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In the previous papers of the author and collaborators see, e.g., references some specific cases
of the theory and technique of so-called minimal sets were considered. Now, it is shown that the
fundamental idea of minimal sets concerns a greater number of partitioning-type problems. Basing
on this idea, generalized and g-minimal sets are defined and their properties are derived. Several
examples are given.

1. Preface

The idea of classical minimal sets was introduced by Luccio and Sami (1969),
and developed by Kacprzyk and Stanczak (1976, 1978b). Some general aspects
of this partitioning method and its biases were discussed by Owsinski (1981). Stan-
czak (1984) proposed a polynomial-type algorithm for finding classical minimal
sets.

The idea of classical minimal sets was originated from the network partitioning
problems by Luccio and Sami (1969), and thus it took into account aggregated
strengths of connections between groups of entities rather than their “pure’ simila-
rity or likeness. Therefore, it occurred to be inadequate for some practical purposes
.of nature different than that of a network partitioning type. The analysis performed
by Staniczak (1986) showed that the basis of classical minimal sets consisted of three
elements. They were the method for evaluating ‘“‘connections” between distinct sub-
sets, the way of ranking these “‘connections’ and the fundamental principle which is
described in the final part of this section. That led to the concept of Max-minimal
sets, being analogous to the previous one. Moreover, it was conjectured [Stanczak
(1986)] that there existed more partitioning techniques similar to that of classical
minimal sets and Max-minimal sets. This paper fully confirms the supposition.
It is important not only from the theoretical point of view. It occurred that classical
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minimal sets constituted a valuable tool for solving many practical problems of
network partitioning type (e.g., for cooperative facilities Kacprzyk and Staficzak
(1975), for the computer Kacprzyk and Stanczak (1970), Nowicki and Stanczak
(1980), telecommunication Kaliszewski, Nowicki and Stanczak (1975) and electrical
Luccio and Sami (1969) network). Therefore, it can be believed that these analogous
approaches give a simple and efficient way for solving problems, where reciprocal
“connections” as well as methods of ranking them are defined differently than
either in, e.g., Kacprzyk and Stanczak (1976, 1978b) or in Stanczak (1986). Obvio-
usly, it is better, if possible, to handle and solve the problem of minimal sets in
general and then apply it to real-life models, than to produce a voluminous lite-
rature on its specific cases. -

This paper is organized as follows. First, the general idea of minimal sets is
recalled verbally. Second, in Section 2, it is formalized so as to create a possibility
of deriving some of its basic implications. This, though, leads to a clustering techni-
que being, in general, inefficient from the algorithmic point of view. Therefore,
some additional assumption is necessary. Its introduction produces a particular case
of a generalized minimal set called g-minimal which is discussed in Section 3. Third,
some examples of generalized and g-minimal set theories are given and considered.
The directions of future research in the minimal set theory and technique are
proposed.

Now, let us remind the basic idea of minimal sets (for more detailed discussion
see Stafdczak (1986). Namely, let an aggregate parameter (or any way of calculating
its value) describing either the strength of connections or similarity or dissimilarity,
between two disjoint nonempty sets of entities be given in advance. Moreover,
let some criterion (or relation) useful for ranking the values of the parameter be
defined. This represents the following statement: either “is more strongly connected”
or “is more similar” or “is less dissimilar”, respectively, and is abbreviated
here by “is better to merge”. Let us now consider some nonempty subset of a gre-
ater set of entities. The former is called a (generalized) minimal set if it is better
to merge each of its nonempty proper parts with the remaining part than with the
complement of the subset in this greater set. And this is the fundamental principle
of minimality. More figuratively, a (generalized) minimal set should be either more
strongly connected or more similar or less dissimilar infernally than with its
environment.

2. Generalized minimal sets

We consider aset X,|X|>1, and a function g: {{4, B}: 0+ 4, B X, A0 B=0}-7,
where {4, B} is an unordered pair, and Y is a nonempty set linearly ordered by
some relation <. The definition yields that g is symmetric with respect to its argu-
ments. Moreover, we assume

GlI. g(4,C)<g(B,D),
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for each pair of nonempty sets 4 and C such that AcB, CcD, where B,DcX
are disjoint.

DermniTioN 1. If g (R, X—S)=<(g (R, S—R) holds (here and further on a=(b is
equivalent to the pair of relations: a<b and a#b for a,be Y) for a nonempty
set ScX, S#X, and for each its nonempty subset R#S, then S is called a (gene-
ralized) minimal set.

