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A new cross-decomposition method, called GPM, is proposed. Starting from a ~1 matrix, 
the GPM leads to a set of non encroaching blocks in such a way that: 
1) the number of 1-values in the blocks is as high as possible, 
2) ,the nUmber of 0-values outside the blocks is also as high as possible. 

i- The GPM is then compared with the bond e~ergy method (BEM). 

0. Introduction 

A job-shop being given, the approach of Group Technology is to find a parti­
tion of the machines in production subsystems, and a partition of the parts in the 
same number of part families in such a way that, if possible, the parts belonging 
to the same part family are manufactured on the same production subsystem, and 
only on it. 

The first research in that way has been made by Burbidge (1963). Me Auley 
{1972) has proposed the single linkage cluster analysis method. Me Cormick et al. 
(1972) have developed the bound energy method (BEM). The rank order clustering 
method (ROC) has been proposed by King (1980), . 

This paper is devoted to a new method, called GPM, which solves the above 
mentioned Group Technology problem. 

We first recall the characteristics of the problem. In the second paragraph, 
we introduce a criterion, and set the problem as an optimisation problem. We 
then prove a fundamental result which is used to build up a new algorithm. 

The last .paragraph is devoted to the comparison between the GPM and the 
BEM, because the BEM seems to be the best adapted method for solving the Group 
Technology problem. 
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1. Setting of the problem 

We consider a set of n objects and a set of m items, called X and Y respectively. 
The weight of the object i is denoted by w1• 

We define the matrix A=[a1,J, i= l, ... , n; j = l, ... , m, as follows: 

ll if the item j holds for the object i 
a, J= 

' 0 otherwise 
(1) 

We denote by Wq the set of pairs (P~, P~), where P~= {X\ ... , Xq} is a partition 
of X into q subsets and P~= { Y\ ... , Y4 } is a partition of Y into q subsets. 

We are looking for a couple (P;4
, P;q), where P~4={X*1, ... , X*q} and p;«= 

={Y*t, ... , Y*q}, in such a way that: 
q 

1. Ev= {auf(i,j) e U (X*', Y*')} contains the maximal number of 1-values "di-
r=l 

stributed as well as possible among the different blocks: 

E;= {a1, 1/(i,j) e (X*', Y*')}" 

2. Ev={atJfalJ ~Ev} contains the maximal number of 0-values. 

In terms of Group Technology, if X is a set of parts and Y a set of machines, 
the problem consists in finding a partition of the set of parts into q part families 
and a partition of the set of machines into q production subsystems in such a way 
that, for r= 1, ... q, each part belonging to the r-th part family is mainly manufac· 
tured using the machines of the r-th production subsystem. • 
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In other words, the objective is to obtain a matrix like B (see Fig. 1). starting 
from A by permutation of rows and columns in an adequate manner. 

In the next paragraph, we choose a criterion, set the problem, and propose 
a fast algorithm which contributes to a "good" solution of this" problem. 
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2. A fast cross-decomposition method 

1.1. The problem 

Using the previous notation, we set the problem as follows: 
find a couple (P~q' P;q) in such a way that: 

h 
q 

(i. j) e u (X*'· Y*') 
r=l 

= Max {h 
(P~, p~) e w. q 

(i, j) e u (X', Y') 
r=l 

where h E [0, I]. 

q 
(I. j) ~ u (X 0 ' ¥ 0 ") 

r=l 

w1 au+(l-h) 
q 

(i,J)~ u (X', Y') 
r= 1 
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(2} 

Suppose that we are able to find (P;q, P;q) which verifies (2). The result depends. 
on the value of h, and for some values of h, one or more elements of P~q and P;lll 
may be empty. . 

For instance, if h=1, it is easy to see that: 

{XU-{1 n} X* 2 =X* 3 = =X*q_,;\ - , ... , ' ' .. . -'IJ 

Yu-{1 n•} Y* 2 -Y*3 - -Y*q_,;\ - ' . . . , .. ' - - ... - -VJ 

is an optimal solution of the problem, according to the criterion (2). 
Then, if the constraint: 

X*r=f(/J} 
. r=l, ... ,q 

Y*r=ff/J 
(3) 

holds, we often will have to try various values of h before obtaining a solution which 
verifies (3). A good strategy to reach such a value of h is the following (e below 
is a given constant, e.g. the occuracy with which computer hold numbers): 

I. Set h1 = 1/2 
2. For i=2, 3, 4, ... 

2.1. Set e1=1/21 

2.2. If h1
-

1 leads to a solution which does not verify (3), then 

I 2.2~·-1_._i_f_e_1 _<_e_,_t_he_n 

I 
2.2.1.1. We don't reach a solution which verifies (3) 
2.2.1.2. End of the process 

2.2.2. If e1 ~e, then 

2.2.2.1. Set h1 =h1 - 1 - e1 

2.2.2.2. End of the loop 2. 
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1

12.3. If h1
-

1 leads to a solution which verifies (3), then 

I I 1

2.3.1. We keep the solution 
2.3.2. End of the process. 

In the following, we always use the same process in order to choose a good 
value of h. 

