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A minimal set is a subcollection of entities such that it is internally connected stronger than
with “its environment. In the preceding papers (see, e.z., [1,2,3,4,5,6,7,8,9,10,11, 14]) the
strength of connection between two nonempty and disjoint subsets was assumed to be the sum of
strengths for elementary connections, i.e. those between pairs of entities. This definition, although
reasonable for a great number of problems appearing when we seek a rational partition of a net-
work (ref., e.g., [3, 4, 7, 8]), may be inadequate for another purposes. An analogous mathematical
structure is considered in this paper. The only distinction lies in a different definition of “similarity”
between two nonempty and disjoint sets of entities. It occurs that this new mathematical structure
has similar properties as those for the (classic) minimal sets.

1. Introductory notes

Many theoretical and practical problems in science and technology may be
formulated as to obtain a reasonable partition of some nonempty and finite set
of entities. To each pair of distinct elements taken from the set some weight (being
a non-negative real number) is assigned. The weight represents a similarity between
a pair of entities. In another words the value of this weight is greater when these
entities are more similar in some sense and/or more close to each other. The way
for determining the value of reciprocal similarity between two entities usually de-
pends upon the intrinsic features of the real (source) problem under consideration
and it is here beyond the scope of interest. The interpretation of weights as simi-
larities implies, however, some general conditions for a *“good” decomposition.
Namely, first, each pair of entities with a relatively large value of reciprocal simila-
rity should belong to the same class. Second, any two entities with a relatively small
mutual similarity have to be in distinct classes. These conditions are usually fulfilled
by the application of the minimal sets’ techniques for real-life problems.

The very nature of the so-called minimally interconnected subnetworks, or,
shortly, minimal sets, can be briefly described as follows. They are, roughly speaking,
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some collectiors of entities such that they are internally connected stronger than
with their environment. In other words, the aggregate similarity between any
proper part of minimal set and its remainder should be greater than the analogous
parameter defined for this proper part and the complement of this minimal set to the
collection consisting of the entities under consideration.

The problem arises how to evaluate the aggregate reciprocal similarity between
sets of entities when the elementary similarities (i.e. those between pairs of entities)
are known. Evidently, it depends upon the very nature of the real (source) problem
under consideration. In the previous papers (see, e.g., [2, 5, 6,9]) the aggregate
reciprocal similarity f(4, B) between disjoint and nonempty sets 4 and B was
simply defined as the sum of w(x, y)’s (i.e. the elementary similarities between
the xth and yth entities) taken over xe 4 and y € B, i.e.

FA4,B=3" 3 w(x) Q)
xEA yEB
Throughout the paper minimal sets determined for the aggregate reciprocal simila-
rity given by (1) are called classic minimal sets.

Several papers (see, e.g. [2, 5, 6,9, 14]) were devoted to the theory of classic
minimal sets and to the algorithms for finding them. The technique of classic minimal
sets proves to be a convenient tool for solving a variety of networking-type pro-
blems as, e.g., structuring of a telephone interexchange network [7], partitioning
a computer and/or teleprocessing network [3, 4, 11], designing a printed board in
electrical networks [8], etc. Moreover, it can be applied to solve other problems
arising in practice as, e.g., structuring of a group of enterprises [1] and structuring
of a data base [10]. In the recent paper [14] the polynomial-type algorithm for
finding the classic minimal sets is proposed.

To show the very nature of the aggregate similarity defined by (1), and thus
of the classic minimal sets, we consider here three nonempty and pairwise disjoint
sets, say 4, B, and C. For the sake of simplicity, we assume w=w (x, y)=w (x, t)=
=const., w>0 for any xe€ 4, y € B and ¢ € C. Therefore, by using (1), we obtain
max {f(4, B), f (4, C)}=|4| max {|B|, |C|} w<|A4| (IB|+|C|) w=f(4, BUC), ie.
that BU C is “more similar” to 4 than B (or C). It shows that in the case of (1) the
value of aggregate similarity depends not only on elementary similarities but also
upon the number of entities composing the sets under consideration. Hence, if
w(.,.)s are expressed in terms of cooperation intensity, commodity of interest
and/or information flow between, e.g., enterprises, then the aggregate similarity
given by fis meant as the strength of reciprocal connections. Therefore, f has here
a reasonable interpretation, and the classic minimal sets technique can be applied
to extract some groups of enterprises which cooperate more intensively. It was
confirmed by the above mentioned practical usefulness of the classic minimal sets
technique, particularly to the problems of structuring a network [3, 4, 7, 8, 11].
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A different situation occurs when we need to perform a data analysis or to
classify a set of entities due to given similarities between them. In other words,
when w (., .)’s have the sense of, e.g., resemblance or likeness between two objects.
In this case the aggregate reciprocal similarity should not depend on the number of
entities composing appropriate sets. According to the previous remarks / does not
satisfy this condition. Continuing the example given above, this case occurs when
w(.,.)’s are expressed in terms of, e.g., assortment similarity, branch similarity
and/or production and technological similarity between enterprises. Therefore,
another definition of aggregate reciprocal similarity between two sets is required.
Some convenient form of this parameter is introduced below.