Applying de Morgan rules to Definition 1, we easily obtain.

COROLLARY 1. Any {x}, x€ X, is a minimal set.

LeMMA 1. Two minimal sets are either disjoint or one of them is included in the other.

Proof. Let Sand Q be distinct minimal sets. The cases S=Q and Q < § are evident,
therefore we can suppose S¢Q and Q¢S. Let SNQ=T#0. For convenience,
we denote P=0Q—T, R=S—T and H=X—-(SUQ). Obviously, P and R are non-
empty. By Definition 1, we get g (T, HU R)=g (T, X—Q)=¢g (P, T'). Thus, using
Gl, we obtain g (R, T)xg (P, T). Applying the same arguments for g (T, HUP)
we derive g (P, T)s¢tg (R, T), which contradicts the previous relation. Therefore,
we have T=0. B

By S (X, g,<) we denote the collection consisting of all minimal sets for X, g
and < given as above. Moreover, let M be a nonempty set of indices, and

{H,,: m e M} be a family of subsets taken from X. From now on (_) H,, is denoted
meM
by H,. Furthermore, Sy={S,:me M}<=S (X, g,<) denotes a collection of pair-

wise disjoint minimal sets.
Combining Corollary 1 and Lemma 1, we get

ProposiTioN 1. S (X, g,<) is nonempty and is partially ordered by inclusion.

ProposiTION 2. If S is a minimal set, then there exists S,; (in particular, [M|=1)
such that S=S,,.

In other words, Propositions 1 and 2 say that there exist algorithms generating
minimal sets (for a finite X)) which can be considered as particular cases of so called
the hierarchical clustering technique. Moreover, they are agglomerative.

Let the image of g (denoted here by (¥/g)) be lower bounded. Hence, inf (¥/g)<
<g (R, X—S) for any nonempty R, ScX such that RN (X—S)=0. Therefore, by
Definition 1, we get.

COROLLARY 2. If S is a minimal set and (Y|g) is lower bounded, then inf (Y/g)=¢
=g (R, S—R) for each nonempty subset R of S, R#S.

If inf (Y/g) € (Y/g), then some specific situations may exist so that the search
for minimal sets can be decomposed into several separate subprocesses. The case
occurs when there exists a nonempty set HcX, H#X, such that

g (H, X—H)=inf (Y/g) %)
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Namely, let P and R be nonempty, Pc H, RcX—H and PUR#X. Then, by Gl,
we have inf (Y/g)<g (P, R)<g (H, X— H)=inf (Y/g), ie. g(P, R)=inf (¥/g), due
to the transitivity of <. Therefore, Corollary 2 implies that PU R is not a minimal
set. Using Propositions 1 and 2, we easily get.

ProrosiTiON 3. Let (1) be satisfied for some nonempty set HcX, H#X. 'Then,
there exists Sy (in particular, |M|=1) such that H=S,; and, moreover, HnS 1]
for any Se{x:xeS(X, g, <), x& Sy}.

In other words, Proposition 3 says that each A fulfilling (1) can be exammpd
separately which is the desired result.

3. Some properties of g-minimal sets

The features of S (X, g,<) derived in Section 2 are insufficient to give a basis
for any efficient algorithm seeking minimal sets, even for a finite X. Namely, al-
though the set of candidates for minimal sets is restricted to some specific subsets
of X (see Propositions 1, 2 and 3), no constructive way for verifying their minimality
is known. It resides, in fact, on Definition 1 only, i.e. one should examine exactly
2812 relations for any finite S, |S|>1. To improve the way of verification we
need to say more about the function g.

Let us assume that there exists a binary operation

0:¥YXY-Y,
defined by

G2. g(4,BuCy=g(4,B)og (4, C),

where 4, B, C is any triple of paif\vise disjoint nonempty subsets of X. From G}
and G2 the following rules immediately result

0l. aob=boa, (commutativity)

02. ao(boc)=(aob)oc, (associativity)

03. a<aob, (weak monotonicity)
04. if b<c, then aob<aoc, (weak monotonicity)
05. if a=¢b, then a={aob, (strong monotonicity)

06. if astc and b=tc, then aob=taoc, (strong monotonicity)
for a, b, c, € (Y/g).

