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A linear econometric model is considered in a state-space form, which relates deviations of 
"targets and fustruments from a reference trajectory in a presence of noise. A non-quadratic cri
terion has been suggested in order to account for risk and asymmetry of economic policy. It has 
been shown that a nonlinear feedback policy rule involving a density function f (x), can be applied 
to solve the formulated optimization problem. The solution is optimal when f(x) is normally di
stributed and suboptimal otherwise. If the system is stabilizable in the sense of linear-quadratic 
theory, it is also stabilizable with the introduced non-quadratic approach. 

1. Introduction 

As the basi~ for a quantitative theory of economic policy we shall consider an 
econometric mod{(l in state space form relating deviations of targets x and intru
ments u from a reference trajectory in presence of noise w 

x (t+ l)=Ax (t)+Bu (t)+w (t) 

where x and ware n-vectors, u is an m-vector! A and B conformable matrices, and 
t is discrete time. A and B are assumed known from estimation, and w is assumed 
to represent random shocks. over a control period 0~ t~ T. The goal of economic 

1 
policy is to neutralize the effects of shocks by a proper manoeuvre of the instruments. 
So formulated the problem is often cast into linear quadratic format 

T 

minE}; {x' (t) Qx (t)+u' (t) Ru (t)} 
u(·) t=O -

(1) 

x (t+l)=Ax (t)+Bu (t)+w (t) (2) 

where E is the expected value operator and x ' is a transposition of x 
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Under the assumptions 
1. Q and R are positive semidefinite 

11. x (0) is known 
iii. Ew (t)=O; Ew (t) w (s)= Wo (t-s) (o, Kronecker delta) a unique solution 
exists and has the well known feedback form (Kwakernaak 1972) 

uW=-GfflxW W 
where G (t), the optimal policy rule, is found by solving the matrix Riccati equation 

G(t)=[B' P(t)B+R)- 1 B' P(t)A (4) 

P (t)=Q+A ' P (t+ 1) A -A' P {t+1) B [B' P (t+ 1) B+R]- 1 B' P (t+1) A (5) 

P(T)=Q (6) 
backwards in time. 

When (3) is adopted in (2), the resulting closed loop model becomes 

x (t+ 1)= [A- BG (t)] x (t)+w (t) (7) 

and under the further assumption 
iv. [A, B] is stabilizable 
asymptotic stability of (7) is ensured. 

In the stochastic framework this implies boundedness of the covariance evolution. 

V(t+l)=A (t) V(t) A' (t)+ W, V(O)=l (8) 
where 

V (t)=Ex (t) x' (t) A (t)=A -BG (t) 

This formulation has both attractive features and weaknesses. 
Firstly, assumption iv. has an immediate implication for economic theory. 

In the deterministic case (w (t)=O) iv. implies that R can be chosen in (1) so that 
any point in target space is attained by a bounded manoeuvre u (1) u (2) u (3) ... 
of length less or equal n. In the stationary stochastic case, the desired state is attained 
up to an unbiased disturbance of minimal variance. Therefore, stabilizability can 
be regarded as the dynamic stochastic extension of Tinbergen's theory of economic 
policy 1in the sense that the required matching of linearly independent instruments 
to the number of targets is softened by the possibility of repeatedly using a smaller 
number of instruments over a greater number of periods. For more details see for 
instance (Kunstman 1984, Petit 1985). 

Secondly, the solution in feedback form provides simple and useful economic 
indications which may extend beyond the particular problem. For instance, the 
elements of G can be interpreted as cross elasticities of instruments with respect 
to target deviations and facilitate exercises of comparative statics or dynamics, as 
for instance in {Karakitsos 1985). Moreover, the linear structure of (3) indicates 
! hat optimal elasticities (in the sense of (I)) should be independent of target de
viations, a result of immediate empirical relevance both from a normative and 
an analytical viewpoint. 



" On extending linear 263 

Despite these advantages, linear quadratic theory is prone to criticism in anum
ber of economic ·situations involving risk and asymmetry in policy objectives. 

