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In the previous papers of the author and collaborators see, e.g., references some specific cases 
of the theory and technique of so-called minimal sets were considered. Now, it is shown that the 
fundamental idea of minimal sets concerns a greater number of partitioning-type problems. Basing 
on this idea, generalized and g-minimal sets are defined and their properties are derived. Several 
examples are given. 

1. Preface 

The idea of classical minimal sets was introduced by Luccio and Sami (1969), 
and developed by Kacprzyk and Stailczak (1976, 1978b). Some general aspects 
of this partitioning method and its biases were discussed by Owsil'iski (1981). Stait­
czak (1984) proposed a polynomial-type algorithm for finding classical minimal 
sets. 

The idea of classical minimal sets was originated from the network partitioning 
problems by Luccio and Sami (1969), and thus it took into account aggregated 
strengths of connections between groups of entities rather than their "pure" simila­
rity or likeness. Therefore, it occurred to be inadequate for some practical purposes 
of nature different than that of a network partitioning type. The analysis performed 
by Stanczak (1986) showed that _the basis of classical minimal sets consisted of three 
elements. They were tlie method for evaluating "connections" between distinct sub­
sets, the way of ranking these "connections" and the fundamental principle which is 
described in the final part of this section. That led to the concept of Max-minimal 
sets, being analogous to the previous one. Moreover, it was conjectured [Stanczak 
(1986)] that there existed more partitioning techniques similar to that of classical 
minimal sets and Max-minimal sets. This paper fully confirms the supposition. 
It is important not only from the theoretical point of view. It occurred that classical 
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minimal sets constituted a valuable tool for solving many practical problems of 
network partitioning type (e.g., for cooperative facilities Kacprzyk and Stanczak 
(1975), for the computer Kacprzyk and Stanczak (1970), Nowicki and Stanczak 
(1980), telecommunication Kaliszewski, Nowicki and Stanczak (1975) and' electrical 
Luccio and Sami (1969) network). Therefore, it can be believed that these analogous 
approaches give a simple and efficient way for solving problems, where reciprocal 
"connections" as well as methods of ranking them are defined differently than 
eithe1: in, e.g., Kacprzyk and Staii.czak (1976, 1978b) or in Stanczak (1986). Obvio­
usly, it is better, if possible, to handle and solve the problem of minimal sets in 
general and then apply it to real-life" models, than to produce a voluminous lite­
rature on its specific cases. 

This paper is organized as follows. First, the general idea of minimal sets is 
recalled verbally. Second, in Section 2, it is formalized so as to create a possibility 
of deriving some of its basic implications. This, though, leads to a clustering techni­
que being, in general, inefficient from the algorithmic point of view. Therefore, 
some additional .assumption is necessary. Its introduction produces a particular case 
of a generalized minimal set called g-minimal which is discussed in Section 3. Third, 
some examples of generalized and g-minimal set theories are given and considered. 
The directions of future research in the minimal set theory and technique are 
proposed. 

Now, let us remind the basic idea of minimal sets (for more detailed discussion 
see Stanczak (1986). Namely, let an aggregate parameter (or any way of calculating 
its value) describing either the strength of connections or similarity or dissimilarity, 
between two disjoint nonempty sets of entities be given in advance. Moreover, 
let some criterion (or relation) useful for ranking the values of the parameter be 
defined. This represents the following statement: either "is more strongly connected" 
or "is more similar" or "is less dissimilar", respectively, and is abbreviated 
here by "is better to merge". Let us now consider some non empty subset of a gre'­
ater set of entities. The former is called a (generalized) minimal set if it is better 
to merge each of its nonempty proper parts with the remaining part than with the 
complement of the subset in this greater set. And this is the fundamental principle 
of minimality. More figuratively, a (generalized) minimal set should be either more 
strongly connected or more similar or less dissimilar internally than with its 
environment. 