Let us now assume that ¢ o b¢a o c. Supposing ¢<b, we get aoc<aob, accord-
ing to 04, which contradicts our assumption.
Thus,
07. if aobxaoc, then bc, for a, b, c e (Y/g).

By using appropriate examples, it can be easily shown that aob=¢aoc does
not, in general, imply a<c¢. Moreover, to avoid any confusion, we introduce.
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DerINITION 2. If g satisfies G2, then each S (—S (X, g,<) is called g-minimal.

Evidently, each result serived for minimal sets remains in force for g-minimal
ones. Moreover, it is convenient to make no changes in the notations introduced
in Section 2. Furthermore, let some S;, be given, and sets R,,=S,, be chosen so that
R,#8S,, me M. We denote Ry={R,:meM} and K(Ry,)={j:je M, R;#0}.
Now, we are in a position to prove.

LemMA 2. S is g-minimal if and only if
g(S, X—8)=g (R, X—R) 2)
holds for each nonempty Rc<S, R#S#X.

Proof. We consider a set ScX, S#X, and its nonempty subset R# S, and denote
P=S—R, H=X—S. P and H are, obviously, nonempty and disjoint and, moreover,
X—R=PuU H. By G2, we have

g(R,X—R)=g(R,H)og(P,R) and g(S,X—-S)=g(R, H)og(P,H) (3)
Supposing that S is g-minimal and using Definitions 1 and 2, we obt.ain
g(P, H)g(P,R) and g(R, H)=g (P, R) 4y
Thesé relations yield
g (R, H)og (P, H)g (R, H)og (P, R), &)

by 06, which, combined with (3), gives (2).

Assuming that (2) holds (for R and S described as above (3)) and applying (3),
-we obtain (5). Thus, using 07, we reach (4). Since R is any nonempty proper subset
of S, then the condition in Definition 1 is satisfied. B

LemMA 3. Let S be g-minimal,-R be its nonempty subset, R+ S, and V be a nonempty
set chosen so that SN\ V=0. Then, g(V,X—V)<g (RUV, X—(RUV)).

Proof. Since X—V=HUR, where H=X—(RU V), then
g (RUV,X—(RUV))=¢ (V, H)og (R, H), M

by G2. Taking into account that SN V=0 implies X—S>¥ and H>S—R (because
X—-V>S), we obtain :
according to Gl. Let us now suppose that g (RUV, X—(RU V))<g (V,X—-V)
Therefore, using (6), (7) and 07, we get g (R, H)(g (R, V). Combining it with (8)

and (9), we have g (R, S—R)xtg (R, X—S), which violates the assumption that
S is g-minimal. ‘ ]
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Lemma: 3 plays the crucial role in proving of

PRrOPOSITION 4. Let I be a nonempty and finite set of indices, Sy, Ry, K=K(Ry)
be defined as before, and Q = X be an arbitrary set such that S;nQ=0. If |Q| |[K|>0
and/or |K|>2 is satisfied, then P=QU R; is not g-minimal. Moreover, the inequa-
lity |Q]>0 implies iy

g (0, X—0)<g (P, X~P) (10)

Proof. The assumptions yield |K|>1. Therefore, without any loss of generality,
we can suppose that K is an initial and finite segment of the set of natural numbers,
since K I and/is finite. We denote K (i)={t: t<i},i=1, 2, ..., |K| and P,=QU Rg 1),
The proof proceeds by induction.
Let O be nonempty. For |K|=1 the assertion holds by Lemma 3. Let us now
assume that
g(Q, X—0)<g (P;, X—P)) )

is satisfied for each j=i, 1<i<|K|. Taking V=P, in Lemma 3, we obtain g (P,
X—-P)<g(P;yy, X—P; ;). The latter, combined with (11) for j=i, gives (11)
again, but now for j=i+1, i.e. the second step of induction is accomplished.

According to Lemma 2, (10) means that P is not g-minimal, which finishes the
proof for the case Q#0.

If Q=10, then, by assumptions, |[K|>2. Lemma 1 yields that P, is not g-minimal.
For |K|>2, we can take V=P g,_;, R=R|g|, and then use Lemmas 3 and 2. B

Before we formulate the subsequent assertion, it should be pointed out that the
operation max=max_ is here performed subject to the relation < applied to _
a finite set. In other words it may be, in general, not the same as the ordinary max_,
where the latter refers to the usual < (i.e. “not less than”) defined for any nonempty
subset of real numbers. The analogous remark can be stated for the operation
min=min_, which is used further.

