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In this paper, the problem of clustering observations into homogeneous groups based on
given characteristics of the observations is analyzed. Three distinct integer programming formu-
lations covering important variations of the clustering problem are developed. These variations
include finding natural clusters, constraining the number of clusters and restricting the size of
clusters. Efficient heuristic techniques employing Lagrangian and eigenvector based methods are
developed to solve these problems.

1. Introduction

Classification has a rich history, but numerical methods used for the purpose
of classification are fairly recent. The major developments have occurred in the
last two decades. Sokal and Sneath (‘1@83) published one of the first books on this
subject.

Classification (or typology) is concerned with the identification of an obser-
vation and its placement into a homogeneous group based on some characteristics.
The pursuit of classification can be seen in all fields. For example, in judical science,
the Supreme Court judges may be grouped on the basis of their legal opinions on
a sample of cases. In psychology and consumer behaviour, people may be classified
according to their personality and taste characteristics. In international marketing,
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the world markets can be classified into segments based on cultural, socio-econo-
mical and political characteristics. In strategic management, firms are classifed
according to the production, financial and marketing strategies used. In engireering
design, parts produced are classified according to the geometrical, tolerance and
machining characteristics they possess. Classification and cluster analysis has been
applied in the following areas:

biology (Everitt, 1980), data reorganization (McCormick et al., 1972), medicine
(Klastorin, 1982), pattern recognition (Tou and Gonzalez, 1974), part selection
in automated systems (Kusiak, 1985a), production flow analysis (King, 1980),
race mixture study (Rao, 1977), task selection (Nagai et al., 1980), control
engineering (Siljak, 1984).

In the cases, where it is possible to specify groups a priori, statistical techniques
such as multiple discriminant analysis provide an analytical method to define to-
pology functions (Green, 1978). But when it is not possible to specify these groups,
one needs to resort to various combinatorial algorithms and heuristics to aid in
constructing the clusters. '

An assumption underlying the use of clustering techniques is that homogeneous
clusters actually exist in the data. The basic problem in cluster analysis is to devise
algorithms and heuristics that group entities into clusters based on observed attri-
butes. The development of these heuristics and algorithms have typically depended
on conceptual representation of the process of clustering. These representations
have been largely visual and can be of two distinct types, matrix representations and
graph representations.

Matrix representations have usually been used in the domain of social sciences..
One of the first applications in marketing segmentation and selection was by Green
et al. (1967) who desired to match representative test market with larger product
markets. Here, a variety of market characteristics were gathered for a number of
potential test markets and arranged in a matrix-type representation with rows.
representing cities and columns, the market characteristics. The object was to rear-
range all those rows, which were “similar”, such that they were adjacent in the
permuted matrix. As is often the case, the market characteristics were measured.
in different scales, and therefore, had to be normalised (re-scaled to have a mean
of 0 and a standard deviation of 1) before similarity measurements using weighted.
Euclidean distances were used.

Another application of the matrix rep@n‘tation is in the area of group techno-
logy, which concerns itself with grouping machines (and consequently, the parts
that can be produced on the machines) so as to form independent manufacturing
cells (Burbidge, 1975 and King, 1980). In this application, rows represent the machi-
nes and columns represent the parts produced. The matrix entries are binary, 1 re-
presenting the use of the machine for the part and 0 otherwise. The object is to
permute the rows and columns so as to obtain a block diagonal representation of
the original matrix, with each block representing a cluster.
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Graph representations have usually been used in the engineering sciences field,
particularly electrical engineering. One application arises in the design and moni-
toring of power system operations (Stagg et al., 1970 and Bills, 1970). Here, a weighted
graph representation is used to depict the network of power grid buses, with the
nodes representing the machines, such as transformers, and the edges (or arcs)
répresenting the interlinking connections between these buses. The admittance
between these buses is taken as the weight on (or capacity of) the edges. The object
is to decompose the graph into sub-graphs (by deleting edges) such that there are
minimal interconnections between the sub-graphs (ard hence maximal connections.
within the sub-graphs). ‘

Another application arises in the design of very large scale integration (VLSI)
circuits (Kernighan and Lin, 1970). The circuits are represented as graphs with the
electrical elements, such as resistors, being the nodes of the graph and the wiring
between these elements representing the edges. The purpose of this representation
is to find a way to partition this graph so as to maximize the number of circuits
that can be packed into the chips.

