and regions D*_ 1 and D~ represent reservoirs of infinitely large 
volume where the prescribed concentrations are maintained. Finally the subregion 

D;=(x,y: l(t) -H~x~l(t); O<y<h) (2.3) 



54 L. RUBINSTEIN 

· of D2 represents the tight. junction. Here 

h=y2 (x,t) VxE(l(t)-H,l(t)) (2.4) 

In what follows we assume that all the regions Dk> k= -1, 1, 2, 5, are filled 
with a perfect mixture of n+ 1liquid non-electrolyte components ai of molar concen
tration c~, coefficient of activity y;, molar weight Mi, partial molar volume Qi and 
partial density p~ All the components ai> }=1, 2, ... , n, are involved in convective
-diffusion along Dk, k= -1, 1, 2, 5, and in the convective-diffusion transfer through 
the membranes Dm, m=O, 3, 4. Every solution Dk> k= -1, 1, 2, 5, is assumed to 
be a viscous liquid of a constant viscosity Ilk and negligible body viscosity. 

Concerning the membranes Dk, k=O, 3, 4, we use the following approach. First 
we describe them as porous media of the porosity mk, where fictitious volume forces 
of the resistance act on the solution moving through the porous space. The solid 
skeleton is identified with the osmotically inactive part of the main membrane 
constituent a,.+ 1 , and the forces of the resistance are defined proportional to the 
difference between the average volume velocity of the motion of all the membrane . 
constituents and the average local velocity of the component an+1· Mter this the 
usual process of "homogenizing" of the "heterogeneous media" [2] , [3], [14] permits 
to consider the membranes as diluted solutions of all the penetrating components 
ai, }= 1, 2, ... , n, in the main membrane constituent a,. + t· The connection between 
the porosity mk and the coefficient y~+ 1 of activity of a,.+ 1 is evidently given by the 
equality 

(2.5) 

Coefficients y~ of activity of all other components ai, }=0, 1, ... , n, k= -1, 0., ... , 5, 
are taken below equal to 1. 

Rheological properties of the membranes Db k=O, 3, 4, are assumed to be the 
following: 

A. The basal and the apical membranes (k=O; 4) are supposed to be of the 
constant thickness 2A in x-direction and such that the change of the length 
A -Yz (0, t) of the basal membrane, induced by the motion and deformation of the 
lateral membrane, is considered as resistance free*). 

On the opposite the length A-y2 p (t), t) of the apical membrane remains 
constant because of the existence of the tight junction in the apical side of the in
tercellular space. 

As usual in the theory of slow motion of liquids through porous media the 
forces of the inner tension within solutions, percolating through the porous space 
of those media are assumed to be negligible compared with forces Jlk of the resistance. 

*) This singular proper ty of the basal membrane is supposed in order to avoid difficulties 
created by the roughness of the geometrical model we deal with. It would be much better for the 
general description to consider the basal membrane as a smooth prolongation of the lateral mem
brane. However, such a more realistic description would imply unreasonable complications for 
introduction of the one-dimensional formalism of the theory. 
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B. Let ll3
, e3 and 83 be two-dimensional stress, strain velocity and strain tensors 

within D 3 • Assuming the motion of D 3 and motion of all the penetrating components 
aJ>j= 1, 2, ... , n, to be small we neglect the difference between the local and material 
.derivatives. Hence for a faiJ"ly general linear rheology 

t 

e3 (x, y, 1)=83 (x, y, 0)+ J e3 (x, y, s) ds 
0 

(2.6) 
i 3 (x, y, t)=i3 (x, y, 0) exp ( -at)+be3 (x, y, t)+ 

I 

+ J exp (-a (t-s)) (ce3 (x, y, s)+de3 (x, y, s)) ds 
0 

with constant coefficients a, b, c and d. Here i 3 (x, y, t) is the deviator of the stress 
tensor tP (x, y, t). 

Note that with 
a=c=d=O; b=FO (2.7) 

the lateral membrane is a viscous liquid with a negligible impact of the bulk viscosity. 
With 

a=b=d=O; c=FO 

D3 is a linearly ela~tic body. With 

b=d=O; a:FO; c=FO 

D 3 is the Maxwell visco-elastic liquid. With, finally, 

b=c=O; a:FO; d:FO 
D3 is the Kelvin solid.*) 

(2.8) 

(2.9) 

(2.10) 

Let ii~ be the vector of the local average velocity of the motion of a1 in a labora
tory coordinate system. The average volume velocity 1il', the velocity of the center 
of mas~ vk and diffusion fiuxes lJ and I;k in the system of the average volume velo
city and respectively in the center of mass system are connected by the equalities: 

nk 

il=(lfpk)}; p~ v~; 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

•) We preserve the above freedom to vary rheological properties of the lateral membrane due 
to the lack of clear experimental data on this subject. One only may state that plasmatic membranes 
arc liquids possessing an appreciable elasticity [11]. Therefore the numerical modelling of the re
spective biological experiments has to be performed with a variation of the accepted asswnptions 
concerning the rheological nature of the membranes. Such a variation may, apparently, help one 
:to understand better the mechanical properties of plasmatic membranes. 
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Here ( 

Note that (2.11)-(2.14) imply the identities 

nk Ilk 

}; QJ~=O; }; J;k =0; k = -1, 0, ... , 5 (2.16) 
"'k mk 

and 
nk 

vk= wk+}; 11~ J~; 1J~=(1fpk)(Mj-Ms Q)Q,) 

m" (s=O for k = -1, 1, 2, 5; s=n+ 1 for k=O, 3, 4) (2.17) 

Besides, definitions (2.11), (2.12) yield 

div 141' =0 ; k= -1, 0, ... , 5 

p~+div Cl vk)=O; k = -1, 0, ... , 5. 

Thus every solution behaves as an incompressible liquid in the system of the average 
volume velocity, whereas in the center of mass system it behaves as commpressible 
one. Therefore it is convenient to write equations of convective diffusion in the 
system of the average volume velocity. In contrast to this equations of the solution 
motion have to be written in the center of mass system because only in this system 
forces of the inter-component interaction appear to be eliminated [24]. 

Bearing in mind the purpose of introduction of the one-dimensional formalism 
we write equations of the convective diffusion, continuity and momentum transfer 
in their integral form, assuming that no external forces act on the system and that 
there are no chemical reactions, neither volume nor surface. 

Taking into account conditions of biological experiments quoted in [9], [21], 
[23], i.e. the smallness of the motion of solutions in a whole system under consi
deration, and also the diluteness of the membrane composing solutions, we neglect 
all the inertial terms in the equations of motion, and disregard the difference between 
the average volume velocites and those of the center of mass when we consider 
the motion within membranes. 

Thus the integral equations of the convective-diffusion, continuity and momentum 
transfer are 

J c~tda+ J c;w~ds=- J JJnds; mk~j~nk; k=-1,0, ..... ,5 (2.19) 
D r r 

J w~ ds=O, k= -1, 0, ... , 5 (2.20) 
r 

J 11~ ds=O; k= - 1, 1, 2, 5 
r 

J 11~ ds+ J R_k ds=O; k=O, 3, 4 
(2.21). 

r D 
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Here D is an arbitrary simple-connected region belonging to D" and bounded by 
a piecewise smooth contour r. The subscript n denotes the outward normals of 
any vectors. F inally JJ~ is the stress density at r and 

k=O, 3,4 (2.22) 

is the fictitious volume force of the resistance of the main membrane constituent 
an+ 1 to the percolation of solutions through the membrane. 

Note that equation (2.19) is valid whatever the definition of diffusion fluxes is .. 
We define them by the eqoalities 

l 

{ 
-D"j grad c~ for j=O, 1, ... , n; k= -1, 1, 2, 5 

]"-
)- -D~grad~-L~gradtf for j=1,2, ... ,n+J; k=0,3,4 

(2.23) 

All diffusion coefficients D~ are assumed to be constant. As it is seen from the de
finition of the coefficients of barodiffusion (sec the footnote in page 51) they are 
linear functions of concentrations c~ if all the activity coefficients y" are constant. 
Jn our case only y~+l :ftl. Since, however, in cases of our interest the concentrations. 
of all the penetrating components are small and vary little in the course of the pro
cess evolution (see Appendix 2 and [4]) we may assume y:+ 1 to be constant and 
together with this to assume L;= const for all j and k, entering (2.23). 

