
Control -
and Cybernetics 
VOL. 15 (1986) Noc 3-4 

Geometric aspects of the inclusion principle 

by 

WIESLAW KRAJEWSKI 

Systems Research Institute 
Polish Academy of Sciences 
Newelska· 6 
01-447 Warszawa, Poland 

One of the recent approaches in large-scale system modelling, stability analysis and decentra­
lized control is, based on the inclusion principle of dynamic systems, the expansion-contraction 
scheme developed by Siljak and his eo-workers. In the paper a detailed analysis of the inclusion 
concept is presented. Generalized inverses of matrices aq.d the geometric approach to linear time­
-invariant systems are used to obtain formulas defining expanded and contracted models explicitly. 

1. Introduction , 

For many reasons, practical or conceptual, most of large scale systems are 
assumed to be composed of interconnected subsystems. In the standard decompo­
sition approach these subsystems appear as disjoint and they are controlled on the 
basis of locally provided information. However, in many cases, for example in eco­
nomic systems, traffic or power systems, these subsystems do not appear as disjoint. 
Some of them can possess certain state variables in common ,and therefore they 
overlap. 

One of the recent approaches to deal with such systems is, based on the· inclusion 
principle, the expansion-contraction scheme introduced by Siljak and his eo-workers 
[4], [5], [6]. They proposed t<_> expand the original system by linear transformation 
to a larger state space where subsystems appear as disjoint. If such transformation 
is performed in a proper way the expanded system includes the original. one, i.e. 
contains all necessary informatl.01i about the behavior of the original system. 
Then, subsequent analysis can be carried out for the expanded model using standard 
disjoint decomposition; resulting conclusions can be contracted to the original 
system. 

Such methodology was applied by Ikeda, Siljak and White to decentralized 
suboptimal control and to stability analysis ·of large-scale systems [4], [5]. Its attrac­
tiveness was also demonstrated by Titli and Calvet [3]. However, the results Ikeda 
et al. [4] have obtained define expanded system implicitly by the set of nonlinear 
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matrix equations. This restricts the choice of the ~xpansion-contraction scheme to 
rather simple and special cases. 

In this paper a geometric analysi~ of the inclusion principle is developed. The 
formulas we established define explicitly the expanded system and can be easily 
applied to the overlapping decomposition or further detailed investigation the 
properties of the expanded system. 

· 2. Inclusion principle, preliminary results 

Let us consider a pair of linear time-invariant systems described by 

S: x (t)=Ax (t)+Bu (t), (1) • 

· y (t)=Cx (t) (2) 
and 

s: i (t)=Ax (t)+Bu (t), (3) 

y (t)=Cx (t)·, (4) 

where x (t), x (t) are respictively an n-dimensional and an fi-dimensional state 
vectors, u (t) is an r-dimensional input vector and y (t) is an m-dimensional output 
vector. The matrices are constant and of appropriate dimensions. It is assumed that 
the dimensionality of S is smaller or at most equal to that of S. . 

A system S includes a system S (or equivalently a system S is included by a sys­
tem S) if there exists an fiX n matrix T with full column rank such that for any 
initial state x 0 of Sand any fixed input u (t) the· choice x0 =Tx0 of the initial state 
of S implies . 

x (t, x 0 , u)=T+ x (t, x0 , u), 

y [x (t)]=y [x (t)] 

(5) 

(6) 

for all f ,> 0, where T+ is a generalized inverse ofT. We also say then, that S is an 
expansion of S or S is a contraction of S. 

To illustrate the expansion and contraction notion let us consider the followiq,g_ 
simple example borrowed from ·[4]. Suppose we are given a system , 

S: x (t)=Ax (t), . (7) 

where n-dimensional state vector xis composed of three vector components xT = 
=[xf, x~, x;], dim x1=n1, n=n1 +n2 +n3 • The matrix A can be written 

A~[~;; 1:::~::·]' 
where the submatrices correspond to the components xl> x 2 , x3 and have appro­
priate dimensions. Dashed lines show two overlapping subsystems of S. . 
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Thus, we can decompose the state vector x into two overlapping 'components 
-T [ T T] -T [ T T] d d :fi d d t. -T [-T. -T1 d' -x1 = x1 , x2 , x2 = x2 , x 3 an e ne a new expan e vec or x = .x 1 , x2 , tm x= 
=ii=n1 +2n2 +n3 • 

The above procedure is equivalent to the linear transformation x= Tx defined 
by the matrix 

[

It 

T= 0 
0 
0 

0 

where 11 , 12 ,13 are identity matrices of respective dimensions. 
For the expanded system 

. I 

Ikeda and .Siljak assumed that 

s: ~ (t)=Ax (t) (8) 

(9) 

where M is an ii ><: ii complementary matrix, which can be, for example, equal to 

Then we 'Obtain 

M= 0 tAzz 

[

0 t A12 

0 -t A22 
0 ..,..t A32 

r 
A 11 A 12 : 0 A 13 ] 

_ An Azz \ 0 A23 
, A= . -----:--------- --- . 