Fir'stly, recall the known result of certainty equivalance which under iii. holds 
in the form 

argmin {El(u) lf(x, u, w)=O}=argmin {J(u) lf(x, u,Ew)=O} 
11(-) . 11(·) • 

whenever J is quadratic and/linear, as in (1-2). This implies that the optimal policy 
rule (3) is the same irrespective of the uncertainty in the exogenous shocks, i.e. 
the covariance matrix W. As uncertainty affects costs, the suggested policy is in
sensithre to the variability of the cost function. In this sense it has been observed 
that (1) cannot represent a V on Neumann-Morgenstern utility function, as it essen
tially embodies a risk neutrality assumption (Sharpe 1970, Hughes Hallet 1984). 
For given uncertainty W, one should optimise a criterion which considers first and 
higher moments of the cost function. When this is done, however, one looses the 
quadraticity of the minimand and must resort to mathematical programming tech-

niques. These, in turn, seldom result in feedback solutions, when they do not 

guarantee asymptotic stability and, in any case, destroy the elegance and the 

simplicity of linear quadratic control, as noted in (Hughes Hallet 1984). 

Secondly, quadratic criteria fail to capture nonsyrnmetric effects that deviations 
above or below the target may produce on costs. When monetary authorities an
nounce a target inflation rate of 4 %, they certainly do not regard 2% as equally 
costly as 6 %- In terms of expected utility theory this means that our criterion should 
consider at least the third moment of the random cost function. 

The approach taken in this paper is aimed at extending the simple and useful 
linear quadratic technique to handle more general criteria of the kind 

T 

minE};{!' (x (t)) Qf(x (t))+u' (t) Ru (t)} 
u(·) t=O 

(9) 

where f( ·) is assumed to be a globally invertible vector function from Rn to Rn, 
such that 

/(0)=0 

x>y implie~ f(x)>f(y) 

f(x)>O iff x>O 

f(x) not equal -/( -x) 

In this respect our approach differs from (Hughes Hallet 1984) in that the asymme
try problem is explicitly addressed. Specifically, the functions (defined component
w~se) 

f(x)=x+mlxl and f(x)=.5x (1 +exp (mx)) 
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have been considered. Notice that for m=O, (9), reduces to (1) so that, for these 
functions, (9) can be regarded as a perturbed version of (1), m being the perturbation 
parameter. Notice also that deviations above the target are costlier than below for 
m>O, and conversely for m<O. 

2. Statement of the problem 

Consider the problem 
T 

minE}; {f' (x (t)) Qf(x (t))+u' (t) Ru (t)} 
u(·) t=O 

x (t+ l)=Ax (t)+Bu (t)+w (t) 

x (0) known Ew (t)=O Ew (t) w (s)= Wb (t-s ) 

Next introduce variables z=f(x) and rewrite (9-10) 

T 

minE}; {z' (t) Qz (t)+u' (t) Ru (t)} 
u(o) t=O 

z (t+l)=/[Af- 1 (z (t))+Bu (t)+w (t)] 

z (O)=f(x (0)) 

(9) 

(10) 

(11) 

(12) 

(13) 

Equation (13) is a nonlinear stochastic difference equation. As we are interested 
in a feedback control Jaw, we shall put ·in (13) 

u (t)= -G (t) z (t) 

z (t+ 1)=/[ Af- 1 (z (t))-BG (t) z (t)+w (t)] 

and seek ·a minimizing sequence G (0} G (1) G (2) ... for (12). 

3. Approximate solution method 

(14) 

(15) 

Following a statisticallinearization technique originally suggested by (Sunahara 
1970), and subsequently developed by others (Iwan 1980, Bearnan 1981, Beaman 
1985), we shall replace (15) b~ an "equivalent" time varying linear system 

z (t+ 1)= [A (t)-BG (t)] z (t)+ C (t) w (t ) 

z (O)=f(x (0)) 

(16) 

where matrices A (t)- BG (t), C (i) are assumed to be a function of the instanta
neous statistical properties of the solution z (t). Since these are not known a priori, 
it is customary in the equivalent linearization approach to assume a Gaussian pro-
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bability density function for z (t), as for instance in (Iwan 1980). In particular, we 
assume for z (t) a zero mean gaussian distribution with covariance E z (t) z' (t)= V (t) . 
Indicating by D (t) the difference between (15) and (16) 

D (t) = F ( G (t), z (t), w (t))- [A (t)-BG (t)] z (t)- C (t) w (t) 

where we put for simplicity 
I 

F(G (t), z (t), w (t))=f(Af- 1 (z (t))-BG (t) z (t)+w (t)) 

we choose A (t) - BG (t), C (t) so as to minimize 

T 

_}; ED' (t) D (t) 
.r=O 

where the expectation is taken with respect to the joint probability density functions 
of z (t) and w (t) . Since these are independent random vectors and the latter is uni
formly distribu ted, this is simply the product of a constant times a Guassian density 
function. 