In this paper, we describe three distinct integer programming formulations.
which cover important variations of these two representations. We characterize
the integer programming formulations by two constraints:

(1) fixed number of clusters

(2) restriction on the number of elements within each cluster.

The three integer programming formulations presented allow one to deal with
these two constraints. The first formulation (P1) does not incorporate any of these
constraints: that is, we allow the algorithm to generate natural clusters. Since many
clusters could be generated by the first formulation, a second formulation (P2) is
developed which restricts the number of clusters. Finally, we consider a model
which allows one to deal with restrictions on the number of clusters and cluster size.

The paper is divided into five sections. In Section 2, we discuss a clustering
problem with no restrictions on the number of clusters and cluster sizes. A clustering
problem with a fixed number of clusters is presented in Section 3. A Lagrangian
relaxation approach is used to solve this problem. In Section 4, we formulate and
solve a clustering problem with a fixed number of clusters and cluster sizes. An
eigenvector based approach is used in the subsequent analysis. Conclusions are
presented in Section 5.

2. A clustering problem without any constraints

2.1. Problem Formulation

Typically, one formulates a clustering problem, where there is no a priori
information regarding the number of clusters and cluster sizes. In this case the
resulting clusters are usually generated by visual inspection.
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Before formulating a clustering problem that does not restrict the number of
clusters and cluster sizes, let us consider a 0-1 matrix A=[a;;],,xa- For any two
row vectors a,=[a;q, -.., Qs --» diy) and a;=layy, ..., @y, ..., a;,] of matrix 4, define
a distance

diy= "8 (ay, a0 (1a)
k=1

where
1 if a,k=a jk=1
8 (au, au)= (1b)
e 0  otherwise
In this clustering problem, we attempt to permute rows and columns of matrix 4
to maximize the sum of the distances d;; (d’;;) between any two adjacent rows
(columns), respectively. It can be formulated as follows:

m-—1 m n—1 n
(P1 max D= 2 2 d;;+ Z Z d; 2
i=1 J=i+1 i=1 j=i+1
for all n! m! possible matrices obtained permuting rows and columns of the initial
matrix A4. :

Lenstra (1974) has shown that problem (P1) is equivalent to two travelling
salesman problems. Based on this fact the following two conclusions can be drawn:
(1) this clustering problem is an NP-complete problem
(2) a travelling salesman algorithm can be applied to solve the clustering problem.

J

2.2, Algorithms for solving problem (P1)

To date a large number of algorithms for solving problem (P1) have been de-
veloped by researchers working in many different areas. Some of the most efficient
heuristic algorithms have been discussed in Kusiak (1985), namely:

(1) McCormick et al. (1972)

(2) Bhat and Haupt (1976)

(3) King (1980, 1982)

(4) rank energy (Kusiak, 1985).

All of these algorithms are based on rearranging rows and columns of matrix 4
to produce some visible clusters. The difference between them is in the way this
rearrangement is performed.

Computational complexity of each of these algorithms is shown in Table 1.

Table 1. Computational Complexities of Clustering Algorithms

McCormick et al (1972) Bhat and Haupt (1976) King (1982) Rank Energy

' Oy (nm+-n? m),; Op (nm?-+n? m) Ok (nm?-+n? m) Og (nm?-+n* m)
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3. A clustering problem with fixed number of clusters

3.1. Problem Formulation

In order to formulate this problem let us introduce the following notation:
n number of elements
m required number of clusters
d,; distance from element i to element j (4;;=0), Vi#j=1,...,n and d;;+0,
Vi==i= 15w ).
1 if i*® element belongs to j* cluster

Xy = ;
0 otherwise

The objective function minimizes the total sum of distances:

n n
Z =min Z (x)= Z Z d;y x4y 3

i=1 j=1

. P
s.t. ijj=1 Vi=1, ..., n @)
T
P2)
Zx”=m (5)
j=1

XS Koy Vil e it V=1 nam ©)
X=0,1 Vieliwen Y=l ..,n0 @)

Constraint (4) ensures that each element belongs to exactly one cluster. Constraint
(5) specifies a required number of clusters. Constraint (6) ensures that element j
belongs to cluster j only when this cluster is formed. The last constraint (7) imposes
integrality.