An 0 : A22 A23 . 

, A3t 0 : A'32 A33 

Now, Scan be decomposed into two interconnected subsystems as follows 

St: it (t)=Au Xt (t)+Al2 x2 (t), 

Sz: ~2 (t)= A21 X1 (t)+ A22 Xz (t), 
where 

A -[ Au u-
A21 

A12l 
A22 ' 

A -[ A22 22-
A31 

Az3] 
A33 

are subsystem matrices and 

- [0 A12= 0 A13] 
Az3 ' 

_A• ·-[A2t 21-
A3t ~] 

are interconnectiol). matrices. 
Generally, in order to establish explicit relations between S and S Ikeda and 

Siljak assumed, similarly as above, that 

10 

A=TAT7+M, 

B=TB+N, 

C=CT++L, 

(10) 

(11) 

(12) 
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where M, N and L are complementary matrices of appropriate dimensions. Then, 
they proved that S includes S if and only if complementary matr ices satisfy the set 
of nonlinear matrix equations 

r+ M; T=O, r+ Mi - l N = O, 

LM1- 1 T= O, LM1- 1 N = O 
(13) 

for i= l, ... ,if. 

Next, they distinguished two particular cases. First, called restriction, when any 
trajectory of S starting at any point x0 from the image of T lies entirely in this sub­
space. Then, the complementary matrices satisfy 

/ 

MT= O, N = O, LT= O, 

Second case, called aggregation, is when 
' 

x (t, r+ X0 , u)=T+ x (t, x0 , u). 

Then, the complementary matrices satisfy 

r+ M=O, r+ N = O, L = O. 

(14) 

(15) 

(16) 

Because of the complexity of the conditions (14) any attempt to apply expansion­
-contraction scheme· is practically restricted to these two mentioned particular 
cases . However, at present it is not known how particulat are these particular 
cases. The answer to this question is given in the following section. 

3. The main results 

We first note that from (5) there follows 

x (t) = T+ ~ (t) 

and this is equivalent to 

Ax (t)+Bu (t) = T+ (Ax (t) + Bu (t)). (17) 

Moreover, it is 'well known [2] that solution of (5) takes, for any time t>O, the fonn 

x (t)=Tx (t)+ v (t), (18) 

where V (t) is an arbitrary vector from the null space ' of r+' Ker r+. 

Analysing the evolution of S we state that -there are only three possible cases. 
First is when a trajectory of S starting fr1om any point x0 E ImT lies entirely in this 
subspace. The second case is, when a trajectpry of S starting from a point x0 E ImT . 

lies in a proper subspace of Rn containing ImT. In the third case any trajectory · 

of S starting from x0 E ImT does not lie, in general, in any proper subspace of R-:., 

i .e. x (t) can take any value from R". We study now all three cases. 



Geometii'ic as·peots 391 

CASE 1 

Since. x (t) e ImT for all t > 0, .i' (t) E ImT and in addition v (t)=O, it follows from 
(6) and (17) that -

r+ AT=A, 

r+ B=B, 

CT=C. 

(19) 

(20) 

(21) 

Because T has full column rank, r+ T=l and there exist matrices A, B, C satisfying 
eqs. (19), (20), (21). They are equal to, [2], 

A=TAT++M, 

B=TB+N 

C=CT+ +L, 

where matrices M, N, L satisfy homogeneous equations 

r+ MT=O, 

r+ N =O, 

LT=O. 

(22) 

(23) 

(24) 

(25) 

(26) 

(i7) 

Note, that Mx E Ker r+ for every X E lmT and Nx E Ker r+ for all X ER". 

In the case we consider x (t), i (t) elmT for t>O. Thus, we obtain 

It means that 
MT=O, N =O. 

A=TAT++Q(I-TT+), 

B=TB, 

C=CT++R(l-TT+),. 

for some matrices Q, R of appropl'iate dimensions. 

CASE 2 

(28) 

(29) 

(30) 

(31) 

If x (t) lies in a pr'oper subspace of R", then there exists a matrix T1 such that 
ImT1 c Ker r+ and 

x (t)=Tx (t)+T1 Ti v 1 (t), (32) 

where v 1 (t) is an arbitrary vector from Rn. Moreover, the subspace ImT(f)lmT1 

is A-invariant. It mearis, that 

(l-TT+-T1 Ti);f(TT++T1 Ti)=O. 