[t is convenient to begin with some remarks about similarity and dissimilarity.
The concept of them has very intuitive roots. In fact, we often use the terms similarity
and/or dissimilarity basing on our experience or even feelings but without taking
into account any rational and systematic inspection of characteristics concerning
entities under comparison. It can be also said that in common sense the statement
“more similar” is equivalent to “less dissimilar” and, furthermore, that each entity
cannot be more similar (or less dissimilar) to another one than to itself. But this
intuitive understanding is insufficient for working out clustering problems met
in data analysis, taxonomy, classification, pattern recognition, etc., because there
appears the question about ranking similarities and/or dissimilarities. Therefore,
the concept is formalized, e.g., by taking a mapping v: D— U, where D is a nonempty
set consisting of ordered pairs of entities, and U indicates a nonempty set (usually
ordered by some relation useful for ranking) of values. If there exists no necessity
to compare entities with themselves (this case occurs in the theory discussed
in the paper), then D=D,=Xx X—{{x, {x, x}}: x € X}, where X is the set of en-
tities under consideration, and {x, {x, y}} is the well-known notation for an or-
dered pair; otherwise D=D,=Xx X. U is usually a set of inexact, fuzzy or ordinary
real (sharp) numbers. Moreover, beyond some specific purposes, the condition of
symmetry for v is adopted, i.e. v (x, ¥)=v (¥, x) is assumed for any pair of entities
taken from X (see, e.g., the definition of w in Section 2).

For brevity, let us now restrict our considerations to a symmetric mapping
v: A- U, with the image being some subset of real rumbers. It is obvious that »
can represent silmilarity (v=sim) as well as dissimilarity (v=dis), because it does
not violate any assumption verbally introduced above. The distinction between
similarity and dissimilarity lies in interpretation of # only, which immediately implies
the way of ranking. Namely, x and y are more close to cach other than to z if and
only if sim (x, y)>sup {sim (x,z), sim (y, z)} and/or dis (x, y)<inf {dis (x, z),
dis (v, 2)} (see, e.g., [12]).

The above discussion gives us a simple and intuitively obvious way for such
evaluation of aggregate reciprocal similarity that this parameter does not depend
on the cardinalities of sets under consideration. Namely, the distance (distance is
some specific form of dissimilarity, see, e.g., [13], Ch. 2) between the sets A4 and B
is usually defined as inf {dis(x, y): x€ 4, y € B}. Analogously, we can take
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sup {w (x, y): x € A, y € B} as the aggregate reciprocal similarity between nonempty
and disjoint sets 4 and B, for w=sim, or

m (A4, B)=max {w (x, y): x€ 4, y € B}, @)

if we consider a finite set of entities, because than 4 and B are also finite. Returning
to the example used before to show the inadequacy of f for classification, we easily
obtain m (4, B)=m (4, C)=m (4, BU C)=w, i.e. m does not depend on the cardi-
nalities, indeed.

2. Preliminaries

We consider a finite and nonempty set X, |X|>1, and a function
w:{{x,y}:x,y€ X, x#y}>R* U {0},

where R* is the set of positive real numbers, and {x;, x,, ..., X,}, as usually, denotes
an unordered n-tuple, i.e. a set consisting of n elements. In other words, w is a non-
-negative valued function defined on unordered pairs of distinct elements from X.
The latter implies symmetry of w with respect to its arguments. Furthermore, we
define

m: {{A, B}: 0#£A, B X, AﬂB:(b}—)R+ v {0} 5

evaluated due to (2). The definitions of w and m yield symmetry of m with respect
to its arguments.

It can be easily verified that the condition §#J<TI implies
max {y;:ieJ}<max {y;:iel}, €))
min {y;:ieJ}>min {y;:iel}, @

for a finite set /. In particular, the definition of m and (3) yield that the inclusions
A<Bc X and CcDcX lead to

m (4, C)<m (B, D), ®)
for any nonempty sets 4, C and disjoint B and D. Moreover, obviously,
max {m (4, B), m (4, C)}=m (4, BU C), ©)

for any nonempty sets 4, B and C such that 4 N(BU C)={. The last two formulae
are frequently applied in proofs throughout the paper.

In the subsequent sections we investigate the most important properties of
Max-minimal set defined as follows.

DerintTION 1. If the following inequality

m(R,S—R)y>m (R, X—S) ©)
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holds for a nonempty set ScX, S#X, and for each its nonempty subset R#S,
then § is called the Max-minimal set.

For instance, each set of points (vertices) of a graph encircled in dashed lines
in Fig. 1 constitutes a Max-minimal set.

Fig. 1. Vertices of the graph represent entities, and edges correspond to the non-zero similarities
(their values are attached as the weights to edges). Max-minimal sets are encircled in dashed lines.

