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In this paper, the problem of clustering observations into homogeneous groups based on 
given characteristics of the observations is analyzed. Three distinct integer programming formu­
lations covering important variations of the clustering problem are developed. These variations 
include finding natural clusters, constraining the number of clusters and restricting the size of 
clusters. Efficient heuristic techniques employing Lagrangian and eigenvector based methods are 
developed to solve these problems. 

1. Introduction 

Classification has a rich history, but numerical methods used for the purpose 
of classification are fairly recent. The major developments have occurred in the 
last two decades. Sokal and Sneath ('1<,9 ) published one of the first books on this 

subject. 
Classification (or typology) is concerned with the identification of an obser­

vation and its placement into a homogeneous group based on some characteristics. 
The pursuit of classification can be seen in all fields. For example, in judical science, 
the Supreme Court judges may be grouped on the basis of their legal opinions on 
a sample of cases. In psychology and consumer behaviour, people may be classified 
according to their personality and taste characteristics. In international marketing, 



140 .A. KUSIAK A. VANNELLI, K. R. KUMAR 

the world markets can be classified into segments based on cultural, socio-econo­
mical and political characteristics. In strategic management, firms are classifed 
according to the production, financial and marketing strategies used. In engireering 
design, parts produced are· Classified according to the geometrical, tolerance and 
machining characteristics they pos~ess. Classification and cluster analysis has been 
applied in the following areas: 

biology (Everitt, 1980), data reorganization (McCormick et al., 1972), medicine 
(Klastorin, 1982), pattern recognition (Tou and Gonzalez, 1974), part selection 
in automated systems (Kusiak, J985a), production flow analysis (King, 1980), 
race mixture study (Rao, 1977), task selection (Nagai et al., 1980), control 
engineering (Siljak, 1984). 

In the cases, where it is possible to specify groups a priori, statistical techniques 
such as multiple discriminant analysis provide an analytical method to define to­
pology functions (Green, 1978). But when it is not possible to specify these groups, 
one needs to resort to various combinatorial algorithms and heuristics to aid in 
constructing the clusters. 

An assumption underlying the use of clustering techniques is that homogeneous 
cluste1s actually exist in the data. The basic problem in cluster analysis is to devise 
algorithms and heuristics that group entities into clusters based on observed attri­
butes. The development of these heuristics and algorithms have typically depended 
on conceptual representation of the process of clustering. These representations 
have been largely visual and can be of two distinct types, matrix representations and 
graph representations. 

Matrix representations have usually been used in the domain of social sciences .. 
One of the first applications in marketing segmentation and selection was by Green 
et al. (1967) who desired to match representative test market with larger product 
markets. Here, a variety of market characteristics we:re gathered for a number of 
potential test markets and arranged in a matrix-type representation with rows 
representing cities and columns, the market characteristics. The object was to rear­
range all those rows, which were "similar", such that they were adjacent in the 
permuted matrix. As is often the case, -the market characteristics were measured 
in different scales, and therefore, had to be normalised (re-scaled to have a mean 
of 0 and ·a standard deviation of 1) before similarity measurements using weighted 
Euclidean distances were used. 

Another application of the matrix re . ntation is in the area of group techno­
logy, which concerns itself with grouping machines (and consequently, the parts. 
that can be produced on the machines) so as to form independent manufacturing. 
cells (Burbidge, 1975 and King, 1980). In this application, rows represent the machi­
nes and columns represent the parts produced. The matrix entries are binary, 1 re­
presenting the use of the machine for the part and 0 'otherwise. The object is to 
permute the rows and columns so as to obtain a block diagonal representation of 
the original matrix, with each block representing a cluster. 
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Graph representations have usually been used in the engineering sciences field, 
particularly electrical engineering. One application arises in the design and moni­
toring of power system operations (Stagg et al., 1970 and Bills, 1970). Here, a weighted 
graph rep:-esentation is used to depict the network of power grid buses, with the­
nodes representing the machines, such as transformers, and the edges (or arcs) 
representing the interlinking connections between: these buses. The admittance 
between these buses is taken as the weight on (or capacity of) the edges. The object 
is to decompose the graph into sub-graphs (by deleting edges) such that there are 
minimal interconnections between the sub-graphs (ar d hence maximal connections 
within the sub-graphs). 

Another application arises in the design of very large scale integration (VLSI} 
circuits (Kernighan and Lin, 1970). The circuits are represented as graphs with the 
electrical elements, such as resistors, being the nodes of the graph and the wiring 
between these elements representing the edges. The· purpose of this representation 
is to find a way to partition this graph so as to maximize the number of circuits. 
that can be packed into the chips. 

