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A minimal set is a subcollection of entities such tbat it is internally connected stronger than 
with ·its environment. In the preceding papers (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14]) the 
strength of connection between two nonempty and disjoint subsets was assumed to be the sum of 
strengths for elementary connections, i.e. those between pairs of entities. This definition, although 
reasonable for a great number of problems appearing when we seek a rational partition of a net­
work (ref., e.g., [3, 4, 7, BD, may be inadequate for another purposes. An analogous mathematical 
structure is considered in this paper. The only distinction lies in a different definition of "similarity" 
l:ietween two nonempty and disjoint sets of entities. It occurs that this new mathematical structure 
has similar properties as those for the (classic) minimal sets. 

1. Introductory notes 

Many theoretical and practical problems in science and technology may be 
formulated as to obtain a reasonable partition of some nonempty and .finite set 
of entities. To each pair of distinct elements taken from the set some weight (being 
a non-negative real number) is assigned. The weight represents a similarity between 
a pair of entities. In another words the value of this weight is greater when these 
entities are more similar in some sense and/or more close to each other. The way 
for determining the value of reciprocal similarity between two entities usually de­
pends upon the intrinsic features of the real (source) problem under consideration 
and it is here beyond the scope of interest. The interpretation of weights as simi­
larities implies, however, some general conditions for a "good" decomposition. 
Namely, first, each pair of entities with a relatively large value of reciprocal simila­
rity should belong to the same class. Second, any two entities with a relatively small 
mutual similarity have to be in distinct classes. These conditions are usually fulfilled 
by the application of the minimal sets' techniques for real-life problems. 

The very nature of the so-called minimally interconnected subnetworks, or, 
shortly, minimal sets, can be briefly described as follows. They are, roughly speaking, 
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some collections of entities such that they are internally connected stronger than 
with their environment. In other words, the aggregate similarity between any 
proper part of minimal set and its remainder should be greater than the analogous 
parameter defined for this proper part and the complement of thi~ minimal set to the 
collection consisting of the entities under consideration. 

The problem arises how to evaluate the aggregate reciprocal similarity between 

sets of entities when the elementary similarities (i.e. those between pairs of entities) 

are known. Evidently, it depends upon the very nature of the real (source) problem 

under consideration. In the previous papers (see, e.g., [2, 5, 6, 9]) the aggregate 

reciprocal similarity f(A, B) between disjoint and nonempty sets A and B was 
simply defined as the sum of w (x, y)'s (i .e. the elementary similarities between 
the xth and yth entities) taken over x EA and yE B, i.e. 

f(A, B)=}) }) w (x, y ) (1) 
x EA yEB 

Throughout the paper minimal sets determined for the aggregate reciprocal simila­
rity given by (1) are called classic minimal sets. 

Several papers (see, e.g. [2, 5, 6, 9, 14]) were devoted to the theory of classic 
minimal sets and to the algorithms for finding them. The technique of classic minimal 
sets proves to be a convenient tool for solving a variety of networking-type pro­
blems as, e.g., structuring of a telephone interexchange network [7], partitioning 
a computer and/or teleprocessing network [3, 4, 11], designing a printed board in 
electrical networks [8], etc. Moreover, it can be applied to solve other problems 
arising in practice as, e.g., structuring of a group of enterprises [1] and structuring 
of a data base [10]. In the recent paper [14] the polynomial-type algorithm for 
finding the classic minimal sets is proposed. 

To show the very nature of the aggregate similarity defined by (1), and thus 
of the classic minimal sets, we consider here three nonempty and pairwise disjoint 
sets, say A,~. and C For the sake of simplicity, we assume w= w (x, y)=w (x, t) = 

= const. , w>O for any x EA, y EB and t E C. Therefore, by using (1), we obtain 

max {!(A, B),f(A, C)}=IA I max {[B[, ICI} w<[Al ([B[+[C[) w=f(A, Bu C), i.e. 
that Bu C is "more similar" to A than B (or C). It shows that in the case of (1) the 
value of aggregate similarity depends not only on elementary similarities but also 
upon the number of entities composing the sets under consideration. Hence, if 
w (., .)'s are expressed in terms of cooperation intensity, commodity of interest 
and/or information flow between, e.g., enterprises, then the aggregate similarity 
given by f is meant as the strength of reciprocal connections. Therefore, f has here 
a reasonable interpretation, and the classic minimal sets technique can be applied 
to extract some groups of enterprises which cooperate more intensively. It was 
confirmed by the above mentioned practical usefulness of the classic minimal sets 

technique, particularly to the problems of structuring a network [3, 4, 7, 8, 11]. 
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A different situation occurs when we need to perform a data analysis or to 
classify a set of entities due to given similarities between them. In other words, 

when w (. , .)'s have the sense of, e.g., resemblance or likeness between two objects. 
In this case the aggregate reciprocal similarity should not depend on the number of 
entities composing appropriate sets. According to the previous remarks f does not 

satisfy this condition. Continuing the example given above, this case occurs when 
w (. , .)'s are expressed in terms of, e.g., assortment similarity, branch similarity 
and/or production and technological similarity between enterprises. Therefore, 
another definition of aggregate reciprocal similarity between l\\O sets is required. 
Some convenient form of this parameter is introduced below. 