3. Basic properties of Max-minimal sets
Applying de Morgan s rules to Definition 1 we easily obtain

COROLLARY 1. Any {x}, x€ X, is a Max-minimal set.
Moreover, if R(R< X) and X — S are nonempty and disjoint, then m (R, X —8)=0,
due to the definition of m. Thus, (7) implies

CoOROLLARY 2. If S is a Max-minimal set, then m (R, S— R)> 0 for each its nonempty
subset R#S.

Let S be a Max-minimal set, and R its nonempty subset, R#S. From Definition 1
it follows that m (R, S—R)>m (S—R, X—S5), because §)#S—R<S and S—R#S.
Since X—R>S8—R, then, by (5), we obtain m (R, X—R)=m (R, S— R). Combining
it with (7) and using (6), we attain m (R, X—R)>max {m (S—R, X—S), m (R, X+
—8)}=m(S, X-15), ie.

m (R, X—R)>m (S, X—5) (8)
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On the other hand, let us only assume that (8) holds. Using (5) and (6), we easily
get m (R, X—R)=max {m (R, X—S), m (R, S—R)}>m (S, X—S)=max {m (R, X+
—8),m(R—S,X—S)}>m (R, X—S). Supposing m(R, X—S)=>m (R, S—R) we
obtain, therefore, m (R, X—S)>m (R, X—S), i.e. a contradiction. In other words,
we proved

LemMA 1. S is Max-minimal if and only if (8) holds for any nonempty R<S, R#S.
For instance, in Fig. 1 S;={5, 8} is Max-minimal. Moreover, we have m ({5},
X—{5)=m ({8}, X— {8)=9>m (S, X—5,)=8.
Thus, Lemma 1 gives another but equivalent definition of Max-minimal sets.
Moreover, using the law of contraposition to Lemma 1, we get

COROLLARY 3. If m (S, X—S)=m (R, X —R) for some nonempty subset R of S, R#S,
then S is not Max-minimal.

Let S and Q be two distinct Max-minimal sets such that SNQ=T#0, S+Q
and Q4 S. We denote R=S—T, P=0—T and H=X—(SU Q). Evidently, S#R<S
and Q# RcQ. Using Definition 1, we obtain m (R, T)>m (T, X—S)=m (T, HUP).
From (5) it follows that m (7, HUP)=zm(P, T), i.e. m(R, T)>m(P, T). The ana-
logous way leads to m (P, T)>m (R, T), which contradicts the previous inequality.
In other words, we proved the main result of this section, i.e.

LemMA 2. Two Max-minimal sets are either disjoint or one of them is included in
the other.

Returning to the situation depicted in Fig. 1, Sy, S,, S5, S, and 5'5 are Max-
minima’, and we have S;<S,<=S;. Moreover, S;3,S, and S5 are pairwise disjoint.

4, Unions of Max-minimal sets and their proper parts

First, we introduce some convenient notation. Let 7' be a nonempty set of indices,
and {H,: t € T} — a collection of subsets taken from X. Hereinafter |_J H, is abbre-

teT
viated by Hy. Moreover, Sy={S,: € T} denotes a collection of pairwise disjoint

Max-minimal sets, and Ry={R,:t€T}—a collection of sets such that R,=S,,
R,#S,;, for each teT. K(R;) is here a set of indices assigned to nonempty R,’s,
ie. K(R)={j:jeT, R+0}.

Now, we are in a position to formulate and prove some features concerning
unions of Max-minimal sets and their proper parts. In fact, the most significant
result is stated in Theorem 1. Propositions 1, 2 and 3, although interesting, seem to
be of less practical importance and play here rather an auxiliary role. They con-
stitute an intermediate step in proving Theorem 1, whose introduction makes pos-
sible to construct the proof of Theorem 1 in a short and clear form without con-
sidering a large number of specific subcases. Finally, Theorem 2 concerns the appli-
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cation of the Max-minimal sets technique to solving real-life problems and the
proper interpretation of results given by this technique,

ProPOSITION 1. Let J be a nonempty and finite set of indices, Sy, R;, K=K (R;) be
defined as above, and Q@ = X be an arbitrary set such that S;NQ=0 and S;UQ#X.
If at least one of the inequalities |Q| |[K|>0 and |K|>2 holds, then P=QUR, is
not Max-minimal. Moreover, the condition Q5§ implies the inequality m (P, X —P)>
>2m (0, X-0).
Proof. We choose any increasing sequence (K (i):ie K) of subsets taken from K
defined by K(i)={u:ue K, u<i}. The proof proceeds by induction over |K (i) |.

For convenience we write here Pk, and Sk instead of QU Rg(;, and Sk,
respectively. Moreover, we denote Ry=P|xq); —Pikay -1 and Sy =S|k =S|k -1
for i€ K, where Py=0 and S,=0.

Let Q be nonempty.