2. Generalized minimal sets 

We consider aset X, lXI > 1, and a function g: {{A, B}: 0=FA, Be X, An B=0}-+ Y, 
where {A, B} is an unordered pair, and Y is a nonempty set linearly ordered by 
some relation -< . The definition yields that g is symmetric with respect to its argu­
ments. Moreover, we assume 

Gl. g (A, C) -< g (B, D), 
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for each pair of nonempty sets A and C such that AeB, CeD, where B,DeX 

are disjoint. 

DEFINITION 1. If g (R, X- S)~g (R, S- R) holds (here and further on a~b is 
equivalent to the pair of relations: a-<b and af=b for a, beY) for a nonempty 
set SeX, Si=X, and for each its nonempty subset Ri=S, then S is called a (gene­
ralized) minimal set. 

Applying de Morgan rules to Definition 1, we easily obtain. 

COROLLARY 1. Any {x}, X EX, is a minima/ set. 

LEMMA 1. Two minimal sets are either disjoint or one of them is included in the other. 

P r o o f. Let S and Q be distinct minimal sets. The cases Se Q and Q e S are evident, 
therefore we can suppose Scf.:Q and Qcf.:S. Let SnQ=Tf=f/). For convenience, 
we denote P=Q-T, R=S-T and H=X-(SvQ). Obviously, P and Rare non­
empty. By Definition 1, we get g (T, Hv R)=g (T, X -Q)~g (P, T). Thus, using 
G1, we obtain g (R, T)~g (P, T). Applying the same arguments for g (T, Hu P) 
we derive g (P, T)~g (R, T), which contradicts the previous relation. Therefore, 
we have T=f/1. • 

By S (X, g,-<) we denote the collection consisting of all minimal sets for X, g 

and -< given as above. Moreover, let M be a nonempty set of indices, and 
{H,.: mE M} be a family of subsets taken from X. From now on U Hm is denoted 

mE M 

by HM. Furthermore, SM={Sm:meM}eS(X,g,-<) denotes a collection of pair-
wise disjoint minimal sets. 

Combining Corollary 1 and Lemma 1, we get 

PRoPOSITION 1. S (X, g,-<) is nonempty and is partially ordered by inclusion. 

PROPOSITION 2. If S is a minimal set, then there exists SM (in particular, !M! = 1) 
such that S=SM· 

In other words, Propositions 1 and 2 say that there exist algorithms generating 
minimal sets (for a finite X) which can be considered as particular cases of so called 
the hierarchical clustering technique. Moreover, they are agglomerative. 

Let the image of g (denoted here by (Y/g)) be lower bounded. Hence, inf (Y/g)-< 
-<g(R, X-S) for any nonempty R, SeX such that Rn(X-S)=f/1. Therefore, by 
Definition 1, we get. 

CoROLLARY 2. IfS is a minimal set and (Y/g) is lower bounded, then inf(Y/g)~ 
~g (R, S-R) for each nonempty subset R of S, R f= S. 

If inf (Y/g) E (Y/g), then some specific situations may exist so that the search 
for minimal sets can be decomposed into several separate subprocesses. The case 
occurs when there exists a nonempty set HeX, Hi=X, such that 

• g (H, X -H)=inf( Y/g) (1) 
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Namely, let P and R be nonempty, PcH, RcX- H and P U R # X . Then, by Gl, 
we have inf (Yfg)-<.g (P, R)-<.g (H, X- H) = inf (Yfg), i.e. g (P, R) = inf (Yfg), due 
to the transitivity of -<. . Therefore, Corollary 2 implies that PuR is not a minimal 
set. Using Propositions 1 and 2, we easily get. 

. 
PROPOSITION 3. Let (1) be satisfied for some nonempty _set HeX, H#X. Then, 
there exists SM (in particular, JM J= l ) such that H = SM and; moreover, Hn_.S= f/J 
for any S e {x:x e S(X,g, -<.), xcj:SM}· 

In other words, Proposit ion 3 says that each H fulfilling (1) can be exa · ed 
separately which is the desired result . 