2.2. A good solution knowing an initial partition Pt 1 

We suppose that there exists a partition of the set of rows of A in q non-empty 
subsets: 

We will show that it is possible to obtain a good solution of (2) starting from 
this initial partition. We first prove the fundamental result. 

2.2.1. The fundamental result 

THEOREM 1. Let Pk_x={Xi, Xi, ... , Xk} and PhK={Yi, Yi, ... , Y~:} be partitions 
of X and Y respectively. 

1. For j=l, ~ .... ,m, we compute: 

for r=l, 2, ... , q 

and we denote by rf.: the integer which verifies: 

y~f<U)= Max y~(j) 
r:::: 1. 2, ... ,q 

We then assign the item j to the subset Y .ft 
Finally, we obtain the partition: 

Pi.K+l={Yi+l• Yi+u ... , y~+1} 
in which some elements may be empty. 

2. For i=l, 2, ... , n, we compute: 

for s=l, 2, ... , q 

and we denote by s~ the integer which verifies: 

X si (i) = Max X~ (i) 
K .s=l,2, . . ,,q 

We then assign the object to the subset X K·~ 1 

(4) 

(5) 
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Finally, we obtain the partition: 

Pi. K+l ={Xi+l> x_i+l> ... ; xk+l} 
in which some elements may be empty. 
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Then, either the partitions (Pt K+l• P~. K+ 1 ) are better than the partitions 
(PtK,P~.K) with regard to the criterion (2), or the value of the criterion (2) is 
the same for both solutions. 

Proof. 
1. Let us consider j e= {1, 2, ... ,m} and suppose that: 

j e Y~ with re {1, 2, ... , q} 
If r=rf, then the contribution of the item j to the critetion (2), knowing P~. K• 

remains the same. 
lf r=l=rk, then this contribution increases (see (4)) and P~. K+ 1 leads to a greater 
value of the criterion (2) than P~. K (knowing P'f.:. K). 

Finally, (P'f.:.K,P},K+ 1) is either better than (P'f.:.K• P~.K), or leads to the same 
value of the critetion (2). (6) 

2. Using the same arguments, it is easy to show that the solution 
(P'f.:.Ku•P~.K+ 1) is either better than (P'f.:.K,P~,K+ 1), or leads to the same value 
for the criterion (2). (7) 

3. From (6) and (7), we conclude that either the solution (Pk,K+I•P~.K+ 1) is 
better than the solution (P'f.:. io P~. K), or that the value of the criterion (2) is the same 
for both solutions. 

This completes the proof. 

2.2.2. The algorithm 

We suppose that the initial partition P'J.:, 1 ={Xt,XJ, ... , Xi} is known. 
· We propose the following algorithm for a given value of he [0, 1]: 

1. Set K=2 
2. Compute Pt,K starting from P'f.:.K- 1 (see (4)) 
3. Compute P'f.:. K starting from P~. K (see (5)) 
4. !!' [(K=2) or ((P'f.:.K,P~,K) is different from (P'f.:.K_ 1 ,P~.K- 1))], go to 2, 

else (Pq Pq ) is a "good" solution. _ X,K' Y,K 

THEOREM 2. The algorithm given above converges. 

Proof. Obvious, if we consider that: 
1. the number of partitions of X and Y is finite, 
2. the solution (P'f.:.K, PtJ is different at each step or the algorithm stops. 

REMARKS 

• 

1. The previous algorithm leads to a solution which depends on the initial 
partition Pi_ 1 • We then have to make several trials in order to obtain a solution 
close to the optimal one. -
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2. The initial partition P'fc. 1 can be obtained using the "nuees dynamiques" 
method. In this method, the number q has to be chosen by the user (see Diday, 
Lemaire, Pouget and Testu (1982)). We siu:nmarize this method in the next 
paragraph. 