l t is convenient to begin with some remarks about similarity and dissimilarity. 
The concept of them has very intuitive roots. In fact, we often use the terms similarity 
and/or dissimilarity basing on om experience or even feelings l::ut without taking 
into account any rational and systematic i11Spection of characteristics concerning 
entities under comparison. lt can be also said that in common se nse the statement 
"more similar" is equivalent to "less dissimilar" and, fu rthermore, thal each entity 
ca nnot be more similar (or less dissimilar) to another one than to itself. But this 
intuitive understanding is insufficient for working out clustering prob lem~ met 
in data analysis, taxonomy, classification, pattern recognition, etc., because there 
appears the question about ranking similarities and/or dissimilarities. Therefore, 
the concept is formalized, e.g., by taking a mapping t': D-+ U, where D is a nonempty 
set consisting of ordered pairs of entities, and U indicates a nonempty set (usually 
ordered by some relation useful for ranking) of values. If there exists :10 necessity. 
to compare entities with themselves (this case occurs in the theory discussed 
in the paper), then D=D1 =XX X - {{x, {x, x}}: x eX}, where X is the set of en­
tities under consideration, and {x, {x, y}} is the well-known notation for an or­
dered pair; otherwise D=D2 =XX X. U is usually a set of inexact, f·uzzy or ordinary 
real (sharp) numbers. Moreover, beyond some specific purposes, the condition of 
symmetry for v is adopted, i.e. v (x, y)= v (y, x) is assumed for any pair of entities 
taken from X (see, e.g., the definition of w in Section 2). 

For brevity, let us now restrict our considerations to a symmetric mapping 
v: A-+ U, with the image bei11g some subset of real r.umbers: J t is obvious that v 
can represent silmilarity (v=sim) as well as dissimilarity (t·=dis), because it does 
not violate any assumption verbally introduced above. The distinction between 
s imila rity and dissimilarity lies in interpretation of v only, which inunediately implies 
the way of ranking. Namely, x and y are more close to each other than to z if and 
only if sim(x,y)>sup{sim(x, z), sim(y,z)} and/or dis(x,y)< inf{dis(x,z), 
dis (y, z)} (see, e.g., [12]). 

The above discussion gives us a simple and intuitively obvious way for such 
evaluation of aggregate reciprocal similarity that this parameter does not depend 
on the cardinalities of sets under consideration. Namely, the distance (distance is 
some specific form of dissimilarity, sec, e.g., [13], Ch. 2) between the sets A and B 
is usually defined as inf {dis (x, y): x eA, ye B}. Analogously, we can take 
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sup {w (x, y): x EA, y EB} as the aggregate reciprocal similarity between nonempty 
and disjoint sets A and B, for w=sim, or 

m (A, B)=max {w (x, y): x EA, y EB}, (2) 

if we consider a finite ·set of entities, because than A and Bare also finite. Returning 
to the example used before to show the inadequacy of jfor classification, we easily 
obtajn m (A, B)=m (A, C)=m (A, Bu C)=w, i.e. m does not depend on the cardi­
nalities, indeed. 

2. Preliminaries 

We consider a finite and nonempty set X, lXI >I, and a function 

w: {{x, y}: x, yE X, x#=y}-tR+ U {0}, 

where R+ is the set of positive real numbers, and {x1 , x 2 , ... , xn}, as usually, denotes 
an unordered n-tuple, i.e. a set consisting of n elements. In other words, w is a non­
-negative valued function defined on unordered pairs of distinct elements from X. 
The latter implies symmetry of w with respect to its arguments. Furthermore, we 
define 

m: {{A, B}: f/J#A, Be X, A nB=f/J}-tR+ u {0}, 

evaluated due to (2). The definitions of w and m yield symmetry of m with respect 
to its arguments. 

It can be easily verified that the condition f/Jf=Jcl implies 

max {yi: i EJ}~max {yi: i El}, 

min {yi: iEJ}~min {yi: iE!}, 

(3) 

(4) 

for a finite set I. In particular, the definition of m and (3) yield that the inclusions 
AcBcX and CcDcX lead to 

m(A, C)~m(B,D), (5) 

for any nonempty sets A, C and disjoint Band D. Moreover, obviously, 

max {m (A, B), m (A, C)}=m (A, Bu C), (6) 

for any nonempty sets A, Band C such that An (Bu C)=f/J. The last two formulae 
are frequently applied in proofs throughout the paper. 

In the subsequent sections we investigate the most important properties of 
Max-minimal set defined as follows. 

DEFINITION 1. If the following inequality 

m (R, S-R)>m (R, X-S) (7) 
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holds for a nonempty set SeX, S#X, and for each its nonempty subset R#S, 
then S is called the Max-minimal set. 

For instance, each set of points (vertices) of a graph encircled in dashed lines 
in Fig. 1 constitutes a Max-minimal set. 

Fig. l. Vertices of the graph represent entities, and edges correspond to the non-zero similarities 
(their values are attached as the weights to edges). Max-minimal sets are encircled in dashed lines. 

3. Basic properties of Max-minimal sets 

Applying de Morgan s rules to Definition 1 we easily obtain 

COROLLARY 1. Any {x}, X EX, is a Max-minima/ set. 