The solution obtained from the appropriate Euler equation is 

where 

A (t)=EF ( G (t), z (t), w (t)) z' (t) v- 1 (t)+BG (t) 

C (t) =EF ( G (t), z (t), w (t)) w' (t) w- 1 

V (t)=Ez (t) z' (t) 

(17) 

(18) 

It is well known that the solutions to (15) and (1'6) coincide up to second order, 
i.e. they are random processes whose mean and covariance evolutions are identical, 
provided the expectations in (17-18) are taken with respect to the exact probability 
density function (Beaman 1981). Within this approximation, the optimizing se
quence G (0) G (1) ... for problem (12, 14, 16) is found by solving the matrix Riccati 
equation 

G (t) =[B' P (t)B+R]- 1 B' P (t) A (t) (19) 

P (t)=Q+ A ' (t) P (t+ 1) A (t) -A' (t) P (t+ 1)B [B' P(t+1) x 

xB+R] - 1 B'P(t+l)A(t) (20) 

P(T)=Q (21) 

Since A (t) is a function of the covariance matrix V (t) the covariance evolution 
mu~t be simultaneously solved. The appropriate form of eq. (8) becomes 

V (t+ 1)= [A (t) -BG (t) ] V (t) [A (t)-BG (t)]' +C (t) WC' (t) (22) 

V(O)=C (0) WC' (0) 

Therefore, in order to obtain the optimal sequence G (0) G (1) ... it is necessary 
to solve the two point boundary value problem defined by (20-22). 

To this end we adapted to our needs an algorithm suggested by (Yoshida 1984) 
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1. Set initially A (O)=A C (O)=l, the identity matrix. 
2. Solve Riccati equation (20) backwards in time and find the P (t) sequence. For 

each P (t) get a G (t) from (19). 
3. Substitute P (t) obtained in 2. into the covariance equation (22), with A (t)=A 

and C (t)=I and solve it forward in time. At this stage we have the sequences 
V (t) and G (t). 

4. Use V(t) and G (t) to compute A (t) and C (t) with eqs. (17-18). 
5. Substitute A (t) into Riccati equation and obtain P (t) from (20) and G (t) 

from (19). 
6. Substitute A (t), C (t) into covariance equation (22) and solve it for V (t). 
7. Iterate steps 4, 5, 6 until V (t) and G (t) converge. 

The steady state properties of this control strategy are obtained by letting T go 
to infinity. The algorithm is unchanged except time dependence is dropped from all 
variables and (20, 22) become algebraic equations. Concerning convergence of the 
algorithm, we shall confine ourselves to just a few remarks on the steady state case. 
Assume that when A (n) is computed (step 4, iteration n) the pair (A (n), B) is stabi
lizable. (If not, we could replace B by B (n) in eqs. (16-23) and solve (17) for (A (n), 
B (n)) so that this condition holds). Then it is known that the Riccati equation 
converges to a steady state solution and the resulting closed loop system is asymp
totically stable. Therefore, the covariance equation also converges, (notice that 
C (t) is bounded for bounded W from eq. (18)) and the closed loop system (16) 
is asymptotically stable whenever the algorithm converges, in fact whenever a bound
ed solution exists for (20-22). 

A non linear feedback solution in terms of the origip.al target variables is thus 
obtained 

u (t)= -G (t)f(x (t)) (23) 

and its adoption into model (2) results in a closed loop model 

x (t+l)=Ax (t)-BG (t)f(x (t))+w (t) (24) 

which, in the sense of moments, inherits the boundedness of the response of (16). 

