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A new cross-decomposition method, called GPM, is proposed. Starting from a 0—1 matrix,
the GPM leads to a set of non encroaching blocks in such a way that:
1) the number of 1-values in the blocks is as high as possible,
2) the number of 0-values outside the blocks is also as high as possible.
- The GPM is then compared with the bond energy method (BEM).

0. Introduction

A job-shop being given, the approach of Group Technology is to find a parti-
tion of the machines in production subsystems, and a partition of the parts in the
same number of part families in such a way that, if possible, the parts belonging
to the same part family are manufactured on the same production subsystem, and
only on it.

The first research in that way has been made by Burbidge (1963). Mc Auley
(1972) has proposed the single linkage cluster analysis method. Mc Cormick et al.
(1972) have developed the bound energy method (BEM). The rank order clustering
method (ROC) has been proposed by King (1980).

This paper is devoted to a new method, called GPM, which solves the above
mentioned Group Technology problem.

We first recall the characteristics of the problem. In the second paragraph,
we introduce a criterion, and set the problem as an optimisation problem. We
then prove a fundamental result which is used to build up a new algorithm.

The last paragraph is devoted to the comparison between the GPM and the
BEM, because the BEM seems to be the best adapted method for solving the Group
Technology problem. '
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1. Setting of the problem

We consider a set of n objects and a set of m items, called X and Y respectively.
The weight of the object i is denoted by w,.

We define the matrix 4A=Jq, ], i=1, ..., n; j=1, ..., m, as follows:

1 if the item j holds for the object i
a1,3= : 1)
0 otherwise
We denote by W, the set of pairs (P%, P%), where P4{={X?, ..., X9} is a partition
of X into g subsets and P{={Y", ..., Y9} is a partition of ¥ into g subsets.
We are looking for a couple (P34, P}, where Py?={X*!, .., X*%} and Py'=
={Y*!, ..., Y*}, in such a way that:
a
1. Ep={a;;/(i,j) e | (X*", Y*)} contains the maximal number of l-values *“di-

r=1

stributed as well as possible among the different blocks:
Ej={ay,,[G,]) € (X*, Y*)}”
2. Ey={ay/a;; ¢ Ep} contains the maximal number of 0O-values.

In terms of Group Technology, if X is a set of parts and Y a set of machines,
the problem consists in finding a partition of the set of parts into g part families
and a partition of the set of machines into ¢ production subsystems in such a way
that, for r=1, ... g, each part belonging to the r-th part family is mainly manufac-
tured using the machines of the r-th production subsystem.

e S —;
1
: X{ 1 EDI E’;

MATRIX B
Fig. 1

In other words, the objective is to obtain a matrix like B (see Fig. 1). starting
from A by permutation of rows and columns in an adequate manner.

In the next paragraph, we choose a criterion, set the problem, and propose
a fast algorithm which contributes to a “good” solution of this problem.
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2. A fast cross-decomposition method

2.1. The problem

Using the previous notation, we set the problem as follows:
find a couple (Py%, P3%) in such a way that:

h Z w; a;;+(1—h) 2 w,(1—a;,)=

he S oo, yary wpg O Ty
r=1 r=1
=Max fr > waid-n 3w ~a)
9)e W, 2)
EheREWE e b @ D¢ 51 &, 1) @y
r=1 r=

where %€ [0, 1].

Suppose that we are able to find (P}%, P;%) which verifies (2). The result depends.
on the value of &, and for some values of %, one or more elements of P}? and P}*
may be empty. A
For instance, if A=1, it is easy to see that:
MR, ), A= Xl
Y ={1,..,m}, YR2=Y®=_ =Y*=(
is an optimal solution of the problem, according to the criterion (2).
Then, if the constraint:
X*r£0
Y*£)
holds, we often will have to try various values of / before obtaining a solution which:

verifies (3). A good strategy to reach such a value of % is the following (¢ below
is a given constant, e.g. the occuracy with which computer hold numbers):

r=1,..,q 3y

1. Set ht=1/2
2. For i=2,3,4, ..

2.1. Set g=1/2! ‘ y
2.2. If hi-! leads to a solution which does not verify (3), then

2.2.1. if ¢<e, then

2.2.1.1. We don’t reach a solution which verifies (3)
2.2.1.2. End of the process

2.2.2. If ¢;>¢, then

2.2.2.1. Set hi=hi"1—¢,
2.2.2.2. End of the loop 2.
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l | 2.3. If A'~! leads to a solution which verifies (3), then
l [ 2.3.1. We keep the solution