1. |K (i) |=1. According to (6), we have m (P;, X—P))—m(Q, X—Q)=a—b,
where a=max {m (R, X —Py), m(Q, X — P,)} and b=max {m(Q, X — P,),
m(Q, R(l ))}

Case 1. a=m (R;y, X—P;) and b=m(Q, X—P,). Therefore, m (R, X—P,)>
=2m(Q, X—P,)=m (Q, R,). Hence, a—b is non-negative.

CasE 2. a=m (Ryy, X—P;) and b=m(Q, R)#m(Q, X—P,). Since X—P;>
581)— Ry, then, by (5), we get
m (Ryy, X—=P)=m (Ruy, Suy— Ry 9)
Using (5) again, we have
m (R, X—S8))2m (Q, Ryy), (10)

because S;NQ=0. Therefore, a—b>m (R, Sy—Ry)—m Ry X—Sy) ie.
a—b is positive, since S, is a Max-minimal set.

CASE 3 a=b=|’" (Q, X_P1)$é m (R{l}, X"_P_L). HCI‘I.CC, a_b=0.

Cast 4. a=m (Q, X—P,)#m (R, X—P;) and b=m (Q, R1,))#m (Q, X=P,).
That means

m(Ryy, X—Py)<m (Q, X—P)<m (Q, Ry)) (11)
Combining (11) with (9) and (10), we get
. m (R, S(!)"‘Ru))“:m (Re1y, X—S8uy) (12)

Thus, by applying (7) to the right-hand side of (12), we obtain m (R(y, S(1,—R1)) <
<m (R, Si1y—R1y), i.e. a contradiction, which proves that Case 4 does not occur.
That completes the first part of the proof, i.c. we obtain that m (Py, X—P,)=>
m (Q, X—Q), and, by Corollary 3, that P, is not Max-minimal,
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2. Let us now assume that the inequality
m (P, X—P)=zm (Q, X—-0) (13)

is fulfilled for each 7, 1<i<|K|. Similarly as in the first part of the proof (here P;
plays the role of Q) we obtain m (P, X—Pip)=m R4y UP, X—P, )=
=m (P;, X—P;), which, combined with (13), gives us m (P, 1, X—P, . )=m (Q, X+
—Q). The last inequality implies, due to Corollary 3, that P,,, is also not Max-mi-
nimal, which finishes the second step of induction.

Therefore, we have m(Q, X—Q) < m(Q U Ry, X—(Q U Ry))=m (P, X—P),
since Rx=Ry, i.e. the proof is accomplished for the case |0} |K|>0.

If 0=9, then, by assumptions, we have |K|>2. From Lemma 2 it follows that
P, is not Max-minimal. Furthermore, we can take Q’'=P; and K’'=K—K,, where
K; denotes a set K (¢) chosen so thath j=|K (¢)| (construction of K (¢)’s yields the
uniqueness of K;). Hence, |Q'| |[K'|>0, and thus the result obtained for the case
0#0 remains in force, i.e. P=P,U Py.=Rg=R; is not Max-minimal, which com- -
pletes the whole proof. =

For example, in Fig. 1 we have m ({2,4, 5}, X—{2,4, 5h=11=>m ({2}, X—
—{2)=11, and m({2,4,5, 10}, X—{2,4, 5, 10)=9=m ({2, 10}, X—{2, 10})=6,
where R;={4, 5} S,. First, we take Q0={2}, and second — Q=S§;.

ProposiTioN 2. let I, S;, Ry and K have the same meaning as in Proposition 1.
If K is nonempty, then
m (Ry, X—R)>max {m (S;, X—8)):ie K} (14
Proof. The proof proceeds by induction. If |K|=1, then (14) directly follows
from Lemma 1. Now, we assume that
m (Rg iy, X — Ry 1y) >max {m (S;, X—S)):je K (i)} (15

holds for each i such that |K (i)] <|K|, where K (i) (as well as R;), S¢;, and K; below)
is defined as in the proof of Proposition 1. By Proposition 1, we get

mR, X—R)zm (RK(i)7 X_RK(i)) (16)
and
m (R, X—R)=Zm (R 41y, X_R(i+1)) s amn

for R=Rg;V Ri+1y. Applying Lemma 1 to R 41y and Si.qy and using (17),
we obtain
mR, X—=R)>m (Si+1y X—Su+1) (18)

Thus, by (16), (15), (18) and the definition of S 1, (see the proof of Proposition 1),
we reach m (R, X—R)>max {m (S;, X—S,):j€ K;+}, which accomplishes th
second step of induction, and thus the whole proof.

Returning to the example shown in Fig. 1, we, e.g., have m ({l, 2, 6},
X-{1,2,6)=11>max {m (S;, X—S,):i=3, 4, 5}=7, where R;={1}, R,={6} and
Ry=4{2}.
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Propositions 1 and 2 are useful for proving Proposition 3 below, and, further,
Proposition 2 is directly applied in the proofl of Theorem 1.