Notice that the nonlinearity appearing in the feedback law is the same as the one 
appearing in the criterion (9). While this might have been intuitively surmised, 
our analysis shows that this is indeed the optimal solution when f(x) is normally 
distributed. Notice that optimal elasticities in the sense of (9) are no longer 
independent of ta!get deviations. 

4. Properties of the soluti.on and risk aversion 

Comparing the optimal decision rules (3) and (23) the following remarks are 
in order 

1. whereas in the quadratic case the optimal policy is insensitive to the noise 
covariance W, (as already observed) in the non-quadratic case the optimal policy 
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rule G (t) depends explicitly on the covariance V (t), eqs. (19, 20, 17), whose evolution 
is driven by W, eq. (22). Thus (23) is no longer risk neutral. Indeed our criterion (9) 
generalizes usual characterizations of risk aversion in that it depends on all moments 
of the target variables distribution, and it appears in consonance with the criteria 
for the definition of "greater riskiness" proposed in (Rothschild 1970). 

2. whereas in the quadratic case (3) describes a symmetric reaction function, 
(23) need no longer be symmetric andf(x) can be chosen to yield the desired effect. 
This feature has to be contrasted with the solution suggested in (Hughes Hallet 
1984) where although a risk sensitive policy is obtained, the feedback law is still 
linear in the target deviations. 

3. consider the case in which f<x) is chosen in a one-parameter class, as for 
instance 

f(x)=0.5x (1 +exp mx) (25) 

where m is the parameter. 

Then in the m-parametrized class risk neutrality obtains only for m=O, the linear
-quadratic case, and a quantitative assessment of ris~ seems naturally offered by 
the usual measures of risk aversion. Although there is no suggestion to interpret 
directly -f(x) as a utility function, comparison of optimal risky prospects could 
still be made on the basis, for instance, of the Arrow-Pratt measure of risk aversion, 
which in the case of (25) would yield 

R=f" (x)/f' (x)=m (2+mx)/((l+mx)+exp-mx) 

Since m=R for x=O, parameter m is readly interpreted as the A -P measure of 
risk aversion at the desired level of the target variables. 

5. Examples 

Performance of the criterion has been numerically experimented on simple
mock-up systeJ:tlS of low dimension. An application to the 'control of the term struc
ture of interest rates for the Italian economy is also being_ considered. Exercises 
are currently under way and, due to their incompleteness, they are not reported 
here. However, the results obtained so far are rather encouraging. For more details, 
interested readers are invited to contact the author. 

6. Concluding remarks 

A linear econometric model has been assumed to describe the economic system 
in terms of targets and instruments. A non-quadratic criterion has been suggested 
in order to account for riskiness and as}mmetry of economic policy. It has been 
shown that a nonlinear feedback policy rule involving f(x), the same nonlinearity 
appearing in the criterion, can be considered a good can::!idate to solve the under-
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lying optimization problem. The solution obtained is optimal whenever f(x) is 
normally distributed, suboptimal otherwise. In the latter case, the approximation 
amounts to replacing the original stochastic constraint by one that differs from it 
by moments of order 3 and higher. 

If the system is stabilizable in the sense oflinear-quadratic theory, it is also sta
bilizable with the present non-quadratic apparoach. 

The policy rule is dependent on the noise intensity W and in fact it takes into 
account ris~iness in a rather general form. An assessment of the risk aversion embo
died in the criterion can be made by usual A-P indices. 

References 

[1] BEAMAN J. J., HEDRICK J. K. Improved Statistical Linearization for Analysis and Control 
of Nonlinear Stochastic Systems. Journal of Dynamic Systems Measurement and Control, 
ASME Trans. 103 (1981), 103-114. ~ 

[2] BEAMAN J. J. Non-linear Quadratic Gaussian Control. International Journal on Control, 39 
(1985) 2, 343-361. 

[3] HUGJ-!ES HALLET A. J. The Stochastic Interdependence of Dynamic Risk Sensitive Decision 
Rules. International Journal of System Sciences, 15 (1984) 12, 1301-1310. 

[4] lwAN W. D., MASON A. B. Equivalent Linearization for Systems subjected to Non-stationary 
Random Excitation. Intern. Journal of Non linear Mechanics, 15 (1980), 71-82. 