‘ 2.3.2. End of the process.
In the following, we always use the same process in order to choose a good
value of A. )

2.2. A good solution knowing an initial partition P} ;

We suppose that there exists a partition of the set of rows of 4 in g non-empty
subsets:

B s X

We will show that it is possible to obtain a good solution of (2) starting from
this initial partition. We first prove the fundamental result.

2.2.1. The fundamental result

THEOREM 1. Let P%  ={Xg, X%, .., X%} and Py, x={Yy, Y%, .., Yi} be partitions
of X and Y respectively.
1. For j=1,2, ..., m, we compute:

y,l'((])—__h Z Wy au-}-(l—-h) 2 w; (l—au)
te Xk 1¢ X%

for r=1,2, .., 4
and we denote by rj the integer which verifies:

r=1,2¢u.54

We then assign the item j to the subset YIQ{_‘H

Finally, we obtain the partition:

q P 1 2 q
PY. K+1—{YK+1’ YK+1’ ey YK+1}

in which some elements may be empty.
2. For i=1, 2, ..., n, we compute:

X @=h D ay+1-h Y (-a)

Je¥y J¢ Yk

for s=1,2;..,9
and we denote by sk the integer which verifies:
xk()= Max  x;() ®)

s=1,2,..,4

We then assign the object to the subset X K’_%fl
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Finally, we obtain the partition:

qu K+1={X11(+1’ X1%+1» e th<+1}
in which some elements may be empty.
Then, either the partitions (Py x.i, Py x..) are bette1 than the partitions
(P%, k- P}, i) with regard to the criterion (2), or the value of the criterion (2) is
the same for both solutions.

Proof.

1. Let us consider je {1, 2, ..., m} and suppose that:

jeYy with re{l,2,..,q}

If r=r}, then the contribution of the item j to the critetion (2), knowing P2
remains the same.
If r#r], then this contribution increases (see (4)) and P} ¢, leads to a greater
value of the crlterlon (2) than P% . (knowing P% ).

Finally, (P%, ¢, P§ x+1) 18 elther better than ( %k Py, x)» orleads to the same
value of the critetion (2). 6)

2. Using the same arguments, it is easy to show that the solution
(P% k+1: P} x+1) is either better than (P% g, Py x.4), or leads to the same value
for the criterion (2). @)

3. From (6) and (7), we conclude that either the solution (P% . ,, P ¢, ,) is
better than the solution (P§, x, P4 ), or that the value of the criterion (2) is the same
for both solutions.

This completes the proof. B

2.2.2. The algorithm

We suppose that the initial partition P§ ,={X7, X}, ..., X{} is known.
- We propose the following algorithm for a given value of % [0, 1].
. Set K=2
Compute Py . starting from P§ ,_, (see (4))
Compute P} x starting from P§ ¢ (see (5))
If [(K=2) or ((P% g, P g) is different from (P} ., P% x_,))], g0 to 2,
else (P% ., P4 ) is a “good” solution.

.A.w:v~

THEOREM 2. The algorithm given above converges.

Proof. Obvious, if we consider that:
1 the number of partitions of X and Y is finite,
. the solution (P4 ., P§ ) is different at each step or the algorithm stops.

REMARKS

1. The previous -algorithm leads to a solution which depends on the initial
partition P% ;. We then have to make several trials in order to obtam a solutxon
close to the optlmal one.

Y, Ky
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2. The initial partition P§ ; can be obtained using the “nuées dynamiques”
method. In this method, the number g has to be chosen by the user (see Diday,
Lemaire, Pouget and Testu (1982)). We summarize this method in the next
paragraph.