3. Some properties (}f g-minimal sets 

The features of S (X, g, -<.) derived in Section 2 are insufficient to give a basis 
for any efficient algorithm seeking minimal sets, even for a finite X. Namely, al-

. though the set of candidates for minimal sets is restricted to some specific subsets 
of X (see Propositions 1, 2 and 3), no constructive way for verifying their minimality 
is known. It resides, in fact, on Definition 1 only, i.e. one should examine exactly 
21sl _ 2 relations for any finite S, !S I> 1. To improve the way of verification we 
need to say more about the function g. 

Let us assume that there exists a binary operation 

defined by 

G2. 

o:YxY~Y, 

g (A , Bu C )= g (A, B) og (A, C), 

where A, B, C is any triple of pairwise disjoint nonempty subsets of X. From G 1 
and G2 the following rules immediately result 

01. aob= boa, (commutativity) 
02. ao(boc)= (aob)oc, (associativity) 
03. a-<. a ob, (weak monotonicity) 
04. if b-<. c, then a ob-<. a o c, (weak monotonicity) 
05. if a"'*.b, then a~ a ob, (strong mono tonicity) 
06. if a~c and b~c, then a o b~a o c, (strong monotonicity) 
for a, b, c, E (Y/g). 

Let us now assume that a o b~a o c. Supposing c-<. b, we get a o c-< a ob, accord­
ing to 04, which contradicts our assumption. 
Thus, 

07. if a o b~a o c, then b~c, for a; b, c e (Y/g). 

By using appropriate examples, it can be easily shown that a o b~a o c does 
not, in general, imply a-<. c. Moreover, to avoid any confusion, we inttoduce. 
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DEFINITION 2. If g satisfies G2, then each S ( - S (X, g,-<) is called g-minimal. 
Evidently, each result serived for minimal sets remains in force for g-minimah 

ones. Moreover, it is convenient to make no changes in the notations introduced 
in Section 2. Furthermore, let some S M be given, and sets Rm c Sm be cho~ en so that 
Rm=I=Sm, m e M. We denote RM= {R~,:meM} and K(RM) = {j:je M,R1 =!= 0}. 
Now, we are in a position to prove. 

LEMMA 2. S is g-minimal if and only if 

g (S, X- S)~g (R, X - R) (2) 

holds for each nonempty R c S, R =I= S =I= X. 

Proof. We consider a set S e X, S=!=X, and its nonempty subset R=!=S, and denote 
P= S - R, H = X - S. P and Hare, obviously, nonempty and disjoint and, moreover, 
X - R = PU H. By G2, we have 

g (R, X -R)=g (R, H) og (P, R) and g (S, X -S)= g (R, H) o g (P, H) (3) 

Supposing that S is g-minimal and using Definitions 1 and 2, we obtain 

g (P, H)~g (P, R) and g (R, H)~g (P, R) (4} 

These relations yield 

g (R, H) o g (P, H)~g (R, H) o g (P, R), (5) 

by 06, which, combined with (3), gives (2). 
Assuming that (2) holds (for R and S described as above (3)) and applying (3), 

· we obtain (5). Thus, using 07, we reach (4). Since R is any nonempty proper subset 
of S, then the condition in Definition 1 is · satisfied. • 

LEMMA 3. LetS be g-minimal, -R be its nonempty subset, R=!=S, and V be a nonempty 
set chosen so that SnV= f/1. Then, g(V,X- V) -< g(RuV,X- (Ru V)). 

Proof. Since X- V= HU R, where H = X -(Ru V), then 

g(V,X- V) = g(V, H) og(R, V), 

g (R u V, X ..:..(Ru V)) = g (V, H) og (R, H), 

(6) 

(7) 

by G2. Taking into account that Sn V=f/J implies X - S-::> V and H-::>S-R (because 
X- V-::> S), we obtain 

g (R, S - R) -<g (R, H ), 

g(R, V)-<g(R, X -S), 

(8) 

(9) 

according to Gl. Let us now suppose that g(RuV,X-(RuV))~g (V,X-V) 
Therefore, using (6), (7) and 07, we get g (R, H)~g (R , V). Combining it with (8) 
and (9), we have g (R, S - R)~g (R, X - S), which violates the assumption that 
S is g-minimal. • 
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Lemma 3 plays the crucial role in proving -of 