In this paper, we describe three distinct integer programming formulations. 
which cover important variations of these two representations. We characterize­
the integer programming formulations by two constraints: 

(1) fixed number of clusters 
(2) restriction on the number of elements within each cluster. 

The three integer progranuning formulations presented allow one to deal with 
thes·e two constraints. The first formulation (Pl) does not incorporate any of these 
constraints: that is, we allow the algoritt.m to generate natural clusters. Since many 
clusters could be generated by the first formulation, a second formulation (P2) is. 
developed which restricts the number of clusters. Finally,· we consider a model 
which allows one to deal with restrictions on the number of clusters and cluster size. 

The paper is divided into five sections. In Section 2, we discuss a clustering 
problem with no restrictions on the number of clusters and cluster sizes. A clustering 
problem with a fixed number of clusters is presented in Section 3. A Lagrangian 
relaxation approach is used to solve this problem. In Section 4, we formulate and 
solve a clustering problem with a fixed number of clusters and cluster sizes. An 
eigenvector based approach is used in the subsequent analysis . Conclusions are­
presented in Section 5. 

2. A clustering problem without any constraints 

2.1. Problem Formulation 

Typically, one formulates a clustering problem, where there is no a priori 
information regarding the number of clusters and cluster sizes. In this case the 
resulting clusters are usually generated by visual inspection. 
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Before formulating a clustering problem that does not restrict the number of 
dusters and cluster sizes, let us consider a 0-1 matrix A= [au]m xn· For any two 
row vectors ai=[a11> ••• , a1k, ••• , a1n] and a1=[a11, ••• , a1k, ••• , a1.] of matrix A, define 
a distance 

where 

n 

diJ=}; <5 (a1ko aJk) 
k= 1 

if a1k=a1k= 1 

otherwise 

(la) 

(lb) 

In this clustering problem, we attempt to permute rows and columns of matrix A 
to maximize the sum of the distances du (d' iJ) between any two adjacent rows 
(columns), respectively. It can be formulated as follows: 

m-1 m n-1 n 

(Pl) max D= }; }; du + }; }; d;1 (2) 
i=l J=!+l t=l J=i+l 

for all n! m! possible matrices obtained permuting rows and columns of the initial 
matrix A. 

Lenstra (1974) has shown that problem (P1) is equivalent to two travelling 
salesman problems. Based on this fact the following two conclusions can be drawn: 
(1) this clustering problem is an NP-complete problem 
(2) a travelling salesman algorithm can be applied to solve the clustering problem. 

2.2. Algorithms for solving problem (Pl) 

To date a large number of algorithms for solving problem (Pl) have been de­
veloped by researchers working in many different areas. Some of the most efficient 
heuristic algorithms have been discussed in Kusiak (1985), namely: 

(1) McCormick et al. (1972) 
(2) Bhat and Haupt (1976) 
(3) King (1980, 1982) . 
(4) rank energy (Kusiak, 1985). 

All of these algorithms are based on rearranging rows and columns of matrix A 
to produce some visible clusters. The difference between them is in the way this 
-rearrangement is performed. 

Computational complexity of each of these algorithms is shown in Table 1. 

Table 1. Computational Complexities of Clustering Algorithms 

McCormick et al (1972) Bhat and Haupt (1976) King (1982) 

OK (nm 2 +n2 m) 

Rank Energy 

OR (nm2 +112 m) 
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3. A clustering problem with fixed number of clusters 

3.1. Problem Formulation 

In order to formulate this problem let us introduce the following notation: 

n number of elements 

m required number of clusters 

143 

du distance from element i to element j (dii?: O), Vi # j = l, .. . , n and dil~o. 
Vi=j = 1, ... , n). 

{

1_ if i 1h element belongs to p h cluster 
xu = 

0 otherwise 

The objective function minimizes the total sum of distances: 

(P2) 

n n 

Zx= min Z (x)=}; }; du Xu 

x0 -::;;;;xi1 

i=l j = l 

n 

s.t . }; xii= 1 Vi= 1, ... , n 
j=l . 

n 

};x11=m 
j=l 

Vi= 1, ... , n Vj= l, ... , n 

xiJ=O,l Vi=l, ... , n Vj= l, .. . , n 

(3) 

(4) 

(5) 

(6) 

(7) 

Constraint (4) ensures that each element belongs to exactly one cluster. Constraint 
(5) specifies a required number of clusters. Constraint (6) ensures that element j 
belongs to cluster j only when this cluster is formed. The last constraint (7) imposes 
integrality. 