ProrosiTioN 3. Let [ and S; be as in Proposition 1, S;#X. If S, is not Max-minimal
for any J<I such that |J|>1, then

m (S, X—Sp)=>min {m (S, X=5,):ie} (19)

Pcoof. Since S, |J|>1, is not Max-minimal, then from Lemma 1 it follows that
there exists a nonempty set H (J)=S,, S, H (J), which satisfies

m (Sy, X—=S;)zm(H (), X—H (J)) (20)

We can write H(J)=Ry U S, where 0#T(J)UL<J, L#J, T(J)NL=0 and,
additionally, R,#0, for any te T (J).

First, we consider the case T'(J)#0 and L=0. Hence, denoting T=T(J), we
obtain

due to Proposition 2. Since H (J)=Ry ), then
m(S;, X—S,)=>min {m (§;,, X—S,):iel}, (22)

according to (20), (21) and the obvious inequality max {g;: i€ T}=>min {a,: i e T},
and, finally, by (4).

Now, we assume that L and T (J) are nonempty. Thus, denoting Hy=H (J)
and L,=L, we get

m(H., X—H)=m (5,

P4 1? X—SLH' 1) (23)
for r=0, by Proposition 1.

If |L|=1, then (22) is implied by (20), (23) and (4). Otherwise, i.e. for |L|>1,
St is not Max-minimal, due to the assumptions, and we can consider it in the same
way as §;.

In general, for any L,< I, |[L,|>1, r>1, there exists a nonempty set H, =R,V
U S, ,, satisfying the inequality

m(Sy,, X—8,)2m(H,, X—H,), (24)
by the assumptions and Lemma 1. Moreover, we have 0#T(L)VL,, <L,

T(L?)nLr-l-l:Qs .
[Lpsq| <|Lyl 25)

and R,#0, for each 1€ T(L,). Now, there are possible five subcases.

Suncase 1. I,,;=0. Therefore, T=T(L,) is nonempty, and we can proceed as
for the case T (J)#0 and L=0. Thus, using the same arguments as mentioned above,
we obtain

m(S; , X—8; )zmin {m (S;, X—5):ie[} (26)
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SUBCASE 2. |L,,.|=1 and T(L,)#0. Hence, we reach the analogous situation as
for T(J) and L being nonempty, i.e. we get (26) again.

SUBCASE 3. |L,,,|>1 and T(L,)#0. Now, we define g=r+1 and repeat the con-
struction described for L,, (and H,), replacing r by ¢. Since g=r+1, then

m(Sy,, X—S,)zm (S, . X—S., ), 27
due to (22) and (23).

SUBCASE 4. |L,.,|=1 and T (L,)=0. Hence, H,=S  , ie. (27) holds, by (24).
Thus, using (4), we easily get (26).
SUBCASE 5. |L.,{|>1 and T (L,)=0. Similarly, as in Subcase 4 we obtain (27).

It is evident that the described above construction for H, can be applied succes-
sively until we arrive at Subcase either 1 or 2 or 4. In other words, the construction
defines a sequence L=(L,:r=0,1,2,...)), where Ly=J. If Subcase 1 occurs for
some r=¢q, then we interrupt the construction for L,. Otherwise, the cardinality
of successive L,’s decreases (according to (25)) and, finally we reach Subcase either
2 or 4. Therefore, L is finite. Moreover, by (27) and (26), we get (22) again.

In the case T (J)=0 and L#( we proceed as in Subcases 2 and 4. It leads to
(22) again. Substituting J=1 in (22), we obtain (19), which completes the whole proof.

For example, it can be easily verified that in Fig. 1 S3={1,4, 5,8} and Ss=
={2, 10} are Max-minimal, but S;3 5,=S5U S5 is not Max-minimal. For this case
we have m (S 3,55, X —S(s,5y)=7=min {m (Ss, X—S3), m(Ss, X—Ss)}=min {6, 7}=6.

The last proposition plays a crucial role in the proof of

THEOREM 1. Let I, J and Sy be as in Proposition 3, and let S; be not Max-minimal
for each J such that 1<|J|<|I|. Then Sy is Max-minimal if and only if the following
condition
m(S;, X—Sp)<min {m (S;, X—S,):iel} (28)
is satisfied. i
Proof. We begin with the following inequality

max {a;: i € I} <min {max {a;, b;}: i1}, (29)
where a;, b; are real numbers, i € I. From (29) follows existence of r eI such that
a,<b,, because otherwise max {g;:iel}<min {q;:iel}, ie. a contradiction.
By the same reason, we get min {max {a;, b;}: i€ I}=Db, for some k eI. Further-
more, let an index je I exist such that a;>b;. Therefore, evidently, a;<max {g;:
riel}<b,<a; ie. again a contradiction. Hence, (29) is equivalent to a;<b; for
each iel.

The above argumentation yields the equivalence of (28) and the condition

m(S;, X—=S)<m(S;, S;—S;), for each i€l, (30)
since m (S;, X—S;)=max {m (S;, X—Sp), m (S, S;—S))}, due to (6).
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The necessity of (30) and thus (28)) immediately results from Definition 1.