We now have to add the conditions for a local thermodynamic equilibrium and 
those of dynamical compatibility at the boundaries of all membranes. The first 
ones may be written in the form of the Nernst distribution theorem 

cj=Ttt ~at s,,; I 
0 for k= -1· l 

m= 4 for k=l, 5: 
3 for k= l; 2 

The exact expression for the distribution coefficients is 

(2.24) 

(2.25). 

which is the corollary of the continuity of the chemical potentials of all penetrating 
components (see the footnote in page 51). Note that only dynamical conditions, 
which have to be valid on the membrane boundaries, are those of the continuity 
of tangential stresses and of the dynamical compatibility of normal stresses. Hence 
the membrane boundaries are, generally speakjng, s"Urfaces of the pressure discon
tinuity. As it is seen from (2.25) "~m vary in the course of the process evolution. 
However for values of our interest (see Appendix 2) all ~"" are approximately con-. 
stant. Therefore, and exceptionally for the sake of simplicity of the material pre
sentation, we take them constant: 

(2.25*). 

for all k and m entering (2.25). 
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Conditions of dynamical compatibility for diffusion fiuxes at the boundaries 
{)f the lateral membrane are 

j=1, 2, ... , n i=1, 2 (2.26) 

(2.27) 

Conditions of dynamical compatibility for the average volume velocity and for 
momentum transfer are 

(2.28) 
and 

(2.29) 

Here subscript n denotes the normal components of all respective vectors, ai is the 
.surface tension on si3 and 

(2.30) 

.are the velocity of the motion of the surface Si 3 in direction of its normal ii0
, and 

_respectively the curvature of Si 3 • ii0 is assumed to be directed toward D 1 • 

On the boundaries of the basal membrane conditions (2.26)-(2.29) turn into*) 

lJx+(l-K1) C~ W~=Ji0x; 

J~x+c~ w~=O 
j=l, 2, ... , n; k={ 1 

- 1 

for x=O 

for x= -2.& 

w~=wZ; k=l for x=O; k= -1 for x= -2.& 

P0 =pk-r~x; k=l for x=O; k= -1 for x= -2.& 

•On the boundaries of the apical membrane these conditions become*) 

(1-Ki) c~ (l (t)-w!)=lJx-J~; j =1, 2, ... , n 

k ( ' •. le) k C0 l(t)-w, =lox· k=l for x=l(t); k=5 for x=l (t)+2L1 

w~=w!; k= 1 for x=i (t); k=5 for x =l (t)+2L1 

p4 =pk-•!x k=l for x =l (t); k=5 for x=l (t)+2L1 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

All fiuxes are continuous at common boundaries of the unstirred layers and the 
'intercellular space, so that 

{
0 for k = -1 

x-
- l (t) for k=5 

(2.37) 

*) Conditions of continuity of normal components of stresses (i.e. conditions of dynamical 
.. compatibility for momentum transfer in the quasistationary approximation we deal with) have 
to be valid on every subset of the boundary Skm of the membrane Dm and the solution Dk. It is ob
vious that on the boundary of a heterogeneous medium the stress on the solid skeleton coincides 
with that on the boundary of a percolating liquid. Since, by the agreement above, stresses within 

·solutions percolating through membranes D,., m=0.4; are considered as negligible compared with 
:the fictitious volume forces of the resistance we see the correctness of conditions (2.33) and (2.36). 
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Conditions of symmetry on lines y=A and y=O are 

c~y=O; mk:::;J~nk; (~)y=O; p~=O; (ll! .. )y=O; n:y=O at y=r 

r= {~ for k=-1, 1, 5, 0, 4 
for k= - 1, 2, 5, 0, 4 

59 

(2.38) 

Finally, tangential components of V', 1vt, .l~ and i! on lines St3 must satisfy the 
conditions*) 

~-w3. 
$- s' 

•• Jk -13 
• 1· I 2 11 • ") Js- Js• = • ' ... , ' 

·=·=·:$ 

on s~.3; k= l, 2 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

Possible conditions on the external boundaries of the unstirred layers accepted 
in this paper are 

p/c=pko (t); 

x=-Lo 

~=C~0 (t), 

fork= -1; 

We assume that c~0 satisfy the identity 
n 

j=O, 1, ... , n; 

for k=5; 

}; .Qk c!o (t)= 1; i= -1; 5 
0 

As the initial conditions we take 

t~O 

~ (x, O)=So (x); Y1 (x, 0)=Y1o (x); i= I, 2; I (0)=10 

m"~j~n"; k= -1, 0, ... , 5 

assuming that 

0<Yzo (x)<YLo (x)<A; O~x~lo 

Ylo (x) = h; 10 -H~x~/0 

and that c~. satisfy all the conditions (2.24). 

•) Equalilies (2.39), (2.40) are the corollaries of the adhesion conditions: 

vk =v3 · J'= O I w v3 = vk · ]= 1, 2, ... ,n l-1, )s lf+l.s' ' , ... , ' Js o• 
implying 

'!ik =vk • 
js Os' k=J, 2 

We have 
n " 

P"~= 2 ~~.=v!s 2 ~=pk~.; m=O, 1, ... ,11. 

0 0 
Analogously 

w;=w!,; m= l, 2, ... , n+ l 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(fl) 

(f2) 

(f3) 

(f4) 

Hence (fJ)-(f4) imply (2.39). Quite analogously, using (2.11) and (2.12) we see the validity of 
(2.40). Further, definitions (2.13), equality (2.40) and conditions (2.24) imply (2.41). Finally the 
second of cqualities (2.42) is a corollacy of the first one and of conditions (2.29). 
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This terminates the formulation of the problem in its general form. Here we 
treat membranes as thick shells and to not employ the assumption of narrowness 
of compartments D1 and D 2 • 

3. One-dimensional formalism 

Define regions D, entering equations (2.19), (2.20) and (2.21) as 

D={s,y: x<s<x+dx; z1 (s, t)<y<z2 (x, t)}cDk; k = - 1, 0, ... , 5 (3.1) 

where 

z1 =l ~2 (s, t) 
Y1 (s, t) 

for k= -1, 2, 5 
for k=O, 3, 4 
for k=l 

and introduce averages 

z2=Jl:1 (s, t) 
Yz (s, t) 

z2(s,t) 

for k= -1, 0, 1, 4, 5 
for k=3 
for k=2 

F(s, t)=(1/(z2 (s, t)-z1 (s, t))) J F(s, y, t) dy 
z, (s, t) 

(3.2) 

(3.3) 

whatever the function F(s, y, t) defined within D" is. In what follows we only deal 
with functions whose deviations from their averages are small. For such functions 
we use the approximation 

(3.4) 

Divide now equations (2.19), (2.20) and (2.21) by dx and pass to a limit dx--+0. 

We obtain 

(z2 -Zt) c~,+(c~-c~[y=z) z2,-(c~-c~[y=z) z1 ,+ 

+((z2 ~z1) c~ w;)x+c; W~ Sxfy=z2 -c~ W~ Sxly=z, = 
= -((z2 -zl) lfJx-lj',, Sx ly=z, +lJ, Sxly=z,; j= 1, 2, ... , n' (3.5) 

instead of (2.19), 

(3.6) 

instead of (2.20) and 

{ 
0 for k= -1, 1, 2, 5 

z - z !I" + !Ik s - -ilk s - = (( 2 1) x)x 11 xfy-z2 n xfy-z1 J.k(W'-v~+l) for k=O, 3, 4 
(3.7) 

instead of (2.21). Here Fq, q=x, y , n, s, means the q-th component of any vector F, 
n and s are notes of the normal and respectively the tangential direction to the 
line y=z (x, t), and 

(3.8) 
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Let us now specify equalities (3.5)-(3.7) using the basic inequalities*) 

h~y2 (x, 0) <Yl (x, 0)= y 2 (x, 0)+2L1 ~A~ l (t) ~ruin (Lo, L1); Vt??-0 (3.9) 

and the following simplifying approximations : 

1. D"ue to the smallness of motion, diffusion fluxes and stresses all the terms, 
quadratic with respect to derivatives in x-direction, of all the functions of interest, 
are disregarded, if this neglect does· not lead to any observable contradiction. 