2.2.3. The “‘nuées dynamiques” method

This method begins with the search of ¢ initial points (i.e. ¢ initial rows of [A])
which are as far as possible one from the other, g being the number of subsets be-
longing to P§ ;. We use the Euclidean distance. In the software we are working
with, the first point is chosen at random. We then compute the number of points
for which the distance to the first one is less than ¢, ¢ being chosen by the user.
This number is called the density of the first point. We then cancel the first point
and the points used to compute its density, and restart the process by choosing
at random a point in the remaining set of points, and so on. The process stops
if the remaining set of points is empty. The ¢ initial points are those with the highest
densities.

The second step of the “nuées dynamiques” method can be described as follows
(n is the total number of points) according to, Diday, Lemaire, Pouget and Testu
(1982):

1. For k=1,2, ...

! 1.1.1. Fot i=1, 2, ..., n

1.1.1. For p=1, ..;q

Compute d; ,, distance between the p-th initial point and
the i-th point of the initial set of points.
1.1.2. Search d; ,» = Min d,,

p=1,...4

1.1.3. Set the i-th point in the class represented by the p*-th initial point
1.2,  Set g=g', where g*'<g is the number of non-empty classes obtained
1.3 Compute the inertia center of each of the g classes to replace the
previous initial points
1.4. If the classes are the same as the previous ones, go to 2, else go to
| 1 (next value of k)

2. End of the process.

3. The bond energy method

As far as it is known, this method has been developed by Mc Cormick et al.
(1972). : :
We summarize it in this paragraph, using the previous notations.
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Let us consider two consecutive columns of [4], for instance j and j+1
O<j<m):

ag,; ai,j+1

az,; az,j+1
[A.,j]= . and [A,,,-+1]= :J+
an,j an,j+1

The bond energy measure between these colums is given by:

n

E(4, 4. ;:1)= 2 i, i qj+1

i=1

Similarly, the bond energy between two consecutive lines of A4, for instance:

[Ai, -]=[ai,1’ Qi 2y vens ai,m] .
O<i<n

(A, I=lai01, 1,041,255 Qiti,m
is given by:

n

E(A.-,., Ay, )= 2 A, ;" Aiv1,j

i=1
The bond energy method consists in classifying the rows and the columns in
order to maximize the total bond energy of the matrix.

This problem is a quadratic assignment problem. The computing time increases
exponentially with the size of the problem. It is the reason why Mc Cormick et al.
have proposed a sub-optimal heuristic procedure which can be summarized as
follows:

1. Choose one of the columns arbitrarily and place it at the rank 1
2. For j=2 to m

j columns being placed, try placing each of the m—j remaining columns in
each of the i possible positions (between the first and the second columns already
placed, between the second and the third, ..., and, finally, after the (j—1)-th
column). Keep the column which leads to the maximal increase of the total
bond energy and its position.

3. Choose one of the rows arbitrarily and place it at the rank 1
4. For i=2 ton

Repeat on the rows the procedure described in point 2.

As it will be seen, the results depend on the choice of the first line and of the
first column.
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4. Comparison of the two methods

In what follows, the bond energy method will be called BEM, and the new
method showed in the second paragraph will be called GPM (i.e. Garcia and Proth’s
method). :

In order to make a comparison between BEM and GPM, we first have to choose
significant criteria regarding the problem presented in the first paragraph.

4.1. The criteria

Two types of criteria seem to be significant.

4.1.1. Computation times

The first type of criteria deals with the computation times.

For the BEM method, we give the “CPU-equivalent time” which is a quantity
proportional to the CPU-time needed to reach the solution.

We give two “CPU-equivalent times” for the GPM method. The first one cor-
responds to the time needed to obtain the initial partition P% ; (see 2.2.3.), and
the second one corresponds to the time used to reach a “good” solution using the
algorithm used in 2.2.2. The search of the ¢ initial points using a density appro-
ach needs the bigest part of the “CPU-equivalent time” (between 70 and 90%).
In practice, it is easy to spare this time either by choosing the initial points at random,
or by giving it to the system.