Moreover, if R (R c X) and X-S are nonempty and disjoint, then m (R, X- S)~ 0, 
due to the definition of m. Thus, (7) implies 

COROLLARY 2. IfS is a Max-minimal set, then m (R, S-R)>O for each its nonempty 
subset R#S. 

LetS be a Max-minimal set, and R its nonempty subset, R#S. From Definition 1 
it follows that m (R, S - R)>m (S- R, X - S), because f/J#S-RcS and S-R#S. 
Since X-R=>S-R, then, by (5), we obtain m (R, X-R)~m (R, S-R). Combining 
it with (7) and using (6), we attain m (R, X -R)>max {m (S-R, X -S), m (R, X+ 
-S)}=m (S, X -S), i.e. 

m (R, X -R)>m (S, X-S) (8) 
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On the other hand, let us only assume that (8) holds. Using (5) and (6), we easily 
get m (R, X-R) = max {m (R, X-S), m (R, S - R)}>m (S, X-S) = max {m (R, X+ 
-S), m (R - S, X - S)}?::m (R, X - S). Supposing m (R, X - S)?::m (R, S - R) we 
obtain, therefore, m (R, X - S) >m (R, X- S), i.e. a contradiction. In other words, 
we proved 

LEMMA 1. S is Max-minimal if and only if (8) holds for any nonempty R c S, R#S. 

For instance, in Fig. 1 S 1 ={5, 8} is Max-minimal. Moreover, we have m ({5}, 
X -{5})=m ({8}, X - {8}) = 9>m (St. X -S1)=8. 

Thus, Lemma 1 gives another but equivalent definition of Max-minimal sets. 
Moreover, using the law of contraposhion to Lemma 1, we get 

COROLLARY 3. Jfm(S, X - S)?::m(R, X-R)for some nonempty Sttbset R of S, R#S, 
then S is not Max-minimal. 

Let Sand Q be two distinct Max-minimal sets such that SnQ=T#/J, Scj:Q 
and Qcj:S. We denote R=S-T, P=Q-Tand H = X-(SuQ). Evidently, S#RcS 
and Q#RcQ. Using Definition 1, we obtain m (R, T)>m (T, X - S)=m (T, HuP). 
From (5) it follows that m(T,HuP)?::m(P,T), i.e. m(R,T)>m(P,T). The ana­
logous way leads to m (P, T)>m (R, T), which contradicts the previous inequality. 
In other words, we proved the main result of this section, i.e. 

LEMMA 2. Two Max-minimal sets are either disjoint or one of them is included in 
the other. 

Returning to the situation depicted in Fig. 1, S 1 , S2 , S3 , S4 and Ss are Max­
minima1, and we have S 1 cS2 cS3 • Moreover, S 3 ,S4 and Ss are pairwise disjoint. 

4. Unions of Max-minimal sets and their proper parts 

First, we introduce some convenient notation. Let Tbe a nonempty set of indices, 
and {H,: t E T} -a collection of subsets taken from X. Hereinafter U H, is abbre-

t e T 

viated by HT. Moreover, ST={S,: t ET} denotes a collection of pairwise disjoint 
Max-minimal sets, and RT= { R,: t E T}- a collection of sets such that R, c S,, 
R,# S,, for each t E T. K ( RT) is here a set of indices assigned to nonempty R,'s, 
i.e. K (RT)={j: jET, R,#0}. 

Now, we are in a position to formulate and prove some features concerning 
unions of Max-minimal sets and their proper parts. In fact, the most significant 
result is stated in Theorem 1. Propositions 1, 2 and 3, although interesting, seem to 
be of less practical importance and play here rather an auxiliary role. They con­
stitute an intermediate step in proving Theorem 1, whose introduction makes pos­
sible to construct the proof of Theorem 1 in a short and clear form without con­
sidering a large number of specific subcases. Finally, Theorem 2 concerns the appli-
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cation of the Max-minimal sets technique to solving real-life problems and the 
proper interpretation of results given by this technique. 

PROPOSITION 1. Let I be a nonempty and finite set of indices, Sr. Rr. K=K (R 1) be 
defined as above, and Qc:Xbe an arbitrary set such that S1 f"'IQ=0 and S1 VQ#X. 
Tf at least one of the inequalities IQIIKI >0 and IKI~2 holds, then P=QV R 1 is 
not Max-minimal. Moreo\·e•, the condition Qt: 0 implies the inequality m (P, X - P)~ 
~m(Q,X-Q). 

Proof. We choose any increasing sequence (K (i): i e K) of subsets taken from K 
defined by K(i)={u: ueK, u::;;i}. The proof proceeds by induction over IK(i) 1. 

For convenience we write here PJK (l)J and SIK(i)l instead of QV RK(i) and SK(I)• 

respectively. Moreover, we denote R(I)=PJK(I)J-PIK(I}J-1 and s(I)=SIK(L)I-SJK(i)J-1> 

for i e K, where P 0 =Q and S0 =0. 
Let Q be nonempty. 

I. IK(i)l=l. According to (6), we have m(P1>X-P1)-m(Q,X-Q)=a-b, 
where a= max {m (R\1), X- P 1), m (Q, X- PJ} and b = max {m (Q, X- P 1), 

m (Q, R(l))}. 

CASE 1. a=m (R(I)• X -P1) and b=m (Q, X -P1). Therefore, m (R(t)• X -P1)~ 
~m (Q, X -P1)~m (Q, R(ll). Hence, a-b is non-negative. 