2. Since the basal and the apical membranes are assumed to be rigid, so that 
the possible swelling or shrinking of them are disregarded, the distribution of con
centration there is considered as quasistationary. 

3. The specific (i.e. per unit of crossection) resistance of membranes to mass 
transfer is incomparably greater than that of the cell and intercellular space (see 
Appendix 2). Therefore we neglect the mass transfer within the basal and the apical 
membranes in y direction compared with that in the transversal x-direction, as 
well as the mass exchange between the unstirred layers and the lateral membrane 
through their common boundaries. 

4. Inequalities (3.9) show that the time of relaxation of concentration fields 
in y-direction within the unstirred layers D_ 1 and D5 , the cell D 1 and intercellular 
space D 2 may be assumed negligible compared with that in x-din~ction. Since, 
by the assumption c;", j=O, 1, ... , n, are independent of y we may presuppose that 

c~y=O; j=O, 1, ... , n; k= -1 ; 5 

j=l , 2, ... , n; k=l, 2 
(3.10) 

5. Tangential components Jj: of diffusion fl.uxes J}, j=l, 2, ... , 11, on the boun
·daries S~<3 , k = 1, 2, of the lateral membrane are considered as negligible compared 
with their norme.l components. 

6. In addition to the approximation above we use, if necessary, the simplest 
.approximation of functions of the interest compatible with conditions of symmetry 
.and dynamical compatibility. This yields, in particular the approximation 

~~ (x, y, t)=~ (x, t); k = O, 1, 2, 4 

pk (x, y, t)=pk (x, t); k = - 1, 0, 1, 2, 4, 5 

(3.11) 

(3.12) 

Note that the the approximation (3.11) is inapplicable to w; 1 and w~. Indeed, 
-conditions of dynalnical compatibility (2.32) and (2.35) show that 

w; 1 
( - 2A, t)=(l/ A) ((A- y 2 (0, t) 11:0 ( - 2A, t)+ Y2 (0, t) w! (-2Lf, t)) 

w; (L (t)+2Lf, t)=(l/A) ((A - y2 (l (t), t)) w4 (! (t)+2A, t)+ 

+Yz (! (t), t) w2 
(/ (t)+2L1, t)) 

!) For the magnitude of values, entering (3.9), see Appendix 2. 

(3.13) 
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which is clearly incompatible with the assumption of the independency of w!, 
k= -1; 5, of y , since w0 and 

1 
w~, as well as w5 and w; are essentially different. 

7. We accept, for any function f defined within the lateral membrane the ap
proximation 

f(x, t)=! (f(x, Y1 (x, t), t)+f(x, Yz (x, t), t)) 

and approximations 

l]) s, ,= -2 (DJ (cJ is,, -ci)+LJ (p3 ls,, -p))I(Y1 (x, t)-Yz (x, t)) 

l]y is
2 3 

= -2 (DJ (ci -c] fs
2
)+LJ (p -p3 ls,.))/(Y1 (x, t)-Yz (x, t)) 

with unknown 

8. Dealing with the cell and intercellular space, note, first of all, that 

and that 

T: 11 =Jlk (2 (v~)11 -(2/3) ((v~)n+(v;).-Kk v~)) 

T~5= .U1.. ((v~).+(v;)n+ Kk v~); k= 1; 2 

T:5 =Jlk (2 (v;).-2v~ Kk-(2/3) ((v~)n+(·v~).-Kkv~)) 

(3.14) 

(3.15) 

(3.16} 

(3.17} 

(3.18} 

Here cxk3 nad {3k 3 are direction cosines of a i1ormal to Sk3 and Kk is defined by (2.30). 
Further y 1 =A and y 2 =0. 

We use the approximations 

Hence we approximately have 

(v~)n= cxk3 (v~)x+ f3k3 ( o:k3 V~ -v~)/(yk-Yk) 

(v~)n=o:k3 (v~)x+f3k3 ((3k3 v~-v~)/(yk-yk) 

Note that by virtue of conditions of symmetry 

k=1, 2 

J~n (x, y\ t)= cxk 3 lJx (x, t); j=O, 1, 2, ... , n; k= 1, 2 

and that the adhesion conditions and the equality 

Ji~ (x, Jik, t)=P 
imply 

Ji~ (x, yk, t)=O; j=O, 1, ... , n; k =1, 2 

(3.20) 

(3.21} 

(3.22) 

(3.23) 

Using all these assumptions and approximations we easily conclude that equa
tions (3.5)-(3. 7) yield: 
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A. Equations of transfer through the basal 
and apical unstirred layers 

63 

Assuming that w!, k= -1; 5, are continuous functions of y we find that*) 

where 

o- t =(x: -L0 <x< -2L1); D5 =(x: I (t)+2LI <x<L1), 

and }v! (x~:, t) are defined by (3.13). Further 

(c~),+u~ (c~)x=~ (c~)xx; j=O, 1, ... , n, 

(# -t~x)x=O 

and by virtue of (3.24) 

n 

xeD", k=-1; 5 

i~x= -2 (Jl.kftf) }; (Mi - Mo fJ;/fJo) ~ (c~)xx 

B. .Equations of transfer trough the basal 
and apical membranes 

1 

(J;)x+lv! (~}.,=0; j=l, 2, ... , n+ I; 

(w!).x= O xeiJk; k=0;4 

(p''}.- i." (w" -v!+ ,)=0 

(3.24) 

(3.25) 

(3.26) 

(3.26*) 

(3.27) 

*)It is obvious that points (xt,Yz(Xt,t)), k=-1;5, x_ 1= - 2.d, x 5= 1 (r)+ 2.d arc points 
of discontinuity of the average volume velocity wt (x, y, t) since the specific (i.e. per unit of length 
of the crossection x=const) resistance of membranes to the solutions motion are incomparably 
greater than that of the intercellular space. Denote y=zt (x, t) l.he streamline of the field of the 
average volume velocity, entering the point (x., Y2 (x., t)) and belonging to Dt. We have 

A 

lvk=(J /A) J wk dy=(I /A) ((A -zk) w k + zk 1vk ) 
x x · xl xl 

(o) 
0 

where 
A 

~1 = (1/(A-z1)) J 1~ dy; (oo) 

•• 
Hence 

(ooo) 

where (f] means a jump off on the line y=zt whatever the function f is. Thus (3.24) may be valid 
if and only if 

(~] (zk), = 0; x t:IJk. (iv) 

Since w: #0 at points (x., Ya (xt, t)) it perhaps is rather more natural to suppose that the stre
amline y=z• has a zero slope everywhere in Dt than to assume that the points (x1, y2 (xt, t)) are 
l.he only points of discontinuity of w~ (x, y, t); k= - 1; S. 
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Here 

D0 = (x: - 2L1 <x<O); D4 = (x: I (t)<x<l (t)+2L1) 

Note that 

k , x = - 2L1 or x = O for k = O 
{ 

0 . 
vn+l (x, t) = . 

I (t); x = l(t ) or x - l(t)+ 2 for k = 4 

C. Equations of transfer through the cell 
and intercellular space 

( k )(") ((" ) k '') k k(S )I _ y -y" ci ,+ y - yk w;. ci x- ci w" ,,3 x s., -

(3.28) 

(3.29) 

= - ((yk -}k)1Jx)x - Jj~1 (Sx3).- l s.3=0; j = O, 1, 2, .. . , n (3.30) 

((y" - yk) ~)x - W~ (Sdxfs.
3
=0; k = l, 2; XED" 

Note that 

11 

•xv= .uk((v~)x+(v~)v); v"=lv"+}; rt~J~; k = l; 2, (3.31) 
1 

div 11i
1' = 0; J~= -D~ grad c~; rt~= (,u"/p") (Mi-Mo Qi/Qo) 

Using (3 .1 0), conditions of symmetry and the first of assumptions above, we conclude 
that 

n 

r~x= _2; (2/3) 17~ ( - lJ)x+(l/(yk - y,J) (JJ"Is.3 +(Yi<x IJx))+ 
1 

i~v= - 1/2 (.uk w~+ t 17~ lJn ls.,t + 

+ 1/2 (.uk w;+ t 17~ lJx) (Ykxx+Ykxf(y" - yk)); 
(3.32) 

r~y=- (2/3) i; 17~(1JJx-(1/(yk - yk))(i; (4/3)1J;lJil+2p,kw~)l1 + 
1 1 s.3 

D. Equations of transfer through the lateral membrane 

1/2 ((Yl - yz) (c]fs1 3 +c]fsz3)r - c] is
13 

Y1r+cJ /s
23 

Yzr+ 

+ 1/2 (CY1- Y2) (cJ w; ls
13 

+cJ w~/s2,))x+cJ w~ (S13)x/s
13

-

- cJ w,~ (Sz3)xls23 = J},, (Sl3)x/s,, -Ji~, (Sz3)xls
23 

j = 1, 2, ... , n (3.33) 
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where the term 

(3.34) 
is omitted*). 