ProrosiTioN 5. Let I, §;, R; and K have the same meaning as in Proposition 4.
Then, K#0 implies max {g (S;, X—S,): i € K}=¢g (R, X—Ry).

Proof The proof proceeds by induction. If |K[=1, then the assertion is implied
by Lemma 2. Let us suppose

max {g (S;, X—S,): t e T}=%g (Rr, X—Ry), (12)

for each i, 1<i<|K|, where T=K (i), and the assumptions relating to K and the
definition of K (i) are the same as in the proof of Proposition 4. Due to Proposition 4,
we have (10a) where P=Rg ;+1) and Q=R ; in (10) and, second (10b) where
P=Rg ;1) again and Q=R ., in (10). The latter form of (10) i.e. (10b), combined
with Lemma 2 (applied to S;., and R;. ), gets

g(Sis1, X—8;11)<Xg (P, X—P) (13)
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The former form of (10) (i.e. (10a)), (13) and (12) yield (12) again, but now for
T=K (i+1), which accomplishes the second step of induction, and thus the whole

proof. |

PROPOSITION 6. Let I and S; be as in Proposition 4 and, moreover, S;#X. If S;
is not g-minimal for any J<I such that [J[>1, then min {g (S;, X—S)):iel}<
<g (SI’ X— SI)

Proof. Since S;,|J|>1, is not g-minimal, then Lemma 2 yields the existence
of a nonempty set P=P (J)=S;, P#S;, which satisfies

g (P, X~P)<g (S5, X=5)) 14

Evidently, in general, P=R;U Sy, where T=T7'(J) and V=V (J) #J are disjoint,
9#VUTcJ and, moreover, T=K (Ry). Therefore,

Vi<l ' (15)

CASE 1. T#0 and V=0, Hence, P=Ry, i.e. we obtain (12), due to Proposition 5.
Thus, using (14) and the evident properties of operations min and max, we imme-
diately get the assertion.

Cast 2. T#0 and V#§. Taking Q=S and using Proposition 4, we obtain (10),
which, combined with (14), gives Case 3, as described below.

Case 3a. T=0 and V#£0. If [V|=1, then P=S,=S,, for some j €I, and the asser-
tion is implied by the obvious properties of the operation min. Otherwise, we have
Case 3b.

Case 3b. T=0 and, |V|>1. Now we arrive again in the situation described at the
very beginning of the proof, where here we handle V instead of J.

In the other words, either we reach Case 1 or Case 3a which finishes the proof,
else we successively return to Case 3b, perhaps via Case 2. The latter situation
causes the iterative process which consists in constructing consecutive P’s, as de-
scribed at the preliminary part of the proof and checking up whether Cases 1 and/or
3a occur. If so, then the process terminates. Otherwise, we construct the next P,
etc. Due to (15), the cardinality of the current V' diminishes in each step which
proves that the process must terminate (in the worst case it converges to Case 3a).
Furthermore, (14) holds for each its step. Therefore, by using the transitivity of <
and the remarks about Cases 1 and 3a, the proof is accomplished.

Now, we are in a position to prove the main result of this section.

THEOREM 1. Let I, |I{>1, be a finite set of indices, and Sy be a collection of pairwise
disjoint g-minimal sets such that S;#X. Let S; be not g-minimal for any J<I, 1<
<|J|<l|I|. Sy is g-minimal if and only if

g (Sy, X—S)sémin {g (S, X—S,): ieI}} (16)
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Proof. The necessity immediately results from Lemma 2.
Sufficiency. Let us consider any P=P (I) constructed as described below (14).
If T#0 and V=0, then ,
g (Si, X—S)=g (P, X—P), (17)

according to Proposition 5 and (16). If 7=0 and ¥V#@, then we get (17), by Pro-
position 6 and (16). It remains to consider the case T#0 and V#(. Taking 0=S,,
we obtain (10), due to Proposition 4. By the assumptions Sy is not g-minimal,
because 1< |V|<]|I|. Therefore, applying Proposition 6, combining the result with
the previously obtained (10) and using (16), we get (17) again, due to the transiti-
vity of <. Therefore, for each nonempty PcS,;, P#S,, the relation (17) holds
which proves that S; is g-minimal, due to Lemma 2.
Theorem 1 suggests how to verify the g-minimality in a more efficient and con-
structive way than that based on Definitions 1 and 2 or on Lemma 2. It can be
easily shown by using a simple example. Namely, let a candidate for being g-minimal
have the form S, , 3 ., Where, e.g., |S:|=50, i=1,2,3, 4. Hence, the method
described in the initial part of this section requires 22°°—~2a1.606937 - 10°° exa-
minations while the way proposed in Theorem 1 needs only 4 verifications.