3.2. A Subgradient Algorithm 

Problem (P2) has been solved by Mulvey and Crowder (1979) but a more efficient 
subgradient algorithm is presented here. The main difference between the proposed 
algorithm and that of Mulvey and Crowder (1979) is in the procedure of computing 
lower bounds. The algorithm of Mulvey and Crowder (1979) computes the lower 
bounds based upon a heuristic algorithm developed by Ward (1963). The presented 
subgradient algorithm is based on a simple procedure of computing lower bounds 
shown in Arthanari and Dodge (1981). 
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Dualizing on constraint (4) the objective function (3) is tran~formed as follows 
(for ui~O, Vi= 1, ... , n) 

" n n n 

Zu= min Z (ui) = }; }; du xu +}; ui (1-}; xjj) (8) 
i = l j=l i=l j = l 

Reordering (8) the following relaxed problem is obtained 

u n 11 

Z,. = minZ(u;) = .J;}; (du-uJxu+}; u; (9) 
i=l i=l i = 1 

s.t. (5), (6) and (7). 

The best choice of u is an optimal solution to the dual problem 

Zv=max Z,. (10) 

(D) 

s.t. (5), (6) and (7). 

FRAMEWORK OF THE SUBGRADIENT ALGORITHM 

In the subgradient algorithm one specifies initial values of Lagrangian multi­
pliers u? and in each iteration k + 1 an updated sequence uk+ 1 is generated as follows: 

where: rx.k is a positive scalar step size 
g~ is a subgradient; in the ·case of the problem (P2) 

n 

g1= 1-}; x;" 
j 

where x;, is an optimal solution to the problem (Pu) 

The most commonly used step size is 

I' (UBk-z~) 
ilgkll 

where: I' is a scalar statisfying 0</<2 (see Motzkin, 1954) 
UBk is an upper bound on Zn 
11811 is an Euclidean norm. 

(11) 

(12) 

(13) 

To compute UB'' in our subgradient algorithm a simple heuristic, generating a feasible 
solution to the problem (P2) is used. 

In order to solve the dual problem (D) the following general framework of a sub­
gradient algorithm is applied: 
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Step 0. Set iteratio.n number k=O and choose initial values of Lagrangian mul­
tipliers u~, i= 1, ... , n. 

Step 1. Solve· problem (P .. ) for all u~. The value obtained z .. is a lower bound on 
the value of the objective function Zv in (D). 

Step 2. Generate a feasible solution to problem (P2). The value Zx is an upper 
bound on the value of the objective function Zv in (D). 

Step 3. If the current solut;on to the problem (D) satisfies a given stopping cri­
terion, stop; otherwise go to Step 1. 

LOWER BOUNDS PROCEDURE 

A procedure for computing the lower bounds given in Arthanari and Dodge 
(1981) will be applied.- Denote: 

(14) 

n 

and let Si= 2 siJ. 
1=1 

To minimize (9) let us arrange the first m values of S1 in an increasing order 
S1 (l)~S1 <2>~ ... ~S1 (m) and let the set {j (1),j (2), ... ,j (m)}=L. 

The optimal solution to the problem (P.,) is then 

* {1 Xu= 0 

and 

* {1 Xu= 0 

if i=jeL 

otherwie 

if ii}eL 

otherwise 

(15) 

(16) 

Substituting x;1 of (15) and (16) into (9) a lower bound for the problem (D) is obtained. 

UPPER BOUNDS PROCEDURE 

A feasible solution to the problem (P2) can be computed in the way shown 
in Arthanari and Dodge (1981), namely: · 

and 

if i=jE L 

otherwise 

if i=!= j and 

otherwise 

d11=mind;, 
rEL 

(17) 

(18) 

One can easily see that the above solutions satisfy all constraints of problem (P2). 

Substituting all xtJ to (1) an upper bound to the problem (D) is obtained. 
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SUBGRADIENT ALGORITHM 

The algorithm for solving the problem (D) is as follows: 

Step 0. Set k=l, u~~O, e1 >0, e2 >0, y0 >0, UB0 =+oo, LB0=-oo, where: 

u? initial value of the Lag£angian multipliers 
et> e2 , precision values ' 
y0 initial value on the scalar (0 < y0 < 2) 
UB0 initial upper bound on (10) 
LB0 initial lower bound on (10) 

Step 1. Compute a feasible solution for (P2) from (17) and (18) in order to obtain 
a value z~ of (3). 
Compute an upper bound on (9) 

UB"=min {UB"-1, Z"}. 