2.2.3. The "nuees dynamiques" method 

This method begins with the search of q initial points (i.e. q initial rows of [A]) 
which are as far as possible one from the other, q being the number of subsets be­
longing to P'fc. 1 • We use the Euclidean distance. In the software we are working 
with, the first point is chosen at random. We then compute the number of points 
for which the distance to the first one is less than e, e being chosen by the user. 
This number is called the density of the first point. We then cancel the first point 
and the points used to compute its density, and restart the process by choosing 
at random a point in the remaining set of points, and so on. The process stops 
if the remaining set of points is empty. The q initial points are those with the highest · 
densities. 

The second step of the "nuees dynamiques" method can be described as follows 
(n is the total number of points) according to, Diday, Lemaire, Pouget and Testu 
(1982): 

1. For k=l, 2, ... 

I 1.1.1. For i= l, 2, ... , n 

1.1.1. For p=l, ... , q 

Compute d1, P• distance between the p-th initial point and 
the i-th point of the initial set of points. 

1.1.2. Search d1,p* = Min d1,p 

/1.1.3. Set the i-th poin(i~
1

th~ qclass represented by the p*-th initial point 
1.2. Set q=q\ where q1 ~q is the number of non-empty classes obtained 
1.3. Compute the inertia center of each of the q classes to replace the 

previous initial points 
1.4. If the classes are the same as the previous ones, go to 2, else go to 

j l (next value of k) . 

End of the process. 

3. The bond energy method 

As far as it is known, this method has . been developed by Me Cormick et al. 
(1972). 

We summarize it in this paragraph, using the previous notations. 

----------------~ ~ 
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Let us consider two consecutive columns of [A], for instance j and j+l 
(O<j<m): 

and lat,J+t J 
[A . ]= a2,J+t 

.,J+ 1 : 

a,,J+t 

The bond energy measure between these colums is given by: 

n 

E(A 1 A · )=~a ·a 1 ., ' .,J+l .LJ i,J '· +1 
i= 1 

Similarly, the bond energy between two consecutive lines of A, for instance: 

is given by: 

n 

E(A;,., A1+ 1 , .)=}; a1, 1 • ai+ 1 , 1 
j=l 

The bond energy method consists in classifying the rows and the columns in 
order to maximize the total bond energy of the matrix. 

This problem is a quadratic assignment problem. The computing time increases 
exponentially with the size of the problem. It is the reason why Me Cormick et al. 
have proposed a sub-optimal heuristic procedure which can be summarized as 
follows: 

I 1. Choose one of the columns arbitrarily and place it at the rank 1 

2. For j=2 to m 

j columns being placed, try placing each of the m-j remaining columns in 
each of the i possible positions (between the first and the second columns already 
placed, between the second and the third, ... ,and, finally, after the {j-1)-th 
column). Keep the column which leads to the maximal increase of the total 
bond energy and its position. 

3. Choose one of the rows arbitrarily and place it at the rank 1 

4. For i=2 to n 

Repeat on the rows the procedure described in point 2. 

As it will be seen, the results depend on the choice of the first line and of the 
first column. 
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4. Comparison of the two methods 

In what follows, the bond energy method will be called BEM, and the new 
method showed in the second paragraph will be called GPM (i.e. Garcia and Proth's 
method). 

In order to :make a comparison between BEM and GPM, we first have to choose 
significant criteria regarding the problem presented in the first paragraph. 

4.1. The criteria 

Two types of criteria seem to be significant . 

4.1.1. Computation times 

The first type of criteria deals with the computation times. 
For the BEM method, we give the "CPU-equivalent time" which is a quantity 

proportional to the CPU-time needed to reach tbe solution. 
We give two "CPU-equivalent times" for the GPM method. The first one cor­

responds to the time needed to obtain the initial partition P~. 1 (see 2.2.3.), and 
the second one corresponds to the time used to reach a "good" solution using the 
algorithm used in 2.2.2. The search of the q initial points using a density appro­
ach needs the bigest part of the "CPU-equivalent time" (between 70 and 90%}. 
In practice, it is easy to spare this time either by choosing the initial points at random ~ 

or by giving it to the system. 

4.1.2. Quality of the solution 

Let us consider Figure 1. 
For k = l, 2, ... , q, we define the density dk of the block E~ by: 

dk = .2; ai,Jfsk 
. (i,j)EE'i, 

where sk is the size (i.e. the number of elements) of E~. 
In the same way, the density of En is given by: 

d= .2; (l - ai, 1)/s 
(i,j)EEn 

where s is the size of En· In other words: 

q 

s=n·m- .2 sk 
k=l 

(n an m are respectively the number of rows and the nu~ber of columns of [A]). 
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The following values are significant to evaluate the quality of the solution: 
a. the main density 

b. the standard deviation of the dem.ities 

l- 1 { ql 1]1/2 
as= +T l (dk - S)2 +(d-S)2 J 

q k: 1 -

In some cases, the BEM method leads to a matrix [B] for which it is impossible 
to extract q blocks. In that case, we indicate that a solution does not exist. 