4. Examples and final remarks

In the Max-minimal [Stanczak (1986)] and classical minimal sets theory [Kacprzyk
and Stanczak (1976, 1978b)] the assumption was adopted that X is finite which
is omitted here in Definitions 1 and 2. In fact, it depends upon the intrinsic nature
of g whether this assumption is necessary or not. For instance g'i s, 1=1,2:6,
mentioned below need it, and for i=3, 4, 5 it is needless. On the other hand, this
generalization, however interesting, is of less practical meaning. First, since we rather
rarely consider a real-life decomposition problem defined for an infinte set of
entities. Second, the paper gives no method for checking up even the g-minimality for
infinite candidates, and it is, in fact, unknown, in general.

Let us now restrict our considerations to the partitioning problems assuming
finite X. The definition of generalized minimality is, in general, no constructive
from the algorithmic point of view, even for such a case. To overcome this draw-
back some additional assumptions should be adopted, as, e.g., it was done in
Section 3 and has led to the concept of g-minimality. Considering G2 in more detail
and taking into account that the arguments of g, say A and B, are now finite (as
subsets of a finite set), we ecasily get

g (4, B)=w (x1, y1)ow (X3, y1)0...0W (X}A]s ¥1)
OW(.J-C'D V2) W(x'zlfJ’z)o--:“.’W(xlApJ’z) B, a8y
ow (x4, Vip)ow (X2, Yip) 0 ... oW (X415 V1 5y)

A
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by induction, for w(x;, y;)=g ({x;}, {y,}) being the elementary strength of con-
nection, similarity or dissimilarity, etc., between the x;th and y;th entities, Kacprzyk
and Stanczak (1976, 1978b), A={x,:i=1,2, .., 4]}, B={y;:j=1,2, ...,|B|} and
AN B=9. It means that the function g and the operation o are strongly dependent
on each other or one of them is generated, if possible, by the other. This rule is built
in'into the definitions of Max-minimal (Staficzak (1986)) and classical minimal sets.
For instance, g; s, i=2, 3,4,5, 6,7,8, mentioned below satisfy G2, and thus
possess the property (18) for the operation o as indicated in brackets.

The relation < also strongly depends upon the nature of g and, if exists, of o.
It is implied, first, by the preliminary assumption that < linearly orders the image
of g, second, by Gl and third, by the rules 03-07. Moreover, it should have an
intuitive meaning which is necessary for an adequate interpretation of results given
by the partitioning process.

Now, we give some simple examples of functions g, their images and relations <
implied by the form of g. The appropriate operations o, if exist, are indicated in
brackets. The statement a: =b used below denotes that a is defined by b. Moreover,
the symbols being on the right-hand side of : =, e.g. : +,.,< (not less than) and
= (not greater than) have their usual sense.

In geographical (regional) analysis the mapping often used is

g1 (4,B):=(D > Iw(x,») |75 for p,g>0, Y;: =[0, +), <:=<

X€A yeEB

Its particular form, i.e.
82 (A,B): =81 (A’B)|p=q=1’ YZ: =[0: +w), <:=x, (02: =+)’
is taken into account in the classical minimal sets theory. The system
83(4,B): =sup{w(x,y):x€Ad,yeB}, Y3: =(—o0, +®), <:=<, (03: =sup),

restricted to a finite X (therefore, sup was substituted by max), gave a basis for
Max-minimal sets. Moreover, for instance, we can take

&4 (A)B) =1nf{w (xs y) xeA,yeB}, Y4: =(—-OO, +°O)! <: =>;(°4: =inf),
gs(4,B):=]] [] wx»), Ys:=[0,1], <:=>,(cs5:="),