3.2. A Subgradient Algorithm

Problem (P2) has been solved by Mulvey and Crowder (1979) but a more efficient
subgradient algorithm is presented here. The main difference between the proposed
algorithm and that of Mulvey and Crowder (1979) is in the procedure of computing
lower bounds. The algorithm of Mulvey and Crowder (1979) computes the lower
bounds based upon a heuristic algorithm developed by Ward (1963). The presented
subgradient algorithm is based on a simple procedure of computing lower bounds
shown in Arthanari and Dodge (1981).
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Dualizing on constraint (4) the objective function (3) is transformed as follows
(for u;>0, Vi=l, ..., n)

Zu%miﬁ Z ()= E j diyx;; + 2": u; (1 - }:’:xij) 8)
=1, = i=1 j=1

Reordering (8) the following relaxed problem is obtained

Z,=min Z (u;)= Z Z (dij—u) x5+ 2 U ©)
i 171

=% J=1
P.)
s.t. (5), (6) and (7).
The best choice of u is an optimal solution to the dual problem
Zy,=max Z, (10)

(D)
s.t. (5), (6) and (7).

FRAMEWORK OF THE SUBGRADIENT ALGORITEM

In the subgradient algorithm one specifies initial values of Lagrangian multi-
pliers u) and in each iteration k+1 an updated sequence u*** is generated as follows:

R - (11)

where: of is a positive scalar step size
g¥ is a subgradient; in the case of the problem (P2)

g=1- M}, (12)
- :

where X, is an optimal solution to the problem (2,)
The most commonly used step size is
¥ (UB*~Z})
lig“l :
where: y* is a scalar statisfying 0<y*<2 (see Motzkin, 1954)

UB* is an upper bound on Zj
l®]l is an Euclidean norm.

K

(13)

To compute UB* in our subgradient algorithm a simple heuristic, generating a feasible
solution to the problem (P2) is used.

In order to solve the dual problem (D) the following general framework of a sub-
gradient algorithm is applied:
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Step 0. Set iteration number k=0 and choose initial values of Lagrangian mul-
tipliers u¥, i=1, ..., n.

Step 1. Solve problem (P,) for all uf. The value obtained Z, is a lower bound on
the value of the objective function Z, in (D).

Step 2. Generate a feasible solution to problem (P2). The value Z, is an upper
bound on the value of the objective function Z, in (D).

Step 3. If the current solution to the problem (D) satisfies a given stopping cri-
terion, stop; otherwise go to Step 1.

LoweR BoUNDS PROCEDURE

A procedure for computing the lower bounds given in Arthanari and Dodge
(1981) will be applied. Denote:

S”=min {di.l-—ui’ 0} (14)
and let S_,'= 2 Sig.
i=1
To minimize (9) let us arrange the first m values of Sy in an increasing order

Sj (1)<SJ (2)< ore QSJ (m) and let the set {] (1),] (2), ...,j(m)}=L.
The optimal solution to the problem (P,) is then

. |1 ifi=jeL
= " 15)
0 otherwie
and
1 cifizjel
X= i 16)
0 otherwise

Substituting xfj of (15) and (16) into (9) alower bound for the problem (D) is obtained.