PROPOSITION 4. Let I be a nonempty and finite set of indices, SI> R1, K=K(R1) 

be defined as before, and QcXbe an arbitrary set such that S1 nQ=f/J. If IQIIKI>O 
and/or IK/):2 is satisfied, then P=QU Rr is not g-minimal. Moreover, the inequa­
lity IQI >0 implies 

g (Q, X -Q)-<g (P, X -P) (10) 

P r_o o f. The assumptions yield IKI): 1. Therefore, without any loss of generality, 
we can suppose that K is an initial and finite segment of the set of natural numbers, 
since Kciandlisfinite. We denote K (i)={t: t:(i}, i= 1, 2, ... , IKI and P1=QU RK(I)' 

The proof proceeds by induction. 

Let Q be nortempty. For IKI = 1 the assertion holds by Lemma 3. I:et us now 
assume that 

(11) 

is satisfied for each j=i, l:;:;;i< /K /. Taking V=P1 in Lemma 3, we obtain g (P1, 

X-P1)-<g(P1+ 1 ,X-P1+ 1). The latter, combined with (11) for j = i, gives (11) 
again, but now for j=i+ 1, i.e. the second step of induction is accomplished. 

According to Lemma 2, (10) means that Pis not g-minimal, which finishes the 
proof for the case Q=t=f/J. 

If Q=f/J, then, by assumptions, IK/):2. Lemma 1 yields that P2 is not g-minimal. 
For IK/ > 2, we can take V =PI KI-1> R=RIKI, and then use Lemmas 3 and 2. • 

Before we formulate the subsequent assertion, it should be pointed out that the 
operation max=max-< is here performed subject to the relation -< applied to 
a finite set. In other words it may be, in general, not the same as the ordinary max.,;, 
where the latter refers to the usual :;:;; (i.e. "not less than") defined for any nonempty 
subset of real numbers. The analogous remark can be stated for the operation 
min=min-<, which is used further. 

PROPOSITION 5. Let I, Sr, Rr and K have the same meaning as in Proposition 4. 
Then, K =1= f/J implies max {g (S1, X- S;): i e K}~g (Rr, X- R1). 

P r o of. The proof proceeds by induction. If IKI = 1, then the assertion is implied 
by Lemma 2. Let us suppose 

(12) 

for each i, l:(i</K/, where T=K(i), and the assumptions relating to K and the 
definition of K (i) are the same as in the proof of Proposition 4. Due to Proposition 4, 
we have (lOa) where P=RK (i+ t) and Q=RK (i) in (10) and, second (lOb) where 
P=RK(t+l) again andQ=Ri+ 1 in (10). The latter form of (10) i.e. (lOb), combined 
with Lemma 2 (applied to S1+ 1 and R1+ 1), gets 

(13) 
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The former form of (10) (i.e. (lOa)), (13) and (12) yield (12) again, but now for 
T=K(i+l), which accomplishes the second step of induction, and thus the whole 

~~ . 
PROPOSITION 6. Let I and SI be as in Proposition 4 and, moreover, S1 =!=X. If S1 

is not g-minimal for any lc.I such that lll>l, then min{g(S;,X-S;):iel}-< 

-<g(Sr, X-Sr). 

Proof. Since S~> Ill> 1, is not g-minimal, then Lemma 2 yields the existence 
of a nonempty set P=P(l)c.S~> P =i=S~> which . satisfies 

g (P, X -P)-<g (S~> X -SJ) (14) 

Evidently, in general, P=RTu Sv, where T=T(l) and V= V (l) #l are d~sjoint, 
.f/J=!= Vu Tc.l and, moreover, T=K (RT). Therefore, 

lVI <Ill · (15) 

CASE 1. T=/=0 and V=0, Hence, P=RT, i.e. we obtain (12), due to Proposition 5. 
Thus, using (14) and the evident properties of operations min and max, we imrne~ 
diately get the assertion. 

CASE 2. T=/=0 and V =/=0. Taking Q=Sv and using Proposition 4, we obt.ain (10), 
which, combined with (14), gives Case 3, as described below. 