Sufficiency. Let us now assume that (28) is satisfied. We consider H=H (I),
T=T(I) and L defined as below (20). If T is nonempty and L=0, then (21) holds,
due to Proposition 2. Therefore, by (4), we obtain

m (H, X—H)>min {m (S;, X—S)):iel}, (31)

since here H=Ry. If T=0 and L is nonempty, then we have H=S,, and thus (31)
again, by Proposition 3. If both 7" and L are nonempty, then we get m (H, X—H)=
=m (S, X—S.). The last result gives us (31) again, with the aid of Proposition 3.
Combining (31) and (28), we obtain m (H, X— H)>m (S}, X—S;) for any nonempty
H such that H#S,, A< S,. The application of Lemma 1 completes the second
part, and thus, the whole proof. B

Returning to the situation depicted in Fig. 1, we have that (28) does not hold
for I={3, 5} (see the example below Proposition 3), and S,s s, is not Max-minimal.
On the other hand S;={5, 8} as well as {4} are Max-minimal (the latter due to
Corollary 1), m(S; U {4}, X—(S, U {4})) =T <min {m (S;, X—S,), m ({4}, X+
—{4})}=8 and S§,=S5, U {4} is also Max-minimal.

Theorem 1 is the main result of this section and the whole paper. It gives a cri-
terion which makes possible to construct Max-minimal sets on a basis of those
determined previously. Therefore, its application substantially reduces the com-
putational effort required for determining Max-minimal sets when we do it by using
Definition 1 only. Namely, in the latter case, i.e. by definition, we need to examine
exactly 2 151—2 inequalities for making sure that S is Max-minimal while in the
former, i.e. by using Theorem 1, it is sufficient to check at most |S| inequ-
alities only.

Sometimes, the statement of a real-life (source) problem implies some addi-
tional constraints which should be fulfilled by the partition of a given set X. For
instance, it can be required that the cardinality of any class is lower bounded. Mo-
reover, it may happen that no Max-minimal set satisfies this constraint. To over-
come this we can apply

TrEOREM 2. Let I, S;, R; and K be as in Proposition 1, S;#X. If K50, then the
relation

m (Sy—Ry, X—(Si—Rp)=m (S, X—Sy) (32)

holds. Moreover, if K=I, then the weak inequality in (32) can be replaced by the
strong one.

Proof. Since X—(S;—R)=(X—5)VU Rg, then
m (Sy—Ry, X—(S;—Ry))=max {m (S;— Ry, X—Sy), m (S;—Ry, Rx)}, 33)
due to (6). Using (6) again, we get
m (S;, X—S;)=max {m (S;— Ry, X—S1), m (Rg, X—S))} (34)
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According to Definition 1 and (5), we have m(S;—R;, R)>m (R;,, X—S)=>
=m (R;, X—S;) since X—S,2X—S, for any ie K. Analogously, we get m (S;+
—R;, R)>m (S;—R;, X—S)), i€ K. That yields

m (Sg— Rk, Rg)>max {m (Sx— Ry, X—S;), m (Rg, X— S0} (35

Therefore, by (35), (33) and (34), we obtain that the assertion holds for K=I.
Let us now assume that K#I. Applying (5), we reach

max {m (SI _RI) -RK), m (SI ""‘R[, X— SI)}>572 (SI _Rb RK)>7n (SK =g RK, RK)’ (36)
which, combined with (35) and (33), gives us
m (S;—Rp, X—(S;—Rp)=m (Rg, X—S)) (37

Thus, by (33), (34) and (36), we easily obtain (32), which completes the proof.

Theorem 2 says, roughly speaking, that S;—R;=S;— Ry, i.e. the union of
S;’s (pairwise disjoint Max-minimal sets) and their proper parts is more similar
to the environment than S;. Therefore, it seems to be better to divide X into S;
and X'—S,, rather than into S;—Rg and X—(S;—Rg), which is the answer to the
question stated above Theorem 2. For instance, in Fig. 1 S;={1,4,5,8} and
S5={2, 10} are Max-minimal. By taking, e.g., R;={1,4} and R,={2}, we get
m (Sg3,5y, X— S{3,5})=7$m (S{3,5} —R3,5 X—(S3,5 ““R{s,S}).)=11-

5. Max-minimal sets and a hierarchical
clustering technigue

In Introductory Notes an interpretation of Max-minimal sets is given, and
in Section 2 their definition is formulated. Sections 3 and 4 are devoted to stating
and proving some important mathematical properties of Max-minimal sets. The
results derived in the preceding sections make it possible to consider Max-minimal
sets from another, pure mathematical point of view, without taking into account
their interpretation. By Corollary 1 and Theorem 1, we immediately obtain

COROLLARY 4. S in a Max-minimal set if and only if one of the following conditions
holds

1. S={x}, xe X,

2. S=S8,, where S; is as defined in Section 4, S, is not Max-minimal for any
Jali, 1<\|J|<|I|, and the inequality (28) is satisfied.