. xfA y€EB

gG(A!B):=” Hw(x,y), Y6:=[1) +°O)’ '<:=<,(°6:=')r

x3A4 y€B

Furthermore, let #:(—o00, +00)—(—00, + ) and u:(—o0, +0)—(—00, + ) be
an upper and lower, respectively, cutting function defined by

v a for a<u u for a<u
u(a)___ = 01' u(a)= 02 02’
oy for a>uy, = a for a>u,,

where 4y, and u,, are some real constants given in advance.
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It can be easily shown that the system s
87 (4, B): ="(g: (4, B)) Y,: ={y: y<uo )N Y, #0, <: (07 '—u(o!( ))),

for i=2, 3, 6, has the required properties, where i (o, (-, )) denotes the super-
position, i.e. i (o, (a, b)): =ii(ao; b), as usual. The analogous features hold for .

s (4, B): =u (g (4, B)), Ys: ={y: y2u0:} N Y50, <: =>, (05: =u (CHED))S

for i=4, 5.

. The functions g; and g, (taken with their image and the ordering relation) are
of a strenght of connections-type (see, e.g., Kacprzyk and Stanczak (1975, 1978a),
Kaliszewski, Nowicki and Staniczak (1975), Luccio and Sami (1969) and Nowicki
and Staficzak (1980)). The function g, has a sense of similarity, g, — of dissimilarity,
and g5 can be understood in terms of probability Furthermore, g, and gg have
the analogous interpretations as the previous g, s used in their definitions. Hence,
it is obvious that the g-minimality has a wide range of mterpretatlons and thus,
that it can be con31dered as a useful tool for solving many real-life partitlonmg
problems
It remains to say somethmg about future researches which should be made in
the generalized and/or g-minimal set theories. Namely, a polynomial-type proce-
dure for seeking' g-minimal sets is needed. It can be conjectured that, first, such
a procedure exists and, second, probably it has a structure similar to that derived
by Stariczak (1984) for classical minimal sets (however, some _sunpler and more
efficient procedures can exist for particular forms of g). Moreover, the g-minimal
sets technique is a tool oriented to solve practical, real-life problems. Thus, the
values of g are obtained from approximate formulae and/or measurements. That
yields either a fuzziness or even inexactness in the problem statement which may
give, in fact, a more adeqUafe approach to the reality than the sharp model discussed
in the paper. Therefore, the theory of generalized and g-mmlmal sets could be
developed so as to introduce some fuzziness or inexactness. The third problem
interesting as well from the theoretical as the practical point of view, lies in esta-
blishing relations between the technique of g-minimal sets and another clustering
approaches, Some prehmmary remarks about thls subject can be found in Owsid-
ski (1981). é

The author would liké to express thanks to the anonymous referee for his remarks,
most of which could be taken into account in this paper. Some other ones shall
be taken into consideration in the furthcoming paper of this author.
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Pewna uogélniona struktura generowana
przez idee zespoléw minimalnych

W poprzednich pracach autora i in. (patrz np. literatura) rozpatrywano pewne szczegélne:
przypadki teorii i techniki tzw. zespoléw minimalnych. Obecnie pokazano, ze podstawowa idea
zespotdéw minimainych dotyczy wickszej liczby probleméw podzialu. Opierajac sie na wspomnianej
koncepcji zdefiniowano uogélnione zespoly minimalne oraz zespoly g-minimalne i wyprowadzono.
ich wiasciwosci. Podano szereg przykladow.

O0mast CTPyKTypa reHepUpoOBaHa KoHUeHiei
MHHHMAJIbHC CBSI3AHHBIX MHGKECTB

B mpenpInyIiux CTathsx aBropa M Op. {(CM. YKa3aTemlb JHTEPATyPh) PACCMOTPEHBI HEKOTOPbIE:
0COGEHHBIE CIyYal TEOpUM U TEXHUMKH T. Ha3. MUHMMAJBHO CBS3AHHBIX MHOKECTB. B HacTosIiee-
BpPEMS [IOKa3bIBAETCH, 4TO (yHIAMEHTAIbHAS KOHIENIMS MWHMMAIBHO CBA33aHHBIX MHOMKECTB
xacaercst 60ee MWUPOKOTro KPyra IpobiieM IeKOMIIO3HLNH. Basnpysr Ha OPUBENCHHOW MICH OHpE=-
JIENAOTCA O0Iee M g-MUHUMANLHO CBS3aHHBIE MHOMKECTBA W BEBOZATCHA MX CBOHCTBA. IIpHBOI--
ATCS HEKOTOPHIE NPHMEDEL.



