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A decompositiQn method for linear programs 
with dual block angular structure 
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This paper presents a decomposition method for solving large-scale linear programs with 
dual block~angular structure~ The method stems from nondifferentiable optimization algorithms 
of descent, requires a priori bounded storage and has finite convergence. Its quadratic programming 
subproblems ca.rl be solved effiCiently by the existing software for large-scale .optimization. 

1. Introduction 

This paper presents a decomposition method for solving linear programs with 
the following dual block-angular structure 

n 

minimize .L"; (91, z1) over all z1 ERn', x ERN 
i=l (1.1) 

for i=1, ... ,n, 
where c1 ER"', b1 E Rm', A1 and B1 are m1 Xn1 and m1 XN matrices, respectively, 
whereas ( · , • ) denotes the usual inner product. Under reasonable cot1ditions 
(see. e.g. [8]), the functions 

(1.2) 

are finite-valued, convex and piecewise linear (polyhedral), with easily compu
table subgradients. Then problem (1.1) may be restated as 

n 

minimize f(x): = .L; /1 (x) over all x ERN. 

i=l 

The method presented in this paper modifies the one given in [2] (see also [3]) to 
make "use of the special structure off We suppose that for each x ERN we can 
compute .ft (x) and an arbitrary subgradient gf (x) E 8/1 (x) of .ft a\ x, for i= 1, ... , n. 
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The method is based on the observation that for any i E I ={1, ... , n} and 11=1"' {i} 
the objective f can be expressed as 

f(x)=ft (x)+f(l> (x) for all x, 

where the function 

fi.t> (x)=}; ft (;x:) 
lEft 

can be approximated by the polyhedral function 

J(i) (x)=max {fi.1> (y)+(gc1> (y), x-y): yE Y;} (1.3) 

defined for any finite set Y1 eRN by the subgradient mapping 

gc1> (x)=}; gf, (x). 
IEJ1 

Our algorithm is a descent method in the sense of generating iterates ;xk E RN for 
k= 1, 2, ... withf(xk+ 1) <f(xl') if x"+ 1 ~xl'. Also a sequence of trial points {yk}cRN 

is computed. At the k-th iteration, n auxiliary points yk+l, 1 are computed by mini-
. mizing for i= 1, ... , n the functions " 

. ' 1 
J: (x)=ft (x)+Jti) (x)+2 1~- rY 

over all x in RN, where]t1> is defined ~y (1.3) with Y1c{l, ... , k} having at most 
N + 2 elements, and I • I is the Euclidean norm. The combined trial point 

(1.4) 

becomes r + 1 only if it reduces the objective value significantly; otherwise, a null 
step x"+ 1 =x" occurs, but the new subgradients computed at yk+ 1 will enrich the 
polyhedral models (1.3) at the next iteration, thus helping to find a better next 
trial point. 

In effect, each iteration involves n subproblems of the foxm 

1 
minimize (c1

, z1
) + u+ 21x- x"l 2 

(zt, u, x)ERnt+ l +N . 
(1.5a) 

(1.5b) 

(1.5c) 

I~ problems of interest to us, the numbers n1 of "internal" variables (in z1) of 
problem (1.1) are much larger than the number N of "linking" variables (in x), 
and the matrices A 1 and B1 are large, but sparse. In such cases subproblem (1.5) 
can be solved efficiently by the existing software for large-scale optimization, e.g. 
the MINOS code [5]. We refer the reader to [1, 6] for specific examples of possible 
apJ>lications of our method. 
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Relations of our method with the existing algorithms are discussed in a com~ 
panion paper [4]. Here we only note that our method seems to be 'unique in posse~ 
ssing the three properties: descent, a priori bounded storage; and finite termination. 

The paper is organized as follows. The algorithm is stated and discussed in · 
Section 2. Section J contains a result on finite convergence of the method. Finally, 
we have a conclusion section. 

We denote by 

of(x)={gERN:f.(y) ?;:-f(x)+(g,y-x) for all yERN} 

the . subdifferential off at x. 

2. The method 

We shall first state the method in detail, commenting Ol)- its rules in what follows . 

ALGORITHM 2.1. 
STEP 0 (INITIALIZATION). Select a starting point x1 ERN, a final accuracy tolerance 
e5 ?;:-0 and aline search parameter mE (0, 1). Sety1=x1 andJi={1} for iel. Set k=l. 

STEP 1 (TRIAL POINT FINDING).). For each i El, find the solution (z1, u~, yk+ 1
, 

1) 

to subproblem (1.5). Let J~ denote the set of indices j with nonzero Lagrange multi.:. 
pliers for constraints (1.5c), i E I. Compute yk+l by (1.4) and 

' 
v~=}; (yk+t , ;) + u~- f(.tk), 

) I 

iEl, 
1 n 

vk=- \' vk n £..../ t . • 
.i=l 

STEP 2 (STOPPING CRITERION). If v~ ';;:- -Es for some iEJ, terminate; otherwise, 
continue. I 

STEP 3 (TRIAL POINT TESTING). If 

f(yk+l)~f(xk)+mvk, 

set xk+ 1=yk+ 1 (serious step); otherwise, set xk+ 1=xk (null step). 

STEP 4 (APPROXIMATIO:t;' UPDATING). Set 

J~+I=J~v{k+1} for iei. 

Increase k by and go to Step 1. 
A few remarks on the algorithm are in order. 

Observe that typical procedures for solving subproblem (1.5) will automatically 
produce at · most N + 1 nonzero La grange multipiiers f?r the linear constraints 
(1.5c), since these constraints involve only N + 1 variables . This will be the case if 
MINOS [5] is used. . 
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In Step 