UrPER BOUNDS PROCEDURE

A feasible solution to the problem (P2) can be computed in the way shown
in Arthanari and Dodge (1981), namely: '

1 if i=jelL a7
AT 0 otherwise '
and
1 ifi#j and dy=mind,;
= : = B (18)
0 otherwise

One can easily see that the above solutions satisfy all constraints of problem (P2).
Substituting all x;; to (1) an upper bound to the problem (D) is obtained.
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‘SUBGRADIENT ALGORITHM
The algorithm for solving the problem (D) is as follows:
Step 0. Set k=1, u*>0, &>0, &>0, y°>0, UB°=+00, LB®=—00, where:

u? initial value of the Lagrangian multipliers

&1, &, precision values
70 initial value on the scalar (0<y°<2)
UB° initial upper bound on (10)

LB initial lower bound on (10)

Step 1. Compute a feasible solution for (P2) from (17) and (18) in order to obtain
a value Z% of (3).
Compute an upper bound on (9)
UB*=min {UB*~1, Z*}.

Step 2. Compute the values of x}; from (15) and (16) and substitute into (9) to
obtain a value Z* for updated values of uf, i=1, ..., n. '
Compute a lower bound on (Zp)

LB*=max {LB*~1, ZE%,
If ZE<LB*, then reduce 9~
If y*<e,, stop; otherwise continue.
If (UB*—LB¥)|UB*<z¢,, stop; otherwise go tosstep 3.

Step 3. Compute the following:
(@) subgradients g¥ at x7;

g=1— Z X1
=1

(b) step size
of= —y* (UB*—ZF)

llg:l
(c) updated values of Lagrangian multipliers
uk+1___uk+ OCkgi‘
: S 1

Set k=k+1 and go to Step 1.

3.3. Computational Results

The subgradient algorithm described has been applied to solve a number of
problems. For each problem the distances d;; were generated by a uniform, con-
tinuous random number generator. Different values of initial parameters u? and »°
have been tested. The algorithm performed well for #?=1.1 max {d,;} and y°=0.75
which were determined experimentally. J
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Tables 2 and 3 show the number of iterations and CPU time (in seconds) for
20 different problems with the precision value &;=59% and &,=0.1% respectively.

Table 2. CPU time and number of iterations for problems solved with the precision value
UB—LB

S gneE s
2 i %< 5%
N 17 et TCE RS W DGR WA SR SR, R, S
5 5 5 4 5 5 5 5 5 5 5

0.39 1.04 2.05 3.31 4.88 6.65 8,86 11.46 14.40 17.11

10 5 5 4 4 4 4 4 4 4 4
03 071 12 215 330 4465 6317 89 1638 125

Table 3. CPU time and number of iterations for problems solved with the precision value
UB—LB

&= ——(‘]B—— 100%<0.1%
N 10 20 30 40 50 60 70 80 90 100
5 8 8 8 8 8 8 8 8 8 13

0.52 1.69 3.28 5.34 794 10.87 1436 18.66 23.17 4551

10 8 7 £ 7 7 7 7 7 7 7
0.38 1.08 2.28 3.90 3.92 8.34 10.81 14.68 1850 22.28

As one can see in Tables 2 and 3 the algorithm requires a small number of iterations,
to generate a good quality feasible solution or in many cases the optimal solution.

To show the efficiency of this algorithm we have solved five sets of different
problems by this algorithm and compared results obtained with ones presented
by Mulvey and Crowder (1979). Table 4 illustrates this comparison.

~

Table 4. Comparison of the Subradient Algorithm to the Algorithm
of Mulvey and Crowder (1979)

Problem Number of Number of Iterations for m=>5
Number Attributes Mulvey and Crowder (1979)  Proposed
n Algorithm Algorithm

1 25 26 6

2 50 74 7

3 70 22 7

4 80 82 7

5 100 25 7

Al the above computations were performed on a CDC CYBER 170-720 compu-
ter. The algorithm presented requires on average much smaller namber of iterations
than the Mulvey and Crowder (1979) algorithm to solve a problem of the same size.
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4. A clustering problem with fixed number of clusters
and cluster sizes

4.1. Problem Formulation

The clustering problem formulations described in the last two sections may not
necessarily generate desirably sized clusters. Very large clusters or a large number
of very small clusters may be a consequence of these clustering algorithms. In this
section, we formulate an eigenvector based approach which allows a fixed number
of clusters of fixed size to be generated. We begin by introducing the following
two definitions. Consider an undirected graph G=(V, E) where d,; is a distance
measure between elements »; and v;.