CASE 2. a=m(Rp),X-P1) and b=m(Q,R(I))#m(Q,X-P1). Since X-P1 -=:J 

-=:JS(I) - R(I)• then, by (5), we get 

m (R(I>• X-Pt)?::m (R(Il• S(I)-R(Il) (9) 

Using (5) again, we have 

m (Rc1>, X -S<I))~m (Q, R\IJ), (10) 

because S 1 f"'IQ=O. Therefore, a-b~m(R(l)•S<1>-Rcl))-m(R(ll•X-S(t)) 1.c. 
a-b is positive, since S<1> is a Max-rninimal set. 

CASE 3. a=b=m (Q, X -P1 )#m (R(ll• X -P~.). Hence, a-b=O. 

CASE 4. a=m(Q,X-P1)#m(R(l)•X-P1) and b=m(Q,R<l))#m(Q,X-P1). 

That means 

m (Rc1>, X -P1)<m (Q, X -P1)<m (Q, R(l>) 

Combjning (11) with (9) and (10), we get 

m (R<t>• S<1> - R<10<m (R(I)• X -Sc1>) 

(11) 

{12) 

Thus, by applying (7) to the right-hand side of (12), we obtain m (R(Il• S< 1>-R<1>)< 
<m (R<t>• S< 1>-R<l)), i.e. a contradiction, which proves that Case 4 does not occur. 
That completes the first part of the proof, i.e. \\e obtain that m (PI> X-P1)~ 
m (Q, X -Q), and, by Corollary 3, that P1 is not Max-minimal. 
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2. Let us now assume that the inequality 

m (Pi, X -P;)):;m (Q, X -Q) (13) 

is fulfilled for each i, b:;; i< IK!. Similarly as in the first part of the proof (here P1 

plays the role of Q) we obtain m (Pi+l• X -Pi+ 1)=m (R(i+ll u P~o X -Pi+ 1)):; 

);m (Pi, X- PJ, which, combined with (13), gives us m (P1+ 1 , X- P1+ 1)-;:;m (Q, X+ 
- Q). The last inequality implies, due to Corollary 3, that P; + 1 is also not Max-mi­
nimal, which finishes the second step of induction. 

Therefore, we have m (Q, X -Q) ~ m (Q u RK, X -(Q u RK))=m (P, X -P), 

since RK=Rr. i.e. the proof is accomplished for the case IQIIKI >0. 
If Q=f/J, then, by assumptions, we have IK! -;:;2 . From Lemma 2 it follows that 

P2 is not Max-minimal. Furthermore, we can take Q'=P1 and K'=K-KI> where 
Kj denotes a set K (t) chosen so thath J=IK (t)! (construction of K (t)'s yields the 
uniqueness of Kj). Hence, IQ'IIK'I >0, and thus the result obtained for the case 
Q#f/J remains in force, i.e. P=P1U PK,=RK=Rr is not Max-minimal, which com­
pletes the whole proof. B 

For example, in Fig. 1 we have m({2,4,5},X-{2,4,5})=11);m({2},X­
-{2})=11, and m ({2, 4, 5, 10}, X-{2, 4, 5, 10})=9;:::m ({2, 10}, X-{2, 10})=6, 
where R 3 ={4, 5}c S3 . First, we take Q={2}, and second- Q=S5 • 

PROPOSITION 2. Let I, Sr. Rr and K have the same meaning as in Proposition 1. 
If K is nonempty, then 

m (Rr, X -Rr)>max {m (S1, X -SJ: i E K} (14) 

Proof. The proof proceeds by induction. If IKI=1, then (14) directly follows 
from Lemma 1. Now, we assume that 

(15) 

holds for each i such that !K (i)! < IK!, where K (i) (as well as R(il• S< 1> and K 1 below) 
is defined as in the proof of Proposition 1. By Proposition 1, we get 

m (R, X- R);:: m (RK (il• X- RK (i)) (16) 

and 

m (R, X-R)):;m (R(i+ll• X-R(i+ll), (17) 

for R=RK(il u R(i+lJ· Applying Lemma 1 to R(i+ll and S(i+ll and using (17), 
we obtain 

m (R, X -R)>m (S(i+ll• X -S(i+ ll) (18) 

Thus, by (16), (15), (18) and the definition of S(i+l) (see the proof of Proposition 1), 
we reach m(R,X-R)>max{m(Si,X-Sj):jEK1+d, which accomplishes the 
second step of induction, and thus the whole proof. • 

Returning to the example shown in Fig. 1, we, e.g., have m ({1, 2, 6}, 
X- {1, 2, 6})= 11 >max {m (Si, X -S;): i=3, 4, 5}=7, where R3 = {1}, R4 ={6} and 
R5 ={2}. 
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Propositions 1 and 2 are useful for proving Proposition 3 below, and, further, 
Proposition 2 is directly applied in the proof of Theorem 1. 

PRoPosmoN 3. Let I and S1 be as in Proposition 1, S,:f:.X. If S1 is not Max-minimal 
for any Jc.I such that Ill> l, then 

(19) 

P .coo f. Since S;, Il l> I, j~ not Max-minimal, then from Lenuua 1 it follows that 
there exists a nonempty set H (J) c S;, S1 =1= H (J), which satisfies 

m (S;, X -SJ);::m (H(J), X-H(J)) (20) 

We can write H(J)=Rr(J)vSL, where 0-=I=T(J)vLc.J, L=i=J, T(J)nL=0 and, 
additionally, R,=/=0, for any t E T(J). 