Let a set X and a function w be given, as described in Section 2. By S (X, w)
we denote the family consisting of all Max-minimal sets for fixed X and w. Hence,
Corollary 4 and Lemma 2 imply

COROLLARY 5. S (X, w) is partially ordered with respect to the relation of inclusion.
Therefore, a technique for constructing Max-minimal sets can be considered
as a hierarchical clustering techrique. In other words, a computational procedure
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for seeking Max-minimal sets can be constructed, e.g., as follows. Namely, we
begin with the set Up={{x}, x X}, which consists of Max-minimal sets, due to
Corollary 1. Then, we take U« U,. Now, we successively examine whether any
pair, triple, quadruple, etc., of elements from U constitutes a Max-minimal set
(by using Corollary 4). If so, we delete those elements from U and continue for
the remaining part of U, etc., until either it becomes empty or it does not contain
any Max-minimal set. In general, we take U+« U,, where U, consists of Max-minimal
sets found for U;_, and of the elements from U,_, which did not belong to any
Max-minimal set, i=1, 2, ..., etc. The procedure finishes when either |U|=2 (see
the definition of m) or there is no Max-minimal set in U.

Fig. 2. Consecutive steps in searching Max-minimal sets for the case of X and W (.,.)’s shown
in Fig. 1
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As an example, let us consider the situation depicted in Fig. 1 (see also Fig. 2).
We have Uy={{k}: k=1, 2, ..., 10}. Then, for U=U,, we find, e.g., S{"={2, 10},
update U« U—{{2}, {10}, find S"={5, 8}, update U U—{{5}, {8}}, find S{"=
={6,7,9}, update U<« U—{{6}, {7}, {9}} and note that no union of subsets be-
longing to the current U={{1}, {3}, {4}} is Max-minimal. Hence, we obtain U;=
={8M:i=1,2,3}U{{1}, {3}, {4}}, initialize U U,, find SP=S"u {4}, update
U~U—{S", {4}}, and no more Max-minimal sets are found in this step, i.e.
U,={s{, SO, SO, {1}, {3}}. We take U«U,, find SP=5PU {1}, and obtain
U,={SP, sV, 8§V, {3}}. For U=U, we find no Max-minimal set, and thus the
searching terminates.

Although the procedure outlined above seems to be easy for programming
on a computer and is based on a simple idea, we should, however, consider its
efficiency. To do it we notice that if, e.g., no Max-minimal set of cardinality great-
er than one occurs for a given pair X and w, then we examine exactly

21X | x| -2 37)

subsets of X for their Max-minimality. Hence, the numerical complexity of the
procedure is not of polynomial-type. On the other hand, the number of subsets
for a given nonempty, finite set X, |X|>1, being either disjoint or such that one
of them is included in another,’ does not exceed

1X| [y+In (X1 -1)+1], (38)

where y=0.577... is the Euler constant (sece the final part of Section 2 in [14]).
Therefore, due to Lemma 2, (38) gives also an upper bound for |S (X, w)|. The
comparison of (37) and (38) proves that the procedure is inefficient, indeed.

To increase the efficiency of the procedure we can proceed as for the classic
minimal sets [14]. Namely, instead of taking into account each union of elements
from the current U, we can restrict our examination to some specific, previously
well-defined cases. This fruitful idea gave remarkable results in the case of the
classic minimal sets. Namely, it led to an 0 (| X|°) algorithm for the classic minimal
sets [14] while the previous algorithms [2, 5] were not of polynomial-type. Now,
a new algorithm for Max-minimal sets based on this idea is in preparation and
will be a subject of the next, forthcoming paper.

6. Concluding remarks

The idea of a minimal set lies in that some subset of a greater set is internally
stronger connected with, or more similar than, its environment. This concept,
introduced by Luccio and Sami [8], then first developed by Kacprzyk and Stanczak
[2, 5, 6], and further — by Nieminen [9] and Stanczak [14], was described in In-
troductory Notes in more detail. Previous papers (see, e.g., [2, 5, 6, 9, 14]) were
devoted to considering the strength of connections rather than “pure” similarity
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or likeness. It was historically biased by some specific interpretation of a minimal
set, in fact originated by Luccio and Sami [8]. Namely, a (classic) minimal set was
understood as some part of a network (see, e.g., [3,4,7, 8, 11]) or a group of en-
terprises [1] which cooperated more intensively with each other than with the rest
of a system or an environment. Such interpretations lead to the definition analogous
to our Definition 1, with finstead of m (see, e.g., Definition 1 and Lemma 1 in [3]).

Although the classic minimal sets technique is a useful tool for solving many
practical problems [1, 3,4, 7, 8, 10, 11], it gives sometimes, however, an inadequate
description of reality, as outlined in Section 1. It is implied by taking f as the pa-
rameter of aggregate reciprocal similarity. Thus, the question arises whether f can
be replaced by another index of aggregate reciprocal similarity. More precisely,
whether there exists a function mapping {{A, B}: ANB=0, 4, Bc X} into R* w {0}
such that, first, its value for 4={x} and B={y} equals to w (x, ), where x, y € X,
and, second, it has an appropriate interpretation for a great number of cases in
which f is inadequate and, third, it produces such a mathematical structure with
respect to the idea of minimal sets (outlined above) that it is interesting from an
algorithmic point of view. These questions are, evidentily, the classic problems
which should be solved when we constiuct any reasonable partitioning method.