Further 

{3.35) 

and**) 

1/2 ((J'l-Y2) (ll~ ls 13 +11!ls
23
))"'+ l/2 (Jt-Y2) (.R3Is, +JP Is)+ 

+lf~ (St3)xls,~ -n~ (S23) .• 1s.,=0 (3.36) 

Note that the fictitious volume forces JP of the resistance have no tangential 
components at points of the membrane boundaries sl3 and s23. [ndeed 

R;lsk3 =,P (v!+J,.<- w;)lsu =(1/c,~+ l) Jn3
+ 1,.,1su =0 

(see point 5 in page 61 ). Thus (3.36) may be reW1·itten as 

1/2 ((Yt-Y2) (i1~ 1s, +l7!Js,,)) .. + 1/2 ),3 (Yt - Yl) (nil- w~ls) n~ 3 + 

(3.37) 

+(n2,-w!ls,) ii~3 +fl,~ (SJ3)xlsu -n: (S23)xls,=O (3.38) 

which is valid since 

V~+l.nlsu=nkr=Yttf(Sk3)x; k=l, 2. 

Here ii~3 are the unit vectors of the normals to Skl, k= I; 2. 

E. Conditions of conjugation. Boundary 
and initial conditions 

(3.39) 

Recall that by virtue of conditions of symmetry the average volume velocity 
is independent of x in both the unstirred layers, which justifies equating w", k= -1; 5, 
to values defined by (3.13), as well as definitions of~ .. by (3.26). This shows that 
conditions (2.24) and conditions of dynamical compatibility are satisfied by the 
average concentrations, average volume velocities and everywhere except for bound
aries of the unstirred layers. On these boundaries they take the forms of: 

l]x1 +cj1 ,,,_; 1 =(l/A) ((A-y~) (1j0 
.. +cj 1'v~)+Y2 (lfx+cf 1v;) 

j= 1, 2, ... , n; x= -2LI 

J0,.1 +c01 w; 1 =(Y2/A)(]~_.+c~ 1i1;); x=-2LI 

p- 1-tr,; .. t =(1/A) (Ji0 +y2 (pl - tr~_.)+ {yl -Y2) JP); X= -2LI 

li!_; 1= (1/A) ((A- y1) 1li~+Y2 (11;); X= -2Lf 

•) This term is of the first order with respect to derivatives in x-dircction, so that we cannot 
refer to the assumption J above. However, comparing its magnitude with that of the terms in the 
right hand side of (3.33) we see that it is negligible (See Appendix 2) . 

.. ) For computation of stresses ii; and ii; on boundaries Su see the next section. 
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1Jx+cJ ({v~-l (t))=(l/A) ((A-y) (l.t,+c~ (w~-i (t)))+ 
+Y2(JJx+c}(1v;-i(t)))) j=l,2, ... ,n; x=l(t)+2 

Jgx+cg (fv; -i (t))=(Yz/A) (15x +c6 (w; -i (t))); . x= I (t)+2 

P5 --r.ex=(l/A) ((A- YI) P4 +Yz (pl -i;)+(Yl -yz) P); 

}V;-i (t)=(l/A) ((A-yt) (w~-i (t))+Yz (w~-i (t))), 

x=l (t)+2A (3.41 3) 

(3.414) 

Recall that the conditions of dynamical compatibility (2.31)-(2.36), which remain 
unchanged on the boundaries of the cell, are 

J~x+c~ w;=o; j=l, 2, ... , n 

J}x+ct (w!-1 (t))=lfx+cJ (w; -1 (t)); j=l, 2, ... , n 

J1 +c1 (11:· 1
- i (t))=O Ox 0 x 

Further 

x_ 1 =-2Lf; x5 =l(t)+2Lf;j=l,2, ... ,n 

x=O 

x=l (t) 

Note that terms (y1-y2)P and (y1 -y2) c]/Ki> entering (3.402), (3.31 3) and re
spectively (3.43) are negligible since p\ p 2, p 3 and respectively cj/K 1 , c;JK i and c; 
are of the same order,and YI.-y2 is two order smallei than A (see Appendix 2). 

4. Equations of the membrane approximation 

Equations by the membrane approximation are corollaries of the one-dimen
sional formalism of the theory (section 3) and 'conditions of conjugation (sections 2, 3). 
Using equations of transfer through the membranes and conditions of conjugation 
we may find an explicit relationship between diffusion fluxes, velocities and stresses 
on the cell boundaries and those on the boundaries of the intercellular space and 
unstirred layers. As the result of this all the values determined within membranes 
appear to be eliminated. Remembering that 2,1 is incomparably smaller than L 0 

and L 1 we may, after such an elimination, consider lines x=O and x=l (t) as the 
only representative of the basal and apical membranes, and consider them as the 
boundaries of unstirred layers. It is also convenient to introduce 

z (x, t)=y1 (x, t)-Y2 (x, t) (4.1) 
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as a new unknown, and consider the boundary S23 of the intercellular space as the 
only representative of the lateral membrane, and therefore as the boundary of the 
cell. It appears, due to the magnitude of values we deal with, (see Appendix 2) 
that the distribution of concentrations, velocities and stresses interior to the lateral 
membrane are not noticeably affected when z varies. This means that the boundary 
Y=Yl (x, 1) may be detennined in the approximation 

2A=const. (4.2) 

where 2A is the thickness of the lateral membrane measured along the normal to 
its boundary S23 • In such an approximation y 2 (x, 1) has to be determined from the 
simplified system of equations, where the swelling and shrinking of the lateral mem
brane, as well as the change· of its thickness due to bending are disregarded, whe
reas z (x, t) may be found after obtaining the solution of this simplified system*) 

A. Elimination of the basal mem.brane 

Equations (3.27) yield 

lJ.~< -2A, t)+cJ( -2A, t) w~(t)=JJ(O, t)+cJ(O, t) w~(t); j=1, 2, ... , n 

p 0 
( - 2A, t)+2AJ.0 w~ (1)=p0 (0, t); w~ (x, t)..,=O 

Comparing (4.3) and (3.40), and replacing - 2A by 0 we obtain**) 

f )x• +c1- • li·; • =(1/A) ((A-yl)(lJx+cJ w!)+Y2 (J}.+cJ 1v.m 
j=l, 2, ... , n; 

p-• -f;x1 =(1 /A) ((A-y 1) {P 1 -i!x+2AJ.0 lv!)+Y2 (ft2 -i_!x); x=O 

1v;1 =(1 /A) ((A-Yt) 1v.!+Y2 w;) 

Be~ ides 
Jo_ .. 1+c01 li·; 1 = (Y2/A) (J;+cJ ,,-.~) at x=O 

(4.3) 

(4.4) 

(4.5) 

On the other hand we find, using (4.3), definition (2.23) and 
of conjugation, that 

conditions (2.24) 

cJ.~ -(fv!/DJ) cJ= - (1/DJ) (1J +c) w.! +LJ J.0 ,v.!)l., .. o 

""0 "" 1 • 1 2 0 ci =Kj c1 ; J= , , ... , n; x= 
(4.6) 

• ) The width of the tight junction is of order 2h= 10 A whereas 2.d = J 00 A and A-y 1 (x, 0) 
is of the order 3Jl (see Appendix 2). This shows that the shift of the boundary y=y (x, t ) of the cell 
to the line y= y2 (x, t) cannot become essentially influential, at least at the initial stage of the process 
evolution, when the cell is by far from the possible collapse . 