CASE 3a. T=0 and V=/=0. If IVI=l, then P=Sv=SJ> for somejel, and the asser­
tion is implied by the obvious properties of the operation min. Otherwise, we have 
Case 3b. 

CASE 3b. T=0 and. I VI> 1. Now we arrive again in the situation described at the 
very beginning of the proof, where here we handle V instead of l. 

In the other words, either we reach Case 1 or Case 3a which finishes the proof, 
else we successively return to Case 3b, perhaps via Case 2. The latter situation 
causes the iterative process which consists in constructing consecutive P's, as de­
scribed at the preliminary part of the proof and checking up whether Cases 1 and/or 
3a occur. If so, then the process terminates. Otherwise, we construct the next P, 
etc. Due to (15), the cardinality of the current V diminishes in each step which 
proves that the process must terminate (in the worst case it converges to Case 3a). 
Furthermore, (14) holds for each its step. Therefore, by using the transitivity of-< 
and the remarks about Cases 1 and 3a, t~e proof is accomplished. 

Now, we are in a position to prove the main result of this section. 

THEOREM 1. Let I, Ill> 1, be a finite set of indices, and SI be a collection of pairwise 
disjoint g-minimal sets such that SI=/=X. Let SJ be not g-minimal for any lc.I, 1 < 
<Ill< Il l. S r is g-minimal if and only if 

(16) 
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P r o o f. The necessity immediately results from Lemma 2. 
Sufficiency. Let us consider any P=P (I) constructed as described below (14) .. 

If T¥-0 and V= f/J, then 
(17). 

according to Proposition 5 and (16). If T = 0 and V¥- 0, then we get (17), by Pro­
position 6 and (16). It remains to consider the case T¥-f/J and V¥-0. Taking Q = Sv ,. 

we obtain (10), due to Proposition 4. By the assumptions S v is not g~minimal ~ 

because 1 < lVI < Ill. Therefore, applying Proposition 6, combining the result with 
the previously obtained (10) and using (16), we get (17) again, due to the transiti­
vity of-<. Therefore, for each nonempty Pc S 1, P¥-S1, the relation (17) holds, 
which proves that S1 is g7minimal, due to Lemma 2. B: 

Theorem 1 suggests how to verify the g-minimality in a more efficient and con­
structive way than that based on Definitions 1 and 2 or on Lemma 2. It can be 
easily shown by using a simple example. Namely, let a candidate for being g-minimal 
have the form s { l , 2,3,4}' where, e.g., ISd= 50, i= l , 2, 3, 4. Hence, the method 
described in the initial part of this section requires 2200 ~ 2:::::: 1.606937 • 106 0 exa­
minations while the way proposed in Theorem 1 needs only 4 verifications. 

4. Examples and final remarks 

In the Max-minimal [Stanczak (1986)] and classical minimal sets theory [Kacprzyk 
and Stanczak (1976, 1978b)] the assumption was adopted that X is finite · which 
is omitted here in Definitions 1 and 2. In fact, it depends upon the intrinsic nature 
of g whether this assumption is necessary or not. For instance g; s, i= 1, 2, 6,. 
mentioned below need it, and for i=3, 4, 5 it is needless. On the other hand, this. 
generalization, however interesting, is of less practical meaning. First, since we rather 
rarely consider a real-life decomposition problem defined for an infinte set of 
entities. Second, the paper gives no method for checking up even the g-minimality for 
infinite candidates, and it is, in fact, unknown, in general. 