Substituting (32) to (17) we obtain that 

r+AT=A 

(33) 

(34) 

(35) 
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Any solution of (33), (34), (35) takes the form (~2) where M s3;tisfies. (25) and 
~· . 

T+ MT1 Ti =0, 1 
(I- TT+ - T1 Ti) M (TT++ T1 Ti)=O, 

so 
M=Q-(I-T1 Ti) Q (TT++T1 Ti), 

where Q i~ a matrix of appropriate dimensions. 
/ . -

Next, since ImB cimT(J)ImT1 we obtain that B satisfies (20) and 

(36) 

(37) 

(38) 

(I- rr+- T1 Ti) B=O. (39) 

Any solution of (20), (39) takes the form (23) where N satisfies · (26) and 

(I-TT+-Tl Ti)N=O, (40) 

so 

for some matrix P. 
Substituting (32) to (6) we obtait1 (21) and 

CT1 Ti=O 

It implies that C takes the form (24) where N satisfies (27) and 

LT1 Ti=O, 
so 

Thus, we conclude that 

CASE 3 

A=TAT++Q-(I-T1 Ti)Q(TT++T1 Ti), 

B=TB+Tl T{ P, 

C=cT++R(I-TT+-Tl Ti) . 

Assuming that x (t) can take any value from Rn we have 

x (t)=Tx (t)+(I-TT+)v1 (t) . . 

and it follows from (6) and (17) that A, B, C satisfy (19), . (20), (21) and 

T+ .A (I- TT+)=O 

C(I-TT+)=O 

Solving these equations we obtain 

A=TAT++(l-TT+) Q, 

B=TB+(I-TT+) P, 

c~ci+. 

(41) 

(42) 

(43) . 

·"( 44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

.(53) 
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4. Conclusions 

In this paper a geometric analysis of the inclusion principle was used to charac­
terize explicitly the expanded system. The conditions we derived are much simpler 

· than those obtained by Siljak and his eo-workers. · 
By a further analysis of the results we obtained it can be stated that S is in fact 

an aggregated system forS. In aggregation it is usually assumed that input variables 
can take any value from: the input space. However, we can restrict them to some 

' proper subspace of the inpu't sBace. Such approach was presented by economists 
for static mode1s and such possibility was also mentioned by Aoki ·[1], where he , 
suggested to restrict state variables to some proper subspace of the state space. 

Clearly, the expansion-contraction scheme fot large-scale systems analysis is 
an open•ended topic. The natural step will be to develbp computational algorithms 
'for obtaining expanded systems with couplings between subsystems as small as 
possible. A fruitful direction of future researches is also to apply the results of this 
paper to multimodel decentralized control. 
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Geometryczne aspekty zasady inkluzji 

Ostatnio, dla cel6w analizy i sterowania zdecentralizowanego w systemach zlozonych Siljak 
i jego wsp6lpracownicy wykorzystali zasadc:; inkluzji uklad6w dynamicznych. W pracy, wykorzy­
stuj~tc wlasnosci geometryczne trajektorii ukladu oniz uog61nione .~dwrotnosci macierzy, zostala 
przedstawiona szczeg6lowa analiza tej zasady dla stacjonarnych uklad6w liniowych. 

reoMeTpHitecKUe acneKThl DpHHQHUa BKJIIO'IeHUH 

. B pa6oTe ,ZJ;aH aHa.JlH3 IIPHHWUia BKJIIO'IeHHH ,ZJ;HHaMH'!eCKHX CHCTeM, Ha KOTOpOM OCHOBaH, 
npe,ZJ;JIO)I(eHH.b.dl' lJIJrJIHKOM Oro'!H H3 CaMbiX HOBI>IX ITO,ZJ;X0.1J:OB K MO)J;eJIHpOBaHHIO, aHa~Dl3Y H ,ZJ;e• 
~eHTpa.JlH30BaHHOMY yrrpaBJieHHIO 6ollbiiiHMH CHCTeMaMH. ilOJib3YHCb, IICeB,ZJ;006paTHI>IMH MarpH• 
~aMH H reoMeTpli'IecKHMH CBOi!.CTBaMH TpaeKTOpHH ,ZJ;HHaMH'!eCKOi!. CHCTeMbi BbiBe,ZJ;eHI>I cPOPMYJibl 
,ll;JIH pacmHpeHHOil: CHCTeMbi. 