.. ) Here and below we disregard terms (y1 -y2) p3 and (y, - y2) c;/K1 in the accordance with 
what is said at the end of page 22. 

Equations (4.4) and (4.9) are written taking into account the assumption concerning negli
gibility of tl1e mass transfer through the regions 

D••=((x, y : Xt<x<xt+ 2.d), Y2 (x,t)<y<y, (x, t)); 

k=-1; 5;x_ 1 = - 2.d; xs=l(r) 
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This and the approximation 

exp (-2.11v! (0, t)/DJ)= 1- 2A w! (0, t)/D~ (4.7) 

yield (see the table of notations) 

cJ ( -2Lf, t)=(K)pJ) ((cJ (ftJ +w! (1 - KJ)) +J} +LJ A0 w!)lx=O 
j = 1, 2, ... , n (4.8) 

Inserting (4.8) into (3.43) and replacing - 2.1 by 0 we accomplish the elimination 
of the basal membrane. 

B. Elimination of the apical membrane 

Quite analogously we have 

1] +c] ( w; - i (t)) = (l/A) ((A - Y1) (Jfx +cf (w! - i (t)))+ l 
+Yz (lfx+cf (w;-i (t)))); j=l, 2, .. . , n; l 

p --t~x=(l/A) ((A -yl) (p1 - -t_!x+2AA.4 w!)+Y2 (pl --t;x)); x=l (t) I (4.9) 

w~ -i (t)=(l/A) (Uv! - i (t))+Y2 ( w; -i (t))) J 

Jgx+cg(w;-i(t))=(Yz/A)(l5x+c5(w; - i(t))) at x=l(t) (4.10) 

and 

c~ (I (t)+2Lf, t)= - (K)p~) (1J - c1~ (p~ - ( w! - i (t)) (1 - K1)) + 
4 4 (Al 0 

) o +L1 A. wx - l(t)lx=l(t)• j=l,2, ... ,n. (4.ll) 

Again, inserting (4.11) into (3.43) and replacing 2A by 0 we accomplish elimination 
of the apical membrane. 

C. Elimination of the lateral membrane 

Note, first of all, that (3.35), (2.28) and (2.40) yield 

w~ (S13)xls,, - w,~ (Sdxls,, + 1/2 ((Yl-Yz) (w!ls,, +w~ls,,))=O (4.12) 

Consider (3.36). Note that 

Jf3 / ( 3 -;+ -3)1 (JT3 3) -;I + -31 x s"3= - p l 'tx sk3 = rui-irm l sk3 '!x sk3; k = 1; 2 (4.13) 

Using now (2.29), (2.30) and (2.42) we obtain, after some simple computations, 

(4.14) 

where*) 

*)Below we use these equalities omitting all terms quadratic with respect to derivatives in 
x-direction if, naturally, they are not divided by a small value of the order of y 1 -y2 • 
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- ( -~ -2 j ( -o :=0 F= (A-y1)fl.xls,.+Y2ll.xls, .x+a1K1 S13).xn13 -a2K2(S23).xn23 + 

+ l/2((Yl -h) t a.1c3 ~. ii~3t +i 1/2 (Yl-Y2) ((J/(St3).x)x 

x((A - y t)ll;nls.,).x- (1 /(S23).x (y2n,;,.).xls.,

-(A -yl) K1JI~.Is13 +12 K2n;.1s,, -al Kt +a2 Kl)).x 

F3 = 1/2 CYt-Y2) (R3 Isu n~3 + R3 ls., ii~3) - i 1/2 (CYt-Y2) (r~n ls .. + 
+r;,.ls)).x+l/2 {(yt - y2) («13 -.;,Is., ii~3+a:23 •!nls,.'i~J)).x 

(4.15) 

Thus in order to eliminate the lateral membrane from the equation of the momentum 
transfer we must do this with the expression of F 3 • 

By the definition (2.22) and conditions (2.40) we have 

(4.16) 

Further, remembering the assumption of the smalness of motion, we may neglect 
the difference between the local and material derivatives at points of the lateral 
membrane boundaries. This means that instead of equations (2.6) we may write**) 

r 

83 (x, Y1 (x, t), t)=l3 (x, Y.~c (0), 0)+ J e3 (x, Yt (x, s), s) ds 
0 

i 3 (x, Y.~c (x, t), t)=i3 (x, Y~< (x, 0), 0) exp ( -at)+be3 (x, y1 (x, t), t)+ 

' 
+ J exp (-a (t-s)(ce3 (x, Y.~c (x, s), s)+dl3 (x, Y1c (x, s), s))) ds. 

0 

Recall that 

e;,.=(w!)n; e!,= l /2 ((w!),+(w:)n+Kt w:); 

e:.=(4/3) ((w:).-Kk w:) -(2/3) (w:),.; k=l; 2 

Compute values (w;)nls .. and (w;),ls., by the following way. We have 

div lv3 = 0 in D3 

Hence 

so that 

(4.17) 

(4. 18) 

(4.19) 

(4.20) 

f"((tv3
),) dS=O; F=oD; D = (l;, 71 : x<~<x+dx; y 2 (~, t)<'1<Y1 (c;, t)) (4.21) 

r 

Since «u and fJu are independent of y by their definition, we have 

(w3) .• .nk3= (w!)y on sk3; k=l;2 (4.22) 

••) Really this means that we consider the membrane surfaces as possessing specific rheolo

gical properties whereas inside that membrane only the body forces R 3 of the resistance act. 
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Hence (4.21) yields 

(w~)y) S13)x!s, -(w~)y (Sz3)x!s,, =- (w.~ -1v;)x 

Here the equalities 

k=l, 2 

following from (2.28), (2.40) and (3.11) are taken into account. 
Use now the approximations 

(4.23) 

(4.24) 

(w~)yls,,=2 (w;!s
13 

-w)/(y1 -yz); (w~)yls, 3 =2 (w-w~!s,,)/(y1 -y1 ) (4.25) 

with an unknown w. By solving the system (4.23), (4.25) we get 

where 

(w~)nls, 3 = £X13 (w,;)x!s, 3 + ,813 {(S23)x Uz +J3)+/1)/((S13)x +(Sz3)x} 

(w!)"ls,
3 
= £X23 (w~)xls,, + .823 ((S13)x Uz +f3)-/1)/( (S13)x+(S23)x) 

(4.26) 

/1 =(w;-w!)x; fz=2 (w,;!sJ/(y1 -yz); /3= -2 (w~ls,)/(yl -Yz) (4.27) 

We further have 

(4.28) 

which yields 

(4.29) 

Using this, conditions (2.28) of dynamical compatibility and (2.38) of symmetry, 
as approximations (3.20), which are valid not only for vk but also for wk, we obtain, 
after some manipulations: 

(w;)nls., =(1/£Xk3 .Bk3) (}Y~)x+(l /£Xk3) (w,;)>'!sk, +(£Xk3/ .Bk3) (,Bk3 (w~/ f3~t3 -

- ( £Xk3/ f3k3) w~!s.,)x+( £Xk3/ ,Bk3) ( £Xk3 ( £Xk3 w~- w~ls.,)f(,Bk3 (yk-Yk))) ( 4.30) 

Besides 

and 
(4.32) 

Inserting (4.25), (4.26), (4.31) and (4.32) into (4.18) we express deformations 
e;r, q, r=n, s, on Sk3, k= 1; 2, through values determined within the cell and the 
intercellular space .. Together with this we get the desired elimination of the lateral 
membrane from the equation of momentum transfer. 

Consider, finally, equation (3.33) of the convective-diffusion mass transfer 
through the lateral membrane. Using approximation (3.15) and the assumption 5 
in the page 61 we obtain 

lJ,,Isll ={(Sz3)x (fl)+ fzi)+ .823 f3i)/(fJ 1.3 (Sz3)x+ ,823 (S13)x) 

lJ'nls,. =((S13)x (/u+ fzJ)- ,813 /31)/(,813 (Sz3)x+ .B:z3 (S13)x) 
(4.33) 
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where 

and 

Recall that 

--- ~---------

ftJ= -2 (KJ DJ cJ +LJ P3ls,)f(.YL-Y2) 

/21=2 (KJD] cj+LJ p 3ls)/(Jit -Yl) 

3 

j=l, 2, ... , n 

f3J=(S.3)x J]nlsu -(S23)x J]nls,,= 2 J:1; j= l, 2, ... , n; 
1 

fi1=(KJ/2) ((y.-Yl) (cj +Cj),) -KJ (cJ Ytr+cj Yu); 

! 2-( f?)((y )(~~ ~~+~2 A2) • 3J- Kj- 1 - Y2 c1 IVx c1 IVx"' 

fi1=KJ ( c~ w~ Is,, (Sl3},-cJ w~ls,, (S23)x). 

where •~, l.su are detem.1ined by ( 4.17), ( 4.1 8), ( 4.26) and ( 4.30)- ( 4.32). 