First, we consider the case T(J)=I=f/J and L=0. Hence, denoting T=T(J), we 
obtain 

m (Rr, X-Rr)>max {m (S1, X -S1): i ET}, 

due to Proposition 2. Since H (J)=Rr (J)• then 

m (S1 , X -S1)-;::mm {m (S,, X -S,) : i e I}, 

(21) 

(22) 

according to (20), (21) and the obvious inequality max {a,: i E T};::min {a1 : i eT}, 
and, finally, by (4). 

Now, we assume that L and T(J) are nonempty. Thus, denoting H 0 =H(J) 
and £ 1 =L, we get 

(23) 

for r=O, by Proposition 1. 
If ILI=l, then (22) is implied by (20), (23) and (4). Otherwise, i.e. for ILI>l, 

SL is not Max-minimal, due to the assumptions, and we can consider it in the same 
way asS,. 

In general, for any L,c.J, IL,I> 1, r> 1, there exists a nonempty set H,=Rr<L,) u 
v SL,+, satisfying the inequality 

(24) 

by the assumptions and Lemma 1. Moreover, we have f/J=I=T(L,)v£,+1 c.£.., 
T(L,)nL,+l =0, 

IL,+ 1l < IL,I (25) 

and R,=l= 0, for each t ET (L,). Now, there are possible five subcases. 

SUBCASE I. L,+ t =0. Therefore, T= T (L,) is nouempty, and we can proceed as 
for the case T(J)=/=0 and L=f/J. Thus, using the same arguments as mentioned above, 
we obtain 

m (SL,• X -SL);::min {m (S., X -S,): i EJ} (26) 
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SUBCASE 2. \Lr+ 1 \ = 1 and T (L,)=I= f/J. Hence, we reach the analogous situation as 
for T(J) and L being nonempty, i.e. we get (26) again. 

SuBCASE 3. \L,+l\ > 1 and T (L,)=I= f/J. Now, we define q=r+ 1 and repeat the con­
struction described for L, (and H,), replacing r by q. Since q= r + 1, then 

(27) 

due to (22) and (23). 

SUBCASE 4. \Lr+ 1 \= 1 and T(L,)=f/J. Hence, H,= SL,+,' i.e. (27) holds, by (24). 
Thus, using (4), we easily get (26). 

SuBCASE 5. \L, +1 \ > 1 and T(L,) = f/J. Similarly, as in Subcase 4 we obtain (27). 
It is evident that the described above construction for H, can be applied succes­

sively until we arrive at Subcase either 1 or 2 or 4. 'In other words, the construction 
defines a sequence L = (L,: r=O, 1, 2, ... ), where L 0 = J. If Subcase 1 occurs for 
some r = q, then we interrupt the construction for Lq. Otherwise, the cardinality 
of successive L;s decreases (according to (25)) and, finally we reach Subcase either 
2 or 4. Therefore, L is finite. Moreover, by (27) and (26), we get (22) again. 

In the case T(J) = f/J and L=i=f/J we proceed as in Subcases 2 and 4. It leads to 
(22) again. Substituting J = I in (22), we obtain (19), which completes the whole' proof. 

For example, it can be easily verified that in Fig. 1 S3 = {1, 4, 5, 8} and Ss = 
= {2, 10} are Max-minimal, but S{3,s1= S3 u Ss is not Max-minimal. For this case 
we have m(S{3,SJ• X -S{3,s 1)= 7):min {m(S3 , X -S3), m (Ss, X -S5)} = min {6, 7} = 6. 

The last proposition plays a crucial role in the proof of 

THEOREM 1. Let I, J and SI be as in Proposition 3, and let SJ be not Max-minimal 
for each J such that 1 < \1\ < \I \. Then SI is Max-minimal if and only if the following 
condition 

(28) 
is satisfied. 

Proof. We begin with the following inequality 

max {a1 : i El} <min {max {a1, b;}: i E I}, (29) 

where a1, b1 are real numbers, i E J. From (29) follows existence of rE I such that 
a,<b, because otherwise max{a1:iEJ}<min{a1:iEJ}, i.e. a contradiction. 
By the same reason, we get min { max { a1, b1}: i E I}=bk, for some k E J. Further­
more, let an index jEI exist such that ai):bi. Therefore, evidently, ai'~max {a1 : 

: iEI}<bk~ai> i.e. again a contradiction. Hence, (29) is equivalent to a1<b1 for 
each i El. 

The above argumentation yields the equivalence of (28) and the condition 

m (S1, X - SI)<m (Si, S1 -SJ, for each i El, 

since m(S;,X- S1)=max{m(Sj,X- SI), m(S1,S1 -S;)}, due to (6). 

(30) 
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The necessity of (30) and thus (28)) immediately results from Definition 1. 