[5] KARAKITSOS E., RuSTEM B. Optimal Fixed Rules and Simple Feedback Laws in the Design of 
Economic Policy. Automatica, 21 (1985) 2, 169-180. 

[6] KuNSTMAN A. Controlling a Lipear Dynamic System according to Asymmetric Preferences. 
Journ. of Economic Dynamics and. Control, 7 (1984) 3,. 261-281. 

[7] KwAKERNAAK H., SrvAN R. Linear Optimal Control Systems. New York, Wiley, 1972. 
[8] PETIT M. L. Path Controllability of Dynamic Economic Systems. Economic Notes, 1, 1985 

(to appear). 
[9) RoTHSCIDLD M., STIGLITZ J. Increasing Risk I: A Definition. Journal of Economic Theory, 

(1970)· 2, 225-243. 
[10] SHARPE W. Portofolio Theory for Capital Markets. New York, Me Graw Hill, 1970. 
[11) SUNAHARA Y. Stochastic Optimal Control for Non-linear Dynamical Systems under Noisy 

Observations. Automatica, 6 (1970), 731-737. 
[12] WoHLTMANN H. W., KRoMER W. Sufficient Conditions for Dynamic Path Controllability of 

Economic Systems. Journal of Economic Dynamic and Control, 7 (1984) 3, 315-330. 
[13] YosHIDA K. A method for Optimal Control of Non Linear Stochastic Systems with Non 

Quadratic Criteria. Intern. Journal of Control, 34 (1984) 2, 279-291. 

Uog6lnienie zadania sterowania liniowo-kwadratowego 
dla przypadku niesymetrii we wskaznikach jakosci 

Rozpatrzono liniowy model ekonometryczny sformulowany w przestrzeni stan6w, w kt6rym 
rozpatruje si~ odchylenia od zadanej trajektorii. W modelu uwzgle<dniono zakl6cenia losowe. Za
proponowano kryterium nieliniowe, kt6re uwzgl~dnia ryzyko i niesyrnetrie< odchyle:6.. Pokazano, 
ze do rozwiltzania sformulowanego zadania moma zastosowac regulator ze sprze<zeniem zwrotnyrn. 
w kt6rym wyste<puje zmienna o rozkladzie f(x). Gdy f(x) ma rozklad normalny, otrzymane roz
wi~zanie jest optyrnalne, w przypadkach innych rozklad6w jest ono suboptyrnalne. Wprowadzenie 
powyi:szej nieliniowosci nie narusza stabilizowalnosci ukladu. 
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06o6J:QeHHe Ja.n;a'IH JIHHeiiuo-KBa.n;pamquoro ynpaBJieHWI 

B CJiyqae aCUMMeT}lHII DOKa3aTeJieii Ka'leCTBa 

269 

0illlCaHa JIHHeilliaH 3KOHOMeTpH'!eCKaH MOp;eJib, orrpep;eJieHHaH B ITpOCTpaHCTBe COCTOHHHit 

B KOTOpOH paCCMaTpHBalOTCH OTKJIOHeHHH OT 3ap;aHHOfi TpaeKTOpiDI. B MOp;emr Y'!TeHbi CJJY'Iait· 

Hble lJOMeXH •. IJpep;JIO)KeH HeJIHHefiHhrn KpHTepHil:, KOTOpbrli yqHTbJBaeT pHCK H aCHMMeTpHlO OT· 

KJIOHeHHH. floKa3aHO, 'ITO JJ;llH perueHHJ'l lJOCTaBJJeHHOH 3a;n:a'IH MO)KHO rrpHMeHHTb peryJIHTOp 

C o6paTHO:il: CBH3bl0, B KOTOpO:il: HCIJOJib3yeTCH rrepeMeHHaH C pacrrpep;eJieHHeM f(x). B CJJY'Iae, 

eCJJH f(x) HMeeT HOpMaJibHOe pacrrpep;eneiDie, rrorryqaeMoe pemeHHe HBJIHeTcH orrTHMaJibHblM, 

a p;rrn p;pyrnx pacrrpep;eneHHH: OHO HBJIHeTCH cy6oiJTHMaJibHb!M. BBep;eHHe Bbnne YKa3aHHoii He

nnneilliocnr He HapymaeT YCTOH'IHBOCTH CHCTeMbi. 
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