Note that equations (2.27) and (2.11)-{2.14) yield 
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(4.34) 

(4.35) 

( 1- t QJ KJ c:) ((nk3),-w!lsu)=-$ QJJJnlsu; k= 1; 2 (4.37) 

These equations serve for deterrninig the boundaries Sk3 , k= 1; 2, of the lateral 
membrane. 

Rather lengthy computations show that (4.32), (3.20) and (2.27)-{2.30) imply 

n 

+ 2 Q1 K1 (cJ-cJ)(J'z,+((A-Y2)1v;). .. )=O. (4.38) 

At the same time equation (4.37) may be rewritten for k=2 as 

n 

Ylr+(Yz w_;).~=- 2 QJJ]n (SzJ)x · (4.39) 
1 

Let us now simplify this equation using data on the magnitude of value~ we deal 

with (see Appendix 2). Note, first of all, that f 3 J> entering expressions JJ,,Is,
3

, are 
at least three order smaller than fli and frh so that (4.332) may be replaced by 

(4.10) 

where 

(4.41) 

It is easy to see that up to the terms of the higher order of smallness 

A=l/2 (1 -2J (x, t) K2 (x, t)) (4.42) 
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This gives (see ( 4.27)) 

Yz 1+(w; Yz)x=(I/2 A (x, t)) (1+2LI (x, t) K2 (x, t))x 
11 

x}; (K1 DJ (c]-cJ)+(LJ p 3ls,, -LJ p 3ls)) QJ (4.43) 
1 

Bending, shrinking or swelling imply the change of permeability of membranes, 
as it seen from the usual definition 

p~=(l/2LI)KJ QJD~; j=l, 2, ... , n; k=O, 3, 4. (4.44) 

We, however, disregard this effect since it is seen from (4.43) that the small changes 
of Ll (and these changes are definitely small) yield a ~mall contribution into the 
shape and location of the boundary S23 and therefore into the concentrations, 
velocities and stresses within the system under consideration*). Thus we appro
ximately take in (4.43) 

Ll (x, t) = LI = const. (4.45) 

Denote**) 
n 

qk= (l/2LI) .2,; QJL~ (4.46) 

and use the approximation 

(4.47) 

Then (4.38) turns into 

Y2t+(w; Yz)x = (l + 2L1Yzxx) ( t pJ (cJ - cj)+q3 (p3 ls23 - p 3 Js,) (4.48) 

from where the mathematical nature of the probli~m becomes more lucid***). 

5. Concluding remarks 

We have to make the following remarks. 

1. The one-dimensional formalism of the theory above is essentially based on 
the use of equalities 

j=I,2, ... ,n; k = l,2. (5.1) 

"') It is true if the state of the system is far from the- possible in principle- collapse 
of the cell or the intercellular space. We,, however, do not deal with such a sit1.1ation, requiring 
a special consideration. 

"'*) Strictly speaking L~ are linear functions of concentrations c~ (see the footnote in page 51) .. 
Hence qk are different at different boundaries of the membranes Dk, k = O, 3, 4. Recall that we agree 
to disregard this effect, considering coefficients of barodiffusion as constant (see page 57) 

"'**)This question is shortly' discussed in the next section. 
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These equalities are motivated by the narrowness of regions D 1 and D 2 • In doing 
this we ignore the existence of boundary layers separating the bulk of these regions 
from the membrane boundaries. Such an ignorance seems to be quite reasonable, 
when one deals with concentration fields, since the time of relaxation of these fields 
in y direction is at least two order smaller than that in x direction. However it is 
not so clear when we deal with the field of the average volume velocity. The more 
rigorous theory has to take this into account. 

2. Evidently 

(5.2) 

Assume that 
n 

}; p] (cJ (x, 0) - cJ (x, 0)) + q3 (p-l.o_ps.o) ( _ J)s (5.3) 
J 

changes its sign within the region. O<x<l (0) for s=O or s= I. Then eqtmtion (4.43) 
is of the parabolic type with the time reversed in some subregion of the region 
O<x<l(t) bounded by a free line along which that equation degenerates. Such 
a sitt1ation had been studied earlier for a model problem, formulated for a pure 
diffusion approximation of the theory*) [17]. One has to observe, however, that 
the coefficient at y 2xx in this equation has to be considered as a small functional 
parameter. This means that, perhaps, the approach based on the use of methods 
of the theory of singular perturbations would be more appropriate than that used 
in the mentioned paper. 

Appendix 1 

A. Table of notations 

D_" Ds - the basal and apical unstirred layers. 
D 0 , D3, D4 - the basal, lateral and apical membranes. 

Dl> D 2 - the cell and the intercellular space. 
2LI - the thickness of the membranes. 

x, y - Cartesian coordinates, t - the time. 
I (t) the lenglh of the cell. x =l (t) - the common boundary of the cell and of the 

apical membrane. 
L 0 , L 1 - I (t) - the basal and apical lengths. 

A - the with of the system (that of the unstirred layers). 
h - the thickness of the tight junction. 

H - the length of the tight junction. 

*) This approximation consists in the neglect of convection, induced by a jump of diffusion 
fluxes through deformable membrane. 
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S~t 3 ={x, y: O~x~ l (t); y=yk (x, t)}; k= 1; 2,- the boundaries of the lateral mem
brane common with those of the cell (k= 1) and of the intercellular 
space (k=2) 

aJ> j= 1, 2, ... , n -liquid incompressible components penetrating trough all the 
membrane. 

a0 - the impermeant of solutions Dk, k= -1, 1, 2, 5. 
an+ 1 - the main membrane <;onstituent, nonpenetrating into solutions Dk, 

k= -1, 1, 2, 5. 
c~- molar concentration of a1 in Dk; mk~j~nk; 

mk=O for k=-1, 1,2,5; mk=l for k=0,3,4; 
nk=n for k= -1, 1, 2, 5; nk=n+l for k=O, 3, 4. 

Q 1 - the partial molar volume of aJ> j=O, 1, ... , n+ 1. 
p~- the density of a1 within the solution Dk; k= - 1, 0, ... , 5. 
pk- the density of the solution Dk; k= -1, .. . , 5. 
K1 - the coefficient of distribution of a; between solution Dk and mem

branes Dm; k= -1, 1, 2, 5; m=O, 3, 4; j=l, 2, ... , n. 
v~- the vector of velocity of motion of a1 within Dk in a laboratory 

coordinate system; mk~j~nk; k= -1, 0, .. . , 5. 
wt' - the average volume velocity in Dk. 
vk- the center of mass velocity in Dk. 
1;- the diffusion flux of a1 within Dk in the system of the average volume 

velocity. 
lJ*- the diffusion flux of a1 in the center of mass system. 
L~- the coefficient of barodi:ffusion of a1 within Dk; k=O, 3, 4. 
D;- the coefficient of diffusion of a1 within Dk; k= -1, 0, ... , 5. 
p~<- the pressure within Dk; k= -1, 0, ... , 5. 
fi~<- the stress tensor within Dk; k= -1, 0, ... , S. 
:r~<- the deviator of fi~<. 
ek -the strain velocity tensor within Dk. 
sk- the strain tensor within Dk. 

a, b, c, d- coefficients of the equation of the rheological state of the lateral 
membrane. 