Sufficiency. Let us now assume that (28) is satisfied. We consider H=H (I), 
T= T(l) and L defined as below (20). If T is nonempty and L=f/>, then (21) holds, 
due to Proposition 2. Therefore, by (4), we obtain 

(31) 

since here H=Rr. If T=0 and Lis nonempty, then we have H=SL, and thus (31) 
again , by Proposition 3. If both Tand L are nonempty, then we get m (H, X -H)?; 
?; m (S L• X- S L). The last result gives us (31) again, with the aid of Proposition 3. 
Combining (31) and (28), we obtain m (H, X -H)>m (Sr. X - S1) for any nonempty 
H such that H=i=Sr, Hc.SI. The application of Lemma 1 completes the second 
part, and thus, the whole proof. • 

Returning to the situation depicted in Fig. 1, we have that (28) does not hold 
for 1= {3, 5} (see the example below Proposition 3), and S{3,51 is not Max-minimal. 
On the other hand S1 ={5, 8} as well as {4} are Max-minimal (the latter due to 
Corollary 1), m(S1 v {4}, X-(S1 v {4}))=7<min {m(S11 X-S1), m({4},X+ 
- {4})}=8 and S2 =S1 v {4} is also Max-min.imal. 

Theorem 1 is the main result of this section and the whole paper. It gives a cri­
terion which makes possible to construct Max-minimal sets on a basis of those 
determined previously. Therefore, its application substantially reduces the com­
putational effort required for determining Max-minimal sets when we do it by using 
Definition 1 only. Namely, in the latter case, i.e. by definition, we ne.ed to examine 
exactly 2 ISI-2 inequalities for making sure that S is Max-minimal while in the 
former, i.e. by using Theorem 1, it is sufficient to check at most ISI inequ­
alities only. 

Sometimes, the statement of a real-life (source) problem implies some addi­
tional constraints which should be fulfilled by the partition of a given set X. For 
instance, it can be required that the carclinality of any class is lower bounded. Mo­
reover, it may happen that no Max-minimal set satisfies this constraint. To over­
come this we can apply 

THEOREM 2. Let J, SI> R 1 and K be as in Proposition 1, Sd'X. If Ki'(/J, then the 
relation 

(32) 

holds. Moreover, if K=l, then the weak inequality in (32) can be replaced by the 
strong one. 

Proof. Since X-(SI-RI)=(X-SI)VRx, then 

m (SI-R1, X - (Sr - R1))=max {m (S1 - R1, X - S1), m (SI - Rr. Rx)}, (33} 

due to (6). Using (6) again, we get 

m(SI> X - S1)= max {m (SI-Rr. X-SI), m (RK, X - SI)} (34) 



94 W. STANCZA,K 

According to Definition 1 arrd (5), we have m (S;- R;, R;) >m (R;, X - S;)~ 

~m (R;, X -S1) since X- S; ::J X- S1 for any i E K. Analogously, we get m (S; + 
-R;,R;)>m(S;-R;,X-S1), iEK. That yields 

m (SK-RK, RK)>max {m (SK-RK, X -S1), m (RK, X -Sr)} (35) 

Therefore, by (35), (33) and (34), we obtain that the assertion holds for K=l. 
Let us now assume that Ki=l. Applying (5), we reach 

max {m(S1 -R1, RK),m(S1 -Rr,X -Sr)}~m(S1 -Rr,RK)~m(SK - RK, RK), (36) 

which, combined with (35) and (33), gives us 

m (S1 -Rr, X -(S1 -Rr))~m (RK, X -SI) (37) 

Thus, by (33), (34) and (36), we easily obtain (32), which completes the proof. 
Theorem 2 says, roughly speaking, that SI-RI=SI-RK, i.e. the union of 

S;'s (pairwise disjoint Max-minimal sets) and their proper parts is more similar 
to the environment than S1• Therefore, it seems to be better to divide X into S1 

and X - SI> rather than into Sr- RK and X- (Sr- RK), which is the answer to the 
question stated above Theorem 2. For instance, in Fig. 1 S 3 ={1, 4, 5, 8} and 
S 5 ={2, 10} are Max-minimal. By taking, e.g., R3 ={1, 4} and R5 ={2}, we get 
.m (S{3,SJ• X- S{3,sJ)=7~m (S{3,sJ- R{3,SJ• X -(S(3,sJ - R(3,sJ)) = 11. 

5. Max-minimal sets and a hierarchical 
-clustering technique 

In Introductory N{)tes an interpretation of Max-minimal sets is given, and 
in Section 2 their definition is formulated. Sections 3 and 4 are devoted to stating 
.and proving some important mathematical properties of Max-minimal sets. The 
results derived in the preceding sections make it possible to consider Max-minimal 
sets from another, pure mathematical point of view, without taking into account 
their interpretation. By Corollary 1 and Theorem 1, we immediately obtain 

CoROLLARY 4. S in a Max-minimal set if and only if one of the following conditions 
holds 

1. S={x}, x EX, 
2. S=SI, where SI is as defined in Section 4, SJ is not Max-minima! for any 

J c J, 1 < IJI < Ill. and the inequality (28) is satisfied. 
Let a set X and a function w be given, as described in Section 2. By S (X, w) 

we denote the family consisting of all Max-minimal sets for fixed X and w. Hence, 
Corollary 4 and Lemma 2 imply 

CoROLLARY 5. S (X, w) is partially ordered with respect to the relation of inclusion. 
Therefore, a technique for constructing Max-minimal sets can be considered 