DeemNITION 1. A k-cluster of G (V, E) is obtained by deleting the edges of G to
2 k
obtain k disconnected subgraphs G,=(V}, E), i=1,2,.., k and () V;=V.

i=1

DEerFINITION 2. An optimal k-cluster is a k-cluster which maximizes the sum of the
intra-cluster distance of the k clusters.

The optimal k-clustering problem is a generalization of the k-means problem
(Hartigan, 1975). The main difference is that we impose a limit on the cluster size.
We formalate the optimal k-clustering problem as a 0-1 quadratic programming
(0-1 QP) problem. Since n elements are to be divided among k clusters, we assign
to each element i the variable x;, x5, ..., X Where

1 if element 7 is assigned to cluster j
Xyy= .
0 otherwise

Each element i is in exactly one cluster, thus

1 4
D xy=1, Vi=l,2,.,n (19)

Cluster j has exactly m, elements in it. Therefore, we add the following set of con-
strains to (19)

Since each edge in cluster / (=1, 2, ..., k) is represented by the node product
Xy X;1, then the edge joining element i to element j is included in cluster I if
and only if x;=x;=1.
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If d;, is the distance between elements i/ and j, then the total distance of all distan-
ces in all & clusters is given by

n

2 2 Z diy Xy Xj

I=1 i=1 j=i+1

The 0-1 QP formulation of the optimal k-clustering problem is:

min 2 Z diy X1 Xyt (20)

I=1 i= 1!1+1

s.. 2 x,=1, Vi=1,2,..,n 1)
P3) =
Dl xy=my, - Vi=1,2,..,k (22)
i=4d 5
x;=0 or 1, Vi=1,2,...,n 23)
Vi=1,2,..,k :

4.2. An Approximation Algorithm for Solving Problem (P3)

An eigenvector based approach is described for finding an approximate solution
to problem (P3). This eigenanalysis approach is a simple extension of an approach
used by Barnes (1982) and Vannelli (1984) to partition the nodes of a graph subject
to the constraints given in (P3). In this case one is maximizing the objective function
in (P3). Clearly, problem (P3) is equivalent to

max Z 2 Z —dij) Xu Xy 249

=1 i=1 j=i+1
Z xy=1, Vi=l,..,n (25)
(NP3) {1=1
Z Xy=mys V=l .ak (26)
i=1

x;=0 or I ssvi=luin

e 5

Given that —d;; € —D, Barnes (1982) shows that problem (NP3) can be approxi-
mated by the linear transportation problem

max Z Z — xu (28)

5.t xy=1, Vi=l,..,n (29)

(TP3)
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n

D xy=my,  Vi=1,0,k (30)
(TP3) il
X200 - Mi=loa,m G1)
Vi=1, .. k

where A,> ... >4, are the k largest eigenvalues of —D (k smallest eigenvalues
of D) and uy, u,, ..., u; are the corresponding eigenvectors.

The linear transportation problem can be solved in the worst case in 0 (#°) time
(Lawler, 1976).

4.3. A Numerical Example

We apply the approximation algorithm given in Section 4.2 on the following
food data problem given in Hartigan (1975, pp. 88)

Table 5. Clustering Problem from Hartigan (1975)

Food Type Energy Protein Calcium
1 13 21 1
2 5 36 1
3 5 37 2
4 11 29 1
5 8 30 1 L,
6 12 27 1
7 6 31 2
8 4 29 1

Consider the distance measure
diy=lla,—a;l?
where a; is the i** food type row. For example,
di,=(13-5*+(21-36)>+(1 —1)*=289.
The 8x 8 distance matrix D of the food data representation of Table 5 is

0 289 321 68 106 37 150 145
280 0 2 85 45 130 27 50
321 2 0 101 59 150 37 66
68 8 101 O 10 5 30 49
D=t 45 59 10 © 25 & 17 (2)
37 130 150 5 35 0 53 6
1860 37 3P B0 -6 53 0 g
145 50 66 49 17 68 9 O
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If we wish to find two optimal clusters of D where each group has four elements,
we find the two largest eigenvalus of —D which are 488.4 and 98.059 respectively.
The corresponding eigenvectors are

ul=[.655 —.447, —.495, .1102, —.0503, .259, —.1709, —.124]7
us=[.363, .1658, .338, —.405, —.4737, .308, —.3798, —.315]F