4.13. The test 

The matrices used to test the method are obtained using the following process~ 

1. We give the size of the matrix (i.e. n and m) 

2. We give q, number of expected blocks 

3. The number of rows and columns of each block is generated at random. 

4. We give a "percentage of noise". It is the probability to have 0 in a given location 
of a block and 1 in a given location outside the blocks. The matrix [B] is gene­
rated at random taking into account this percentage. 

5. Finaily, to obtain [A], we mixt the rows and the columns of [B] using a random 
process. 

Some results are given in the following table. 

Size of the 
I BEM I GPM 

Test matrix % 
num-

n I m 
of CPU First Second Total I 

ber noise q equ. s t:Ts ""l step step CP~-eq. , s t:Ts rows ,colums 
times CPU-t. CPU-t. I t1me 

I I 
1 1 o 1 15 10 0 3 6.1 1 0 3 3.3 6.3 

----- - - -- - - - -- - - ----
2 15 ' 10 5 3 6 0.966 0.034 4.5 4.6 9.1 0.966 I 0.034 

-- - - -- --- - -- - - ----[-- -- --
3 25 10 10 4 8.5 0.936 1 0.046 6.5 1 5.4 11.9 0.938 0.038 -. t -- - - - ------ ~--· - - --

10 15 5 6.2 no so- no so- 4.4 4.7 · 9.1 0.916 0.061 

1 I utioni lution I 
-;-I---;;--;---;;-, 0.749 1 0.29~ 1~ - 19-

--
5 1100 95 0.902 0.047 
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All the tests we have made lead to the same conclusion: 
- The quality of (he solution is good with both methods if the percentage of noise 

is close to zero. (The quality of the solution is good if S is close to 1 and a 
is close to 0). 

-- The quality of the solution given by the BEM decreases very fast if the percentage 
of noise or/and the size to the matrix increases. On the contrary, the stability 
of the GPM is noteworthly. 

- The CPU time is better with the BEM method than with the GPM method 
if we search the initial partition using the density approach. The conclusion 
is different if the user gives the initial points. 

·Conclusion 

The aim of the GPM is to find a set of non encroaching blocks in a matrix by 
·permutation of the rows and columns in an adequate manner. 

As far as we know, the BEM was one of the best adapted method to reach this 
·objective. It seems that the performances of the GPM are better than those of the 
.BEM. This result is of high interest in Group Technology. 

As we have shown, the result obtained using the GPM depends on the initial 
partition of the rows. Consequently, it depends on the first initial point, which is 
·chosen at random, and on the process used to choose the other points. A possible 
way to the future research is to find a fast method which leads to a "good" initial 
partition. 
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'GPM - nowy algorytm dekompozycji skrosnej. 
Porownanie z metodl! energii powil!zan 

Zaproponowano nowl! metod~ dekompozycji skrosnej, nazywan[! dalej GPM. GPM prze­
prowadza 0-1 macierz w zbi6r wzajemnie rozll!cznych blok6w w ten spos6b, ze 
1. liczba jedynek w blokach jest mozliwie najwi~ksza, 
2. liczba zer poza blokami jest takZe mozliwie najwi~ksza. 

Nastcopnie por6wnano GPM z metod& energii powi&zan BEM. 
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rflM - HOBbiU aJirOpHTM CKB03HOU AeKOMU0311QHH. 

CpaBuemie c MeTOAOM 3Hepruu cBH3eii. 
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IlpeAJIO)!(eHO HOBb!li: MeTOA CKB03HOH AeKOMI!03HWJR AaJiee Ha3HBaeMbi riiM. riiM nepe­

BOAHT 0-1 MaTp~y B COBOKYITHOCTb Pa3AeJlbHb!X 6JIOKOB, TaK '!TO: 

1. 'IHCJIO e~ B 6JIOKaX B03MO)!(HQ 60JlbiDe. 

2. 'IHCJIO HyJieli: BHe 6JIOKOB TO)!(e B03MO)!(H0 6oJ1bme. 

3aTeM cpaBHeHO riiM C MeTOAOM :meprRR CBH3eH. 