Step 2. Compute the values of x;J from (15) and (16) and substitute into (9) to 
obtain a value Z~ f~r updated values of u~, i=l, ... ,n. 
Compute a lower bound on (Z v) 

LBk=max {LBk- 1 , Z~}. 

If Z~<LB\ then reduce yk. 
If yk<e1 , stop; otherwise continue . 

. If (UB"-LBk)jUBk<e2 , stop; otherwise go tG step 3. 

Step 3. Compute the following: 

(a) subgradients g~ at x;J 

(b) step size 

n 

g~=l-}; x;1 
J= 1 

ak=- yk (UB"-Z~) 

Jig~ I!" 

(c) updated values of Lagrangian multipliers 
a" g" 

k+l_ k+ __ 1 

Ul -UI ilg~ll 

Set k=k+ 1 and go to Step 1. 

3.3. Computational Results 

The subgradient algori~hm described has been applied to solve a number of 
problems. For each problem the distances dil were generated by a uniform, con­
tinuous random number generator. Different values of initial parameters u? and y0 

have been tested. The algorithm performed well for u?=l.l max {d11} and y0 =0.75 
which were determined experimentally. 1 
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Tables 2 and 3 show the number of iterations and CPU time (in seconds) for 
20 different problems with the precision value e1 =5% and e2 =0.1% respectively. 

Table 2. CPU time and number of iterations for problems solved with the precision vaJue 
UB-LB 

e2 100%~5% 
UB 

1 .~/ 10 20 30 40 50 60 70 80 90 100 

5 5 5 4 5 5 5 5 5 5 5 
0.39 1.04 2.05 3.31 4.88 6.65 8,86 11.46 14.40 17.11 

10 5 5 4 4 4 4 4 4 4 4 
0.23 0.77 1.26 2.15 3.30 4.65 6.31 8.22 10.28 12.52 

Table 3. CPU time and number of iterations for problems solved with the precision value 
UB-LB 

~I 10 20 30 40 50 60 70 80 90 100 l. 
5 8 8 8 8 8 8 8 8 8 13 

0.52 1.69 3.28 5.34 7.94 10.87 14.36 18.66 23.17 45.51 

10 8 7 7 7 7 7 7 7 7 7 
0.38 1.08 2.28 3.90 5.92 8.34 10.81 14.68 18.50 22.28 I 

As one can see in Tables 2 and 3 the algorithm requires a small number of iterations. 
to generate a good quality feasible solution or in many cases the optimal solution. 

To show the efficiency of this algorithm we have solved five sets of differenJt 
problems by this algorithm and compared results obtained with ones presented. 
by Mulvey and Crowder (1979). Table 4 illustrates this comparison. 

Table 4. Comparison of the Subradient Algorithm to the Aigorithm 
of Mulvey and Crowder (1979) __ / ___ 

Problem Number of Number of Iterations for m= 5 

Number Attributes Mulvey and Crowder (1979) Proposed 
11 Algorithm Algorithm 

1 25 26 6 
2 50 74 7 
3 70 22 7 
4 80 82 7 
5 100 25 7 

AI the above computations were performed on a CDC CYBER 170-720 compu­
ter. The algorithm presented requires on average much smaller nllmber of iterations. 
than the Mulvey and Crowder (1979) algorithm to solve a problem of the same size .. 

--- -- -~---------------------------------------
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4. A clustering problem with fixed number of clusters 
and cluster sizes 

4.1. Problem Formulation 

The clustering problem formulations described in the last two sections may not 
necessarily generate desirably sized clusters. Very large clusters or a large number 
>{)f very small clusters may be a consequence of these clustering algorithms. In this 
section, we formulate an eigenvector based approach which allows a fixed number 
of clusters of fixed size to be generated. We begin by introducing the following 
two definitions. Consider an undirected graph G=(V, E) where du is a distance 
measure between elements v, and v1. 

DEEINITION 1. A k-cluster of G (V, E) is obtained by deleting the edges of G to 
k 

>{)btain k disconnected subgraphs G1=(V1, E1), i= 1, 2, ... , k and U V1= V. 
1=1 

DEFINITION 2. An optimal k-cluster is a k-cluster which maximizes the sum of the 
intra-cluster distance of the k clusters. 