The transportation problem approximation of the optimal k-cluster problem (P3) is

2.0 .8
Max 1/2 Z Zuu Xi;
=1 i=1
st Xi1FXxq=1
Xz3+Fxp,=1
Xg1FXgp=1
X11+X21+ oo FXg=4
X520

The solution of this problem is to group elements 1, 4, 5, and 6 in one cluster and the
others in the second cluster. The resulting clusters are obtained by permuting the
rows and columns of D into 3

G 10 68 5, 30 49 8 101
FOS 010615 25 6 17 45 59
o 150 145 289 321
525 8 0 . 55 68 130- 150

H 17 145 68 1 9 0 50 66
85 45 289 130 | 27 50 O 2
R e

Note that the sum of the intra-cluster elements in D is small in this case.

5. Conclusions

The clustering problem has been of interest to many researchers working in
different areas. In this paper, an attempt has been made to present a uniform view
of the clustering problems. Two popular representations of this problem are matrix
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models and graph models. In the matrix representation, rows are rearranged such
that “similar” rows are adjacent in the permuted matrix. In clustering problems
modelled by graphs, the object is to decompose the graph into sub-graphs such
that there are minimal interconnections between the sub-graphs.

Three distinct integer programming formulations, which cover important va-
riations of these two representations were presented. First, we considered the pro-
blem of finding natural clusters. The problem was shown to be equivalent to two
travelling salesman problems, which can be solved by efficient heuristic techniques.
Second, a clustering problem with a fixed number of clusters was discussed. A La-
grangian relaxation method was developed for solving this problem. An efficient
subgradient algorithm was developed and was shown to require a much smaller
number of iterations than the Mulvey and Crowder (1979) algorithm. Finally,
a clustering problem with a fixed number of clusters and cluster sizes was formula-
ted. An eigenvector approach led to an approximation of the original problem by
a linear transportation problem.
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Analiza skupieri: modele i algorytmy

W artykule analizuje si¢ zagadnienie grupowania wynikéw obserwacji w jednolite grupy na
podstawie danych charakterystyk wynikéw obserwacji. Podano trzy rézne sformulowania zadania
programowania catkowitoliczbowego, odzwierciedlajace wazne warianty zagadnienia analizy sku-
pien. Warianty te obejmuja: znajdowanie naturalnych skupieri, ograniczenie ilosci skupien oraz
ograniczenie liczno$ci skupien. Przedstawiono sprawne techniki heurystyczne rozwiazywania po-
danych zagadnien, postugujace sie mnoznikami Lagrange’a i wartosciami wiasnymi.
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Kiacrepusiii anaan3: MOJeNH H aJrOPATMBI

B cTaTsd pPacCMOTPHBACTCA 3aada IPYIMIMPABKA HAGMIONEHWHA B ONHOPOMHBIE IPYIIBI, HA
OCHOBE MJaHHBIX XapaKTepUCTHK 3THUX HabGmromenwii. Jauel Tpu pasHbie GOPMYIEPOBKH 3a4a4d
LIEIOYHCIIEHHOr0 IPOTPAMMHEPOBAHAS OTOOPAXKAIOMICH CyIICCTBEHHLIE BAPHAHTHI 3324 KJIaCTep-
HOTO aHany3a. OTH BaPHAHTH BMEMAIOT B c0e: HAXOXKICHAE €CTECTBEHHBIX KIACTEPOB, OrpaHE-
YEeHAE YHCJIa KJIACTEPOB M OrpaHWYEHWE YUCICHHOCTH KiacrepoB. IlpencraBiessl 3thdexTHBHBIE
3BPHCTUYECKAC METOIBI PEIICHUS IPUBEACHHBIX 3aJa4., OTH HOJXOABI HCIONB3YEOT MHOMKHTEIH
Jlarparxa u COOCTBEHHBIC 3HAYCHMUSL,