Let us now restrict our considerations to the partitioning problems assuming 
finite X. The definition of generalized minimality is, in general, no constructive 
from the algorithmic point of view, even for such a case. To overcome this draw­
back some additional assumptions should be adopted, as, e.g., it was done in 
Section 3 and has led to the concept of g-minimality. Considering G2 in more detail 
and taking into account that the arguments of g , say A and B, are now finite (a& 
subsets of a finite set), we easily get 

g (A, B)= w (xl, Yd o w (x 2, y1) o ... o w (x iAI• y1) l 
o w (xl> Y2) w (x2, Y2) o ... o w (x1AI• Y2) 

o w (x1o y
1
B

1
) o w (x2 , y

1
B

1
) o .. . o w (x 1AI • y 1B

1
) 

A 

B, (18) 
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by induction, for- w (x1, y1)=g ({x1}, {y1}) being the elementary strength of con­
nection, similarity or dissimilarity, etc., between the x1th and y1th entities, Kacprzyk 
and Stanczak (1976, 1978b), A={x1: i=l, 2, ... , IAl}, B={y1:j=l, 2, ... , IBI} and 
AnB=f/J. It means that the function g and the operation o are strongly dependent 
on each other or one of them is generated, if possible, by the other. This rule is built 
in'into the definitions of Max-minimal (Stanczak (1986)) and classical minimal sets. 
For instance, g; s, i=2, 3, 4, 5, 6;·1, 8, mentioned below satisfy G2, and thus 
possess the property (18) for the operation o as indicated in brackets. 

The relation -< also strongly depends upon the nature of g and, if exists, of o. 
It is implied, first, by the preliminary assumption that -< linearly orders the image 
of g, second, by Gl and third, by the rules 03-07. Moreover, it should have an 
intuitive meaning which is necessary for an adequate interpretation of results given 
by th:e partitioning process. 

Now, we give some simple examples of functions g, their images and relations -< 
implied by the form of g. The appropriate operations o, if exist, are indicated in 
brackets. The statement a: =bused below denotes that a is defined by b. Moreover, 
the symbols being on the right-hand side of : =,e.g. : +, .• ~ (not less than) and 
~ (not greater than) have their usual sense. 

In geographical (regional) analysis the ~papping often used is 

gt(A,B):=(2 2; lw (x,y) lp)q, for p, q>O, Y1 : =[0, +oo), -<: =~ 
xeA ~eB 

Its particular form, i.e. 

g2(A,B):=g1 (A,B)
1
p=q=l> Y2 :=[0,+oo), -<:=~, (o 2 :=+), 

is taken into account in _the classical minimal sets theory. The system 

g3 (A,B): =sup{w(x,y):xeA,yeB}, Y3 : =(-oo, +oo), -<: =~. (o 3 : =sup), 

restricted to a finite X (therefore, sup was substituted by max), gave a basis for 
Max-minimal sets. Moreover, for instance, we can take 

g4 (A,B): =inf{w(x,y):xeA,yeB}, Y4 : =(-oo, +oo), -<: =~,(o 4 : =inf), 

g 5 (A,B):=fl fl w(x,y), Y5 :=[0,1],-<:=~,(o 5 :=·), 
, xF.A ~EB 

g 6 (A, B): =fl fl w (x, y), Y6 : =[I, +oo); -<: =~. ( o 6 : = ·), 
x~A yEB 

Furthermore, let u: ( -oo, +oo)-+( -oo, +oo) and !!: ( -oo, +oo)-+( -oo, +oo) be 
an upper and lower, respectively, cutting function defined by 

u(a)={a 
Uot 

for a~u01 
for a>u01 ' 

u(a)={Uo2 
- a 

for a<u02 

for a~u02 ' 

where Uot and u02 are some real constants given in advance. 
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It can be easily shown that the system .. 
g7 (A 1 B): =·u(g1 (A,B)), Y7 : ,;,{y :y~u01}n Y(=l=f/1, -<: = ii:;, (o 7 ': =ii(o,(·,·))}. 

for i=2, 3, 6, has the required properties, where ii ( o 1 (·, ~ )) denotes the super­
position~ i.e. ii ( o 1 (a, b)): =ii (a o 1 b), as usual. The analogous features hold for . 

ga(A,B): =~(g,(A,B)), Y8 : = {y:y~u02}nY1 #f/J, -<: = ~, (o 8 : = !! (o,(·,·))};. 