.as a hierarchical clustering technique. In other words, a computational procedure 
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for seeking Max-minimal sets can be constructed, e.g., as follows. Namely, we 
begin with the set U0 ={{x}, x eX}, which consists of Max-minimal sets, due to 
Corollary 1. Then, we take U+- U0 . Now, we successively examine whether any 
pair, triple, quadruple, etc., of elements from U constitutes a Max-minimal set 
(by using Corollary 4). If so, we delete those elements from U and continue for 
the remaining part of U, etc., until either it becomes empty or it does not contain 
any Max-minimal set. In general, we take U +- U, where U1 consists of Max-mioirnal 
sets found for u,_t and of the elements from u,_. which did not belong to any 
Max-roioimal set, i= 1, 2, ... , etc. The procedure finishes when either I Ul =2 (see 
the definition of m) or there is no Max-minimal set in U. 

Fig. 2. Consecutive steps in searching Max-mioimal sets for the case of X and W (. , .)'s shown 
in Fig. 1 
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As an example, let us consider the situation depicted in Fig. 1 (see also Fig. 2). 
We have U0 = {{k}: k = 1, 2, ... , 10}. Then, for U= U0 , we find, e.g., Si1l= {2, 10}, 
update u~u- {{2}, {10}}, find S~ll = {5, 8}, update U+-U-{{5}, {8}}, find S~ll = 
= {6, 7, 9}, update u~ U- {{6}, {7}, {9}} and note that no union of subsets be­
longing to the current U={{1}, {3}, {4}} is Max-minimal. Hence, we obtain U1 = 
= {S}1>: i= 1, 2, 3}u{{l}, {3}, {4}}, initialize U+-U1o find S~2> =S~1>u {4}, update 
U+-U- {S~1 >, {4}}, and no more Max-minimal sets are found in this step, i.e. 
U = {sczl sell sCll {1} {3}} We take U+-U find SC3l=SC2lu fl} and obtai·n 

2 1 ' 1 ' 3 ' ' . 2' 1 1 l ' 

U3 = {Si3l, Sin, S~1 l, {3}}. For U= U3 we find no Max-minimal set, and thus the 
searching terminates. 

Although the procedure outlined above seems to be easy for programming 
on a computer and is based on a simple idea, we should, however, consider its 
efficie.P_cy . To do it we notice that if, e.g., no Max-minimal set of cardinality great­
er than one occurs for a given pair X and w, then we examine exactly 

(37) 

subsets of X for their Max-minimality. Hence, the numerical complexity of the 
procedure is not of polynomial-type. On the other hand, the number of subsets 
for a given nonempty, finite set X, lXI > 1, being either disjoint or such that one 
of them is included in another, ' does not exceed 

lXI [y + ln (IXI-1)+1], (38) 

where y= 0.577 ... is the Euler constant (see the final part of Section 2 in [14]) . 
Therefore, due to Lemma 2, (38) gives also an upper bound for 1$ (X, w)l. The 
comparison of (37) and (38) proves that the procedure is inefficient, indeed. 

To increase the efficiency of the procedure we can proceed as for the classic 
minimal sets [14]. Namely, instead oftaking into account each union of elements 
from the current U, we can restrict our examination to some specific, previously 
well-defined cases. This fruitful idea gave remarkable results in the case of the 
classic minimal sets. Namely, it led to an 0 (IX I5) algorithm for the classic minimal 
sets [14] while the previous algorithms [2, 5) were not of polynomial-type. Now, 
a new algorithm for Max-minimal sets based on this idea is in preparation and 
will be a subject of the next, forthcoming paper. 

6. Concluding remarks 

The idea of a minimal set lies in that some subset of a greater set is internally 
stronger connected with, or more similar than, its environment. This concept, 
introduced by Luccio and Sami [8], then first developed by Kacprzyk and Stanczak 
[2, 5, 6], and further- by Nieminen [9] and Stanczak [14], was described in In­
troductory Notes in more detail. Previous papers (see, e.g., [2, 5, 6, 9, 14]) were 
devoted to considering the strength of connections rather than "pure" similarity 
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or likeness. Tt was historically biased by some specific interpretation of a miliimal 
set, in fact originated by Luccio and Sami [8]. Namely, a (classic) minimal set was 
understood as some part of a network (see, e.g., [3, 4, 7, 8, ll]) or a group of en­
terprises [l] which cooperated more intensively with each other than with the rest 
of a system or an environment. Such interpretations lead to the definition analogous 
to our Definition 1, \o\·ithfinstead of m (see, e.g., Definition J and Lemma 1 in [5]). 

Although the classic minimal sets technique is a useful tool for solving many 
practical problems [1 , 3, 4, 7, 8, 10, 11], it gives sometimes, however, an inadequate 
description of reality, as outlined in Section 1. It is implied by taking f as the pa­
rameter of aggregate reciprocal similarity. Thus, the question arises whether f can 
be replaced by another index of aggregate reciprocal similarity. More precisely, 
whether there exists a function mapping {{A, B}: A nB=0, A, Be X} into R+ v {0} 
such that, firs t, its value for A={x} and B={y} equals to w (x, y), where x, yE X, 
and, second, it has an appropriate interpretation for a great number of cases in 
which f is inadequate and, third , it produces such a mathematical structure with 
respect to the idea of minimal sets (outlined above) that it is interesting from an 
algorithmic point of view. These questions are, evidently, the classic problems 
which should be solved when we constiUct any reasonable partitioning method. 