4.1.2. Quality of the solution

Let us consider Figure 1.
For k=1, 2, ..., g, we define the density d, of the block E} by:

&= Z ai,j/sk
(i, )EED

where s, is the size (i.e. the number of elements) of Ej.
In the same way, the density of E, is given by:

d= > (1-a,))s
(t,)eEp

where § is the size of E,. In other words:

a
S=n-.m— E Sy

k=1

(n an m are respectively the number of rows and the number of columns of [A]).
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The following values are significant to evaluate the quality of the solution:
a. the main density

q

Y d+d

K
g+1

b. the standard deviation of the densities

iy a 111/2
| (=5 =5y
os lq 12 @ 5’) (d-S) d

k=1

In some cases, the BEM method leads to a matrix [B] for which it is impossible
to extract ¢ blocks. In that case, we indicate that a solution does not exist.

4.1.3. The test

The matrices used to test the method are obtained using the following process:
. We give the size of the matrix (i.e. n and m)
. We give ¢, number of expected blocks

. The number of rows and columns of each block is generated at random.

B W N =

. We give a “percentage of noise”. It is the probability to have 0 in a given location
of a block and 1 in a given location outside the blocks. The matrix [B] is gene-
rated at random taking into account this percentage.

5. Finally, to obtain [4], we mixt the rows and the columns of [B] using a random
process.

Some results are given in the following table.

Size of the BEM GPM
Test matrix o
_—_—— o
mm-| || of CcPU First Second, Total
ber rows colums noise | ¢ equ. S osy | step i step CPU-eq.: S os
| | times CPU—t.iCPU—t.' time |
1 | 15] 10 (1l e = 0 3 ] 3.3 63 |1 to
o |
2 | 15| ‘10 5 13| 6 |0966]0.034 45| 46 9.1 | 0.9660.034
3o IR0 10 |4]| 85 0.93610.046 65| 54| 119 |0.938]0.038
4 |15 10 | 15 | 5! 62 |no so- no so- 4.4t 470 91 10916 0.061
lution| lution ;
A i
5 100 20 | 20 |3]| 70 0.749,0.295 76 | 19 95 0.902 | 0.047
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All the tests we have made lead to the same conclusion:

~— The quality of the solution is good with both methods if the percentage of noise
is close to zero. (The quality of the solution is good if S is close to 1 and &
is close to 0).

— The quality of the solution given by the BEM decreases very fast if the percentage
of noise or/and the size to the matrix increases. On the contrary, the stability
of the GPM is noteworthly.

— The CPU time is better with the BEM method than with the GPM method
if we search the initial partition using the density approach. The conclusion
is different if the user gives the initial points.

‘Conclusion

The aim of the GPM is to find a set of non encroaching blocks in a matrix by
permutation of the rows and columns in an adequate manner.

As far as we know, the BEM was one of the best adapted method to reach this
-objective. It seems that the performances of the GPM are better than those of the
BEM. This result is of high interest in Group Technology.

As we have shown, the result obtained using the GPM depends on the initial
partition of the rows. Consequently, it depends on the first initial point, which is
chosen at randem, and on the process used to choose the other points. A possible
way to the future research is to find a fast method which leads to a “good” initial
partition.
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GPM — nowy algorytm dekompozycji skrosnej.
Poréwnanie z metoda energii powiazan

Zaproponowano nowa metode dekompozycji skro$nej, nazywana dalej GPM. GPM prze-
prowadza 0—1 macierz w zbior wzajemnie rozitacznych blokow w ten sposob, ze
1. liczba jedynek w blokach jest mozliwie najwicksza,
2. liczba zer poza blokami jest takze mozliwie najwieksza.

Nastgpnie poréwnano GPM z metoda energii powigzain BEM,
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TTIM — HoBBIi 2ITOPHTM CKBO3HOIl /IeKOMIO3HIHH,
CpaBHenne ¢ MeTOJOM 3HepruM cBsi3eil.

IIpenoxxeHo HOBEIM METOZ CKBO3HOM JekoMIo3uuuy gajee Hasusaembr I'TIM. I'TIM mepe-
BogmT 0—1 MaTpHIy B COBOKYIIHOCTH Pa3JeibHBIX OJIOKOB, TaK YTO:

1. YHCTIO efUHMI B GIOKAX BO3MOXHO GOIBIIE.
2. 9ucno Hymneil BHE OJIOKOB TOXE BO3MOXHO OoJbIe.

3ateM cpaBreHO I'TIM C METOIOM 3HEPTHU CBS3EH.
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