),k- the frictional coefficient within Dk; k=O, 3, 4. 
jk- the average value of any function/ defined within Dk, the averaging 

being made over crossection x =const. of Dk; k= -1, 0, ... , 5. 
p~- the coefficient of permeability of a1 through the membrane Dk; 

k=O, 3, 4, j=1, 2, ... , n. 
q3 - the coefficient at the right hand side of the equation (4.43). 
(Jk- the smface tension on the interface sk3 of the lateral membrane 

and solutions Dk; k= 1; 2. 
Kk- the curvature of Sk3 , k= 1; 2. 
Pk- the coefficient of dynamical viscosity of solutions D 1" k= -1, 1, 2, 5. 

iif3, sf3 -the unit normal and tangential vectors at sk3; k= 1; 2. 
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7,]- the basis vectors of the Cartesian coordinate system (x, y). 
ocu, Pt3 - the direction c~sines of ~3 (ii~3 are directed toward D 1). 

fr- the r-th component of any vector/; r=x, y, n, s. 
(f)"ft'- the partial derivative of any J in r-th direction; r=x, y, n, s; 

k= -I, 0, ... , 5. 
J- the ordinary derivative of any f 

B. Scaling 
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All values enumerated in the table of notations are dimensional ones. Let us 
mark them by the superscript * and introduce, after this, dimensionless values by 
setting 

x=x<'jL*; 

A=A*/L*; 

.d=Ll*/L*; 

C~=dJ*/C*; 
v~=v~*/W*; 

p~=p~*/p*; 

1~=1~*/J*; 

'ii*=v**/W*; 

il"=nkfP*; 

et=eu/e* ; 

where*) 

y=y'*/L*; t=t*/T*; 

Y~< (x, t)=y: (x*, t*)/L*, k= 1; 2; I (t)=l* (t*); 

lt=h*/L*; H=H*!L*; Lk=L:JL*, k=O; 1; 

mk~J:;;;n"; k= -1, 0, ... , 5; 

-,,-,,-,,-,,-,,-,,-,,-
- ,,-,,-,,-,,- ,,-,,-,,-

Jk*-Jk**/1**- - - -J -J , , " 

lri'=W"/W*; p1 =p**fp*; M1=M'j/M*; 

l1!=l1!*/P*; n:•=Jl!*/P*; JI=Jf*/P*; 

e"=eu/e*; R"=R"*/R*, QJ=Qj/Q* 

L*=L6+L~; T*=L* 2 /D*; D*=max max ~; 
k J 

k=-1,0, ... ,5; 

C* =max max (c~~, c7°*); mk:;;;j~nk; k=- 1, 0, ... , 5; m= - 1; 5. 

W*=L*/T*; P*=max(p- 10*,p50*); R*=P*/L*; u*=P* L*; 

e('=l/T*; e*=i; J*=C* W*; J*'-'=p* W*; p*=l*; 

M*=l*; .Q*=l*. 

(Al.l) 

(A1.2) 

Then a ll the equations of the main text remain unchanged, if there are introduced 
dimem.ionless coefficients, defined by the following quantities 

D~=D~*/D*; L~=L;* P*/(L* J *); ft~c=J.l: W*/(Pc' L*); 

a=a*T*; b=b*e*/P*; c=c*e*T*/ P*; d=d*T*/P*. 
(Al.3) 

•) We refer to the subscript n for water- the solvent of all the solutions Dt. One of pto, 
k= - 1; 5, may be equal to zero. Hence the characterist!c pressure P* is really taken equal to the 
maximum or the pressure drop. 
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Appendix 2 

Numerical data 

The range of parameters and input data, accepted below, is chosen as follows. 

1. Geometrical values (A2.1) are taken accordingly to data of [19] except for 
the length H* of the tight junction, not indicated there. As it is seen from the electron 
micrographs shown in [10] H* may exceed half of the cell length. The accepted 
value H'~=l0/3 may therefore be considered as representative. · 

2. Non-electrolytes ai, j=I, 2, ... , n may be characterized, for example, by the 
Table 1 of [4]. 

3. The characteristic value C* of molar concentrations is taken in accordance 
with the ones used in experiments reported in [19], [23], [25]. 

4. The characteristic pressure drop P* is taken in the accordance with the re
spective experiments, described in [23]. 

5. Coefficients of diffusion, distribution and permeability are estimated as in 
[4] where the motivation of the respective choice is given. 

6. Coefficients of barodi.ffusion are taken with the use of the chosen values of 
concentrations with the reference to the footnote in page 51. 

1 

7. Dynamical viscosity of solutions, filling regions Dk, k= -1, 1, 2, 5; are take1~ 
in the interval including the most representative values of the reference [22] and 
those mentioned in [12]. 

8. Rheological parameters a*, ... , c* of the lateral membrane are unknown. 
They were estimated from above as those which may be taken for high-elastic 
polymers with the reference to [1] and for b* -to [22] *) 

9. Values k*, k =O, 3, 4, of the coefficients of filtration are taken of the order. 
found in [12], of the characteristic surface tension as in [22] p. 482. 

Thus we accept the following ranges of numerical data: 

Lt~JOO p,; L1 ~800 p,; /;f~30 p,; A~3 p,; } 

A*~SOA; h*=SA; H'~ ~IOp, ; 5A~y2 (x,0)~300A; 
(A2.1} 

C*=400mMol/L; Qi=18-200cm3/Mol; p':' = 1 g/cm3
;} 

Mj=18-150 g/Mol; 
(A2.2} 

P*=30cmH20 ; J.k:~ = 109 -1010g/cm3 sec; L~* = I0- 19 -10- 18 Mol.sec/g (A2.3} 

a*=106 -2·107 1/sec; b* = l-IOP; c* = l06 - 2·107 g/cmsec2
• 

p~*=I0- 4 -I0- 6 cm/sec; D*=I0- 5 cm2/sec; Kj=I0- 4 -I0- 5 • 

(A2.4} 

(A2.5) 

*)We restrict ourself with estimation of rheological parameters of the lateral membrane Dh 
considering it as a Maxwell fluid. 
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Thus parameters (Al.2) and (Al.3) are chosen in the range 

L*~I0- 1 c.m; T*~l03 sec; W*~I0-4 cm/sec; 

P*~3·104 g/cm•sec2 ; R*~3·105 g/cm2sec2 ; a*~lg/sec2 (A2.6) 

e*~l0- 3 1/sec; J*~lo- s Mol/cm2sec; J**~I0-4 g·cm/sec 

and respectively 

D~-1; L~-10-5; .u.~-ro-7 ; J.k,...,3 

P~"' l0- 2 -10- 3; q~<,..., JQ- 3 -10-4 

Besides that, all values subject to determination are of the order of one. 

Appendix 3 

Collection of all equations corresponding to the case 
of bicomponent solutions: water+ an impermeant. 

(A2.7) 

It is more convenient, dealing with bicomponent solutions, to introduce the 
impermeant concentrations into all the equations instead of that of water. 

Below we use the following simplified notations: 

p"=p"; k= - ·1., 1, 2, 5. 

pk=p3Jst,; k=1;2 . 

Y=Y2 (x, t); 

vk=w~ ; k= -1, 1, 2, 50 

w"=~lsk3; k=I; 2. 

J~=J~x; k=-1,],2,5. 

Jk=J~nls"'; k=l; 2. 

p~=p~; k=O, 3, 4. 

q"=q~; k=O, 3, 4 . 

(A3.1) 

All other notations coincide with those of Appendix 1. All values, entering the 
right hand side of (A3.1) are defined in Appendix 1. 

Equations below are written in approximations accepted in the main text. In 
particular we take everywhere 

(Sk3)x= l; ak3= - yx; (3.3 =1; Kk=Yx;.; Yt-Yz=2.d=const*) (A3.2) 

The collection of all governing equations is as follows: 

*)We recall that z (x, t)= y1 (x, t)-y 1 (x, t) has te be calculated after y (x, t) and alllhe fields 
of the interest are found with the use of these approximations. 
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A. Equation of the convective-diffusion transfer 
in D.; k= -1.1, 2.5 

where 

F1 = -ulx (vi +yxf(A -y)) -Jl /(A-y); Fz=Uzx (YxfY-Vz)+JZ/y; 

O<x<l (t), 

Fk=-vkukx; -L0 <x<0 for k=-1; l(t)<x<L1 for k=5, 

and 

J_ 1+u_ 1 v_ 1 =(y/A)(J2 +u2 v2 ); J1+u1v1=0 at x=O 

J5 +u5 V5 =(y/A)(J2 +V2 ); J 1 +u1 V1 =0; V1=V1 -i(t); at x=l(t) 

u_ 1 =(1/A) ((A-y) (ul (1-Kl vdpi)+yuz)+ 

+(A-y)(1-K1 +L~},0 Q1)v 1/(Q0 p~)) at x=O 

u5 =(1/A) ((A-y) (u1 (1-K1 Vdpi_)+yuz)+ 

+(A-y)(1-K1+Li_ A4 Q 1) V1/Q 0 pi_) at x=l(t) 

u_ 1 =u~ 1 (t) at x= -L0 ; u5 =u~ (t) at x=L1; 

uk (x, O)=uko (x); k= -1, 1, 2, 5 

(A3.3) 

(A3.4) 

(A3.6) 

(A3.7) 

Equations (A3.3) and (A3.5) are corollaries of equations (3.30) of the convective
-diffusion transfer and continuity as well as identities (2.11), (2.16). 