The optimal k-clustering problem is a generalization of the k-means problem 
(Hartigan, 1975). The main difference is that we impose a limit on the cluster size. 
We formalate the optimal k-clustering problem as a 0-1 quadratic programming 
(0-1 QP) problem. Since n elements are to be divided among k clusters, we assign 
to each element i the variable x 11 , x 12 , ... , x.k where 

if element i is assigned to cluster j 

otherwise 

Each element i is in exactly one cluster, thus 

it 

2 XtJ=1, Vi=l, 2, ... , n 
J=l 

(19) 

Cluster j has exactly m1 elements in it. Therefore, we add the following set of con­
strains to (19) 

11 

2 x,j=mi, Vj=l, 2, ... , k 
i=l 

Since each edge in cluster l (/= 1, 2, ... , k) is represented by the node product 
x11 x1z. then the edge joining element i to element j is included in cluster I if 
and only if x11=x11=1. 
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If du is the distance between elements i andj, then the total distance of all distan­
ces in all k clusters is given by 

k rt-k " 

.2.: .2.: .2.: diJ X 11 X jl 

1=1 i=l J=i+1 

The 0-1 QP formulation of the optimal k-clustering problem is: 

(P3) 

k n-1 n 

min .2.: .2.: .I; dtJ X 11 X11 
1=1 i=l J=i+l 

k 

s.t. .2,; x 11 = 1, Vi= 1, 2, .. . , n 
j= 1 

k 

.}; xu=mJ> Vj= 1, 2, ... , k 
i=l 

xu=O or 1, Vi=l, 2, ... , n 
Vj=l, 2, ... , k 

4.2. An Approximation Algorithm for Solving Problem (P3) 

(20) 

(21) 

(22) 

(23) 

An eigenvector based approach is described for ,finding an approximate solution 
to problem (P3). This eigenanalysis approach is a simple extension of an approach 
l.l.~ed by Barnes (1982) and Vannelli (1984) to partition the nodes of a graph subject 
to the constraints given in (P3). In this case one is maximizing the objective function 
in (P3). Clearly, problem (P3) is equivalent to 

k n-l n 

max 2;~ }; ( -du) xil x1, (24) 
1=1 i=l j=l+1 

k 

s.t. .}; xu=l, Vi=l, ... ,n (25) 

(NP3) j=l 

n 

,2: xu=m1 , Vj=l, ... , k (26) 
1=1 

xu=O or 1, Vi=l, ... , n (27) 
Vj=1, ... , k. 

Given that -duE -D, Barnes (1982) shows that problem(NP3) can be approxi­
mated by the linear transportation problem 

(TP3) 

k n Uu 

max ~ ~ ym, xu 

k 

s.t. ,2; xil=l, Vi=l, ... , n 
J= 1 

(28) 

(29) 
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n 

_,2; xu=mh Vj= 1, ... , k (30) 
i= 1 

xu;;:;,O, Vi= l , ... ,n 
Vj= l, ... ,k 

(TP3) 

(31) 

where A.1 ;;:::: ... ;;:;,).k are the k largest 'eigenvalues of -D (k smallest eigenvalues 
of D) and u1 , u2 , ... , uk are the corresponding eigenvectors. 

The linear transportation problem can be solved in the worst case in 0 (n 3
) time 

(Lawler, 1976). 

4.3. A Numerical Example 

We apply the approximation algorithm given in Section 4.2 on the following 
food data problem given in Hartigan (1975, pp. 88) 

Table 5. Clustering Problem from Hartigan (1975) 

Food Type Energy Protein 

13 21 
2 5 36 
3 5 37 
4 11 29 
5 8 30 
6 12 27 
7 6 31 
8 4 29 

Consider the distance measure 

du = llal-ail1 2 

where a1 is the i1
h food type row. For example, 

Calcium 

2 
1 

1 
2 

The 8 X 8 distance matrix D of the food data representation of Table 5 is 

0 289 321 68 106 37 150 145 
289 0 2 85 45 130 27 50 
321 2 0 101 59 150 37 66 

D= 
68 85 101 0 10 5 30 49 

106 45 59 10 0 25 6 17 
37 130 150 5 25 0 53 68 

150 27 37 30 6 53 0 9 
145 50 66 49 17 68 9 0 

(32) 



Clustering analysis -151 

If we wish to find two optimal clusters of D where each group has four elements, 
we find the two largest eigenvalus of - D which are 488.4 and 98.059 respectively. 
The corresponding eigenvectors are 

ui=[.655, -.447, -.495, .1102, -.0503, .259, -.1709, -.124Y 

ui=[.363, .1658, .338, -.405, - .4737, .308, -.3798, -.315Y 

The transportation problem approximation of the optimal k-cluster problem (P3) is 