for i=4, 5.. . 
. The functions g1 and g 2 (taken with their image and the ord..ering relation} are­

of a strenght of connections-type (see, e.g., Kacprzyk and Stanczak (1975, 1978a), 
Kaliszewski, Nowicki and Stanczak (1975), Luccio and Sami'(1969) and N6wicki 
and.Stanczak (1980)). The function g3 has a sense. of similafity, g4 - of dissimihi.ritY~ 
and g 5 can be understood in terms of probability. Furthermore, g7 a.nd g 8 havey 
the ap.alogous interpretations as the previous g; s used in their definitions. Hence. 
it is obvi01.1s that the g-minimality has a wide range of interpretations, and thus, 
~hat it . can b~ considered as a .. usef~l tool foi ·solving· l?any real-Ffe partitionini, 
probJel\lS. , . . . · · · · 

If remains to say something about future researches which should be made in 
the generalized and/or g-minimal set theories. Namely, a polynomial-type proce­
dure for seeking g-minimal sets is needed. It' can be conjectured' that, first, such 
a procedure exi.~ts and, sec011d, probably it has . a str:ucture similar to that derived 
by Stanczak (1984) for cl~ssicai minimal sets (however·, som~'·sirnpler and .. more 
efficient procedures can exist for particular forms of g) . Moreover, the. g-minimal 
sets technique is a tool oriented to solve practical, real-life problems. Thus, the 
values of g are ·. obtained from approximate formulae and/or measureme}\ltS. That 
yields either a fuzziness . or even inexactness in the problem statement which may 
give, in fact, a more adequ~te app{oach to the reality than the ~harp model dis·c~sseci 
iil the Pi!Per. Therefore, the theory of generalized and g-minimal sets could be 
developed so .as to intr~duce some f~zziness ~r ine~actness. "The third problem ~ 
interesting' as well from the theoretical as the practical point of view, lies in esta~ 
blishing relations between · the technique of g-:ininimal sets and another clustering 
ap.f>roaches, Some ~reliminary remarks about this subject can. be found. in <?\"sin-
ski (1981). , · · · - · · 

The author would like to express thanks totheanonyin,.ous referee for his remarks. 
most of which could be taken into account in this paper. Some other ones shall 
be taken -Into co:nsicieration in the furthcoming paper of this·. author. 
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Pewna uogolniona struktura generowana 
przez ide~ zespolow minimalnych 

W poprzednich pracach autora i in. (patrz np. literatura) rozpatrywano pewne szczeg6lne· 
przypadki teorii i techniki tzw. zespo!6w minimalnych. Obecnie pokazano, ie podstawowa idea 
zespo!6w minimalnych dotyczy wi«kszej liczby problem6w podzia!u. Opierajqc sice na wspomnianej 
koncepcji zdefiniowano uog6lnione zespoly minimalne oraz zespoly g-minimalne i wyprowadzono, 

ich wlasciwosci. Podano szereg przyklad6w. 

()6uuaH cTpyKT)pa reHepnposaua KOH~en~eu 
MJIHHMaJlbHO CBSI3aHHhlX MHOmCCTB 

B rrpe,UhiAYil\liX cTaThllX aBTopa n ,up. (cM. yKa3aTeJih mnepaTyphi) paccMOTpeHhi HeKOTOphie· 
OC06eHHhle CJiy'!aH TeOpiHI H TeXHHKH T. Ha3. MilllliMaJlhHO CBllJaHRhTX MHOJKeCTB. B HaCTOJIII~ee­
BpeMH ,UOKa3hiBaeTOI, '!TO cPYHAaMeHTa.TihHaH KOHIJelliJHll MHHHMaJThHO CBl!3aHRhiX MHOJKeCTB 
xacaeTCH 6onee IIIJ!'poKoro xpyra rrpo6neM ,uexoMTI03HUHH. ~a3npyH Ha npnBe,ueHHoH: n,uen onpe­
,ueJilllOTCll 06ll\ee ll g -MilllliMa.TihHO CBH3aHHhie MHOJKeCTBa J1 BHBO,UllTCH HX CBOHCTBa. llpHBOA-­
nTCll HeKOTOphle IIpHMeph!. 