B. Equations of continuity 

vk (x, t)=(l/A) ((A-y)v1 (x~o t)+yv2 (xk., t)); XEDk; k=-1; 5 . 

n- 1 =(x: -L0 <x<0); D 5 =(x: l (t)<x<L1). 

((A-y)v1)x-W1=0 l 
(yv 2)x+W2 =0 O<x<l (t) 

w1 -w2 +A (v 1 -v2)=0 

C. Equations of momentum transfer solved with respect 
to pk; k= -1, 1.2 

(A3.8) 

(A3.9) 

Equations of momentum transfer are written below in the form solved with 
respect to pressures Pf<., which may be obtained by means of simple but rather lengthy 
computations. We have 

" 
P1=-f~x+Xo+ jh1 (s,t)ds; Pz =f;" + Yo+ J h2 (s, t) ds 

0 0 
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or 

I (t) 

P t =t.!x+Xt-J h1 (s, t) ds; 
I (t) 

P2=t;x+ Yt-J h2 (s, t) ds 
X X 

Xo=(bo (at H1 +bt H 2)+co ht -c. b0 )/p; x=O; 

Xt =(bt (ao H1 +bo H2)+co b1 -ct bo)/p; x=l (t); 

Y0 =(c0 a0 +ct at) - a0 (a1 H 1 +b1 H 2)/p; x=O; 

Yt =(Ct ao -Co a,) -at (ao H 1 +bo H 2 )/p; x=l (t); 

I (1) 

H"= J h" (s, t) ds; k= I ; 2; 
0 

h1 =(1/(A - y)) (Yx (•;x - 0~n)+T.~s); 

h2=(1/y) (Yx (r;:c -•;,)+•: .. ); 

Co=P-1 -r;,/ -(2/A) Lf).0 
V 1 (0, t); } 

Ct =Ps -•~x-(2/A) Lf).4 
'lit (1 (t), t); 

a0 =J-y(O,t)/A; a1 =l-y(l(t),t)/A ; l 
b0 = y (0, t)/A ; b1 = y (1 (t), t)/A; 

p=a0 b1 -a1 b0 =(1/A) (y (l(t), t) -y(O, t)) 

and 

i~x=(2/3) '11< ( -Jt+(yk -y)- 1 (Jk+Yx Jkx))+2 (/-'k Vt+'lk Jk)x; l 
i!,.= l /2 (pk wt+'lk P).x+ 1/2 (!-'k v~<+'ltc Jk) (Yx.x+ Y.xf(y"-Y)); 

-t!,= -(2/3) t/A '""-(y"-y)- 1 ((4/3) ''" Jk+2!-'" w"+ 

+((4/3) '1" J"+2p" vk) Y.x); 

•~n=Pk (2 (wk)n - (2/3) (uf)s); l 
•:s:f-tk (2 (lvk),+ (w")n+Yxx w"); k= J; 2. • 

T.ss-1'-k (2 (w").+2Y.-x wk-(2/3 ((wk)n+(ul')s+Yx.~ wk))), 

(w").=(v"- w,J/(y"-y); (ll'),=(vl.'- 1'1)/(y"-y); 

w"= v14+ Yx w"; (w").=(»I<),+Y.>. (11') ... ; k=I; 2. 

(p"-r!Jx=O; xeDI< 

~x=2p.,Jk.>.; k= -1; 5 

(A3.11 2) 
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D . Equation determining the length I (t) of the cell*) 

i (t)=v1 - (1/u1) u1x at x = l (t) 

l(O)= l0 >0 

E. Equation determing the lateral boundary y = y (x, t) 
.of the intercellular space 

Yt+(vzY)x=(l~2AYxx) (p (itl - Uz)+q (p 2 -p1)); O<x<l (t) - H; 

y (x, 0)=y0 (x); 0 < x<l0 ; y (x, t)=h for l (t) - H<x < l (t) 

where 

pk=p,.-T!n+r~nlsk> +( -J)k (fk Yxx 

.and T~nls., are determined by (A3.19)-(A3.21). 

R Equations determining the thickness of the lateral membrane 

where 

.and 
z(x, 0) = 2A · 

·G. Equations determining stresses '~ithin the lateral membrane 

T!q (x, t)is., = T!q (x, O)ls •• exp ( -at)+be!q (x, t)is., + 
t 

+ J exp (-a (t-s))(ce;q (x, s)ls·., +de3 (x, s)ls..) ds; k=l; 2; 
0 

t 

e;q (x, t)is., = e!q (x, O)ls., + J e!q (x, s)ls., ds; p, q= n, s. 
0 

Here 
(w~)nls •• = 1/2 (!3 +fz+( -l)k+ 1ft); k = 1; 2; 

f1 = (vz -vl).~; fz = W1/A; f3 = - Wz/A; 

31 " w. s., = vk+Yx wk; 

(w~).is., = wkx -Yx wkf(yk-y); 

(w;)nis •• =(lfyx) ( - Vkx - 1/2 (fz +f3 +( - J)k+ 1 /1)) - yxvk+Yx Wk/(yk- y); 

yl = A; yz = O. 

(A3.131) 

(A3.13 2 ) 

(A3.14) 

(A3.15) 

(A3.16) 

(A3.17) 

(A3.17*) 

(A3.18) 

(A3.19) 

(A3.20) 

(A3.21) 

"')Equation (A3.13 1 ) is written for the second time in order to emphasize its role. 
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, 
0 osmotycznym przeplywie konwekcyjno-dyfuzyjnym 
nieelektrolitow o dwoch dlugich komorach przedzielonych 
pOiprzepuszczalnl! blonl! reologiczn~J: 

Zadanie brzegowe modelowania pasywnego przeplywu wody przez plask1t tkank~,; nablonkowq 

W pracy sformulowano dwuwymiarowe zadanie brzegowe opisuj1tce osmotyczny przeplyw 
nieelektrolit6w wzdluz dw6ch W1!Skich kom6r oddzielonych odksztalcalnq p6lprzepuszczalnq blonq 
o dosyc og6lnych wlasciwosciach reologicznych. Rozwa±ania Sq prowadzone na konkretnym zada
niu, kt6re powstalo przy modelowaniu pasywnego przeplywu wody przez plaskq tkank~,; nablon
kowq na podstawie danych z prac [19, 23, 25]. 

06 OCMOTli'ICCKOM ,L1;HclJI}Iy3HOHHOM DOTOKC ,ZJ;HYX He3JICK1'p0JIHTOB 

so BHYTPH ~yx ~JIHHHHX Ka~ep pal~eJieamwx 

MCM6paHOU ,lJ;H3JIH33TOpa 

B pa6oTe paCCMOTpeHa ,!IBYMepHaH KpaeBaH 3a,l(a'Ia Olli!ChiBaiOillaH OCMOTH'iecKHM TIOTOK 
,!\Byx He:mel<TpOJIIITOB B,l(OJih ,!IBYX ,wmmrnx ICaMep npe,ll;eJieHHhiX ,ll;e<jJopMHpOBaJihHOM MeM6paHOM 
,!J;HaJIH3aTOpa. IJpe,ll;CTaBJieH KOHKpeTIIhill npHMep naCCHBHOIO TIOTOKa BO,ll;hl '!epe3 TIJIOCKYIO 
3JDITeJie:lrnyiO TKaHh. 