The answer to the first two questions are easy and they are contained in taking
into account m given by (2) instead f'and in Definition 1. The third problem is more
complex, and the paper is devoted to solve it.

It seems that the answer to the third question posed above is positive. Moreover,
it is interesting that Max-minimal sets have, in fact, almost identical properties
as the classic minimal sets (compare, e.g., Definition |, Lemma 1, Corollaries 1
and 2, Lemma 2, Propositions 1,2 and 3, Theorem 1, Corollaries 4 and 5 and
Theorem 2 with Lemma 1 in [5], Definition 1 in [5], Corollaries 4.1 [11] and 2 [6],
Lemma 2 in [2], Theorem 4.1 in [11], Proposition 1 in [2], Theorem [ in [2], Pro-
position 3 in [5], Theorem 4.4 in [11], Corollary 6.1 in [11] and Proposition 2 in [2],
respectively). That permits to conjecture that there exist more expressions for the
aggregate reciprocal similarity which produces a similar mathematic system with
respect to the definition like Definition 1.

Finally, the directions of future researches in the minimal sets theory can be
outlined. From the above remarks it follows that an efficient procedure for seeking
Max-minimal sets should be constructed (it is now in preparation). Moreover,
it is interesting whether it is true that there exist more functions than fand m which,
together with the general definition of a minimal set, produce an analogous mathe-
matical system as the mentioned operations f and m. That is important not only
from the theoretical, but also from the practical point of view. Furthermore, it
should be pointed out that in applications w’s, i.e. elementary similarities, are
taken from either measurements or approximate formulae. Therefore, in fact,
a more adequate practical approach to the minimal sets should be based on inexact
and/or fuzzy numbers rather than on ordinary (sharp) real numbers. That implies
the next direction of research in the field of the minimal sets theory.

7
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Whprowadzenie do zespoléw Max-minimalnych

Zesp6t minimalny jest takim podzbiorem mnogosci obiektdéw, ktory jest zwigzany silniej we-
wnetrznie niz z otoczeniem. W poprzednich pracach (patrz np. [1,2,3,4,5,6,7,8,9, 10, 11, 14])
sile powigzan miedzy dwoma niepustymi i wzajemnie rozlacznymi podzbiorami okre$lano jako:
sume wartosci powiazan elementarnych, tzn. powiazan wystepujacych migdzy parami obiektow.
Definicja ta, jakkolwiek uzasadniona w przypadku licznych probleméw powstajacych przy poszu-
kiwaniu prawidtowego podziatu sieci (patrz np. [3, 4, 7, 8]) moze by¢ nieadekwatna w zagadnieniach
innej natury. W artykule rozpatruje sie analogiczna strukture matematyczna. Jedyna roznica polega
na przyjeciu odmiennego okreslenia ‘“‘podobienstwa’” dwoch niepustych i rozitacznych zbioréw
obiektow. Okazuje sie, ze nowa struktura i (klasyczne) zespoly minimalne posiadaja podobne
wlasciwosci.
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Baenemne B Makc-MHHEEMAILHO CBR3aHHLIE MHOKECTBA

MuUHHMATBEHO CBA3AHHOE MHOKECTEO ITO MHOKECTEO O0BEKTOB, KOTOPOE BHYTPEHHO CBAIAHO
CHITbHEEe weM ¢ ee cpenoit. B mpeasiaymmx cratesx [1,2,3,4,5,6,7,8,9,10,11, 14] cana ces-
JAHHOCTH ABYX HEMYCThIX M HEMEepeceKarolIUXCs MOAMHOKECTS Oblia CyMMOI CHJI CYLUECTBYOMMX
ANs dIEMEHTAPHLIX CBA3BAHHOCTEH, T.e. 118 map oOLeXTOB. DTO ONpeeneHue, XOTs HMEeT NpH-
MCHCHHE BO MHOTHX Mpo0JeMax KacaloIMMXCA PALUMOHANLHOIN Jiekommosuunmn cern [3,4, 7, 8],
MOXeT ObITh HECAJEKBATHO Ul APYrHX Lejel. AHaNOrHYHAA MaTeMaTHYeCKkas CTPYKTYpa paccMo-
TPeHa B ITOH CTATLH 34 MCKIIIOYEHHEM, YTO CXOACTBA J/IA HEIYCTHIX H HENEepPEeCeKaiOMIMXCA MHO-
XKecTB OOBEKTOB ONPENENSIOTCA MO APYroMy. DTa HOBAN MATEMATHYCCKAs CTPYKTYpa HM.eT
CBOHCTRA IMOXOAMNE HA CBONHCTRA KIACCHYECKHX MHHMMA/ILHO CHAAHHLIX MHONKECTB.