The answer to the first two questions are easy and they are contained in taking 
into account m given by (2) insteadfand in Definition 1. The third problem is more 
complex, and the paper is devoted to solve it. 

It seems that the answer to the third question posed above is positive. Moreover, 
it is interesting that Max-minimal sets have, in fact, almost identical properties 
as the classic minimal sets (compare, e.g., Definition 1, Lemma 1, Corollaries 1 
and 2, Lemma 2, Propositions 1, 2 and 3, TheorenJ J, Corollaries 4 and 5 and 
Theorem 2 with Lemma 1 in [5], Definition 1 in [5], Corollaries 4.1 [11] and 2 [6], 
Lemma 2 in [2], Theorem 4.1 in [11], Proposition 1 in [2], Theorem I in [2], Pro­
position 3 in [5], Theorem 4.4 in [11], Corollary 6.1 in [ll] and Proposition 2 in [2], 
respectively). That permits to conjecture that there exist more expressions for the 
aggregate reciprocal similarity which produces a similar mathematic system with 
respect to the definition like Definition 1. 

Finally, the directions of futu.-e researches in the minimal sets theory can be 
outlined. From the above remarks it follows that an efficient procedure for seeking 
Max-minimal sets should be constructed (it is now in preparation). Moreover, 
it is interesting whether it is true that there exist more functions thanfand m which, 
together with the general definition of a minimal set, produce an analogous mathe­
matical system as the mentioned operations f and m. That is imp01ta.nt not only' 
from the theoretical, but also from the practical point of view. Furthermore, it 
should be pointed out that in applications w's, i.e. elementary similarities, are 
taken from either measurements or approximate formulae. Therefore, in fact, 
a more adequate practical approach to the minimal sets should be based on inexact 
and/or f·uzzy numbers rather than on ordinary (sharp) real numbers. That implies 
the next direction of research in the field of the minimal sets theory. 

7 
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Wprowadzenie do zespolow Max-minimalnych 

Zesp6l minimalny jest takirn podzbiorem mnogosci obiekt6w, kt6ry jest zwil!zany silniej we­
wn~trznie niz z otoczeniem. W poprzednich pracach (patrz np. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14]) 
silt< powil!zail mitedzy dwoma niepustymi i wzajemnie rozhtcznymi podzbiorami okreslano jako 
st,Jmte wartosci powil!zan elementarnycll, tzn. powil!zan wystteplljl!cych mitedzy parami obiekt6w. 
Definicja ta, jakkolwiek uzasadniona w przypadku licznych problem6w powstajl!cych przy poszu­
kiwaniu prawidlowego podzialu sieci (patrz np. [3, 4, 7, 8]) moi:e bye nieadekwatna w zagadnieniach 
innej natury. W artykule rozpatruje site analogicznl! strukturte matematycznlJc. Jedyna r6i:nica polega 
na przyjteciu odmiennego okreslenia "podobienstwa" dw6ch niepustych i rozllJccznych zbior6w 
obiekt6w. Okazuje site, i:e nowa struktura i (klasyczne) zespoly minimalne posiadajl! podobne 
wlasciwosci. 
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Bae.z.e101e a Mat<c-MRlUtMa.TILHO CBH3aHIILle llm O*ecTBa 

MllHHMa.JibHO CBRJaHBOC MROlKCCTBO JTO MHO:.KecTBO OOl>CKTOB, XOTOpoe BH}'Tpe!UlO CBlOaRO 

CHifbHCC 'fCM C CC CpeJlOH. B fipeilbi.!\YWHX CT3Tbi!X [J, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , J 4) CHJia CBR-

3afiHOCTH ABYX HCIJYCTbiX 11 aerrepeceKa10muxc11 IJOJlMHOlKeCTB 6blna cyMMOJ\ CHJJ cymecrsyiOil(BX 

AJU1 J JICMCtiTaPIIbiX CBIIJaliiiOCTCH, T.C. )lJIII uap 061oCKTOB. 3TO OrrpeJJ,C11CIIHC, XOTll UMeeT npH· 

MCt!CHIIC BO MtiOrKX rrpo6neMaX KacaiOWHXCJI paQ)tOHa.JibHOfi .UCKOMllOJHUHil CeTM [3, 4, 7, 8), 
MOlKeT 6b!Tb H~CKBaTtiO )lJill JJ,pyrHX l.ICJICH. ARaJJOrlf'fRal! MaTCM3TR''ICCKal! CTpyKTypa paCC!>tO· 

TJ)eR3 B JTOfi CTaTbH 3a UCKJIIO'iCBRCM, 'ITO CXOACTBa JJ,Ifll KenycnotX ll HCilCpece.KaiOUliiJCCR MHO• 

ll(eCTB 061oeKTOB OIJpe.O.eJU!lOTCR nO JlPYrDMy. 3Ta RO!lall M3TCMaTH'!CCK3ll crpyKTypa MM.eT 

CBOACTBa IJOXOlKJIC Ha CBOilCTBa JUiaCCH'ICC)(IfX MHHHMaJibiiO CBR33HiibJX MUOlKCCTB. 