2 8 

Max 1/2 }; .2,; ulJ x 11 
j=l i=l 

s.t. x 11 +x12 =1 
X21+Xzz=1 

Xs1 +xsz=1 
x11 +x21 + ... +x81 =4 

The solution of this problem is to group elements 1, 4, 5, and 6 in one cluster and the 
others in the second cluster. The resulting clusters are obtained by permuting the 
rows and columns of D into 

0 10 68 5 30 49 85 101 
10 0 106 25 6 17 45 59 
68 106 0 37 150 145 289 321 
5 25 37 0 53 68 130 150 

D= . ~---------------------------- -: ------- -- --------------' 

30 6 150 53 0 9 27 37 
""' 49 17 145 68 9 0 50 66 
85 45 289 130 27 50 0 2 

101 59 321 150 37 66 2 0 

Note that the sum of the intra-cluster elements in J5 is small in this case. 

5. Conclusions 

The clustering problem has been of interest to many researchers working in 
different areas. In this paper, an attempt has been made to present a uniform view 
of the clustering problems. Two popular representations of this problem are matrix 
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models and graph models. In the matrix representation, rows are rearranged such 
that "similar" rows are adjacent in the permuted matrix. In clustering problems 
modelled by graphs, the object is to decompose the graph irito sub-graphs such 
that there are minimal interconnections between the sub-graphs. 

Three distinct integer programming formulations, which cover important va­
riations of these two representations were presented. First, we considered the pro­
blem of finding natural clusters. The problem was shown to be equivalent to two 
travelling salesman problems, which can be solved by efficient heuristic techniques. 
Second, a clustering problem with a fixed number of clusters was discussed. A La­
grangian relaxation method was developed for solving this problem. An efficient 
subgradient algorithm was developed and was shown to require a much smaller 
number of iterations than the Mulvey and Crowder (1979) algorithm. Finally, 
a clustering problem with a fixed number of clusters and cluster sizes was fotmula­
ted. An eigenvector approach led to an approximation of the odginal problem by 
a linear transportation problem. 
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Analiza skupien: modele i algorytmy 

W artykule analizuje si~ zagadnienie grupowania wynik6w obserwacji w jednolite grupy na 
podstawie danych charakterystyk wynik6w obserwacji. Podano trzy r6Zl1e sformulowania zadania 
programowania calkowitoliczbowego, odzwierciedlaj~ce wame warianty zagadnienia analizy sku­
pien. Warianty te obejmuj~: znajdowanie naturalnych skupien, ograniczenie ilosci skupie:6 oraz 
ograniczenie licznosci skupien. Przedstawiono sprawne techniki heurystyczne rozwi~zywania po­
danych zagadnien, posluguj~ce si~ mno:lnikami Lagrange'a i wartosciami wlasnymi. 



154 A. KUSIAK, A. VANNELLI, K. R. KUMAR 

KJiacTepHLiii aoaJIH3: MOACJIH 11 aJirOpiiTMLI 

B· CTaTI>H paCCMOTpHBaeTCH 3ap;aqa rpymmpHBKH Ha6mop;emm B O,!UIOpO)J;Hl>Ie rpymn.r, Ha 
OCHOBe )J;aHHI>IX xaparcrepHCTHK 3THX Ha6mop;eH!l:H. )J;aHbi TpH pa3Hble cPOPMYJIHPOBKH 3ap;a'IH 
~eJIO'IHCJieHRoro nporpaMMHpoaaHHH oro6pai!CaiOmea cymeCTBeHHbre napHaHT»r 3a,!l;a'l Knacrep­
uoro aHaJIH3a. 3TH napHaHThr BMemaiOT B ce6e: uaxoiKp;eHHe ecrecraeHHbrx KJiacrepon, orpaHH­
'IeHHe 'IHCJia KJiaCTepon H orpaHH'IeHHe 'IHCJieHRoCTH KnacTepon. Tipep;craaneHI>r JcjlcjleKTHBHI>Ie 
3BpHCTH'Iecme MeTO.ZU,I pemeHHH npHBep;eHHbiX 3ap;aq, 3m fiO)J;XO)J;bi HCfiOJib3YIOT MHOiKHTeJIH 
JlarpaHiKa H co6craeHHl>Ie 3Ha'!eHHH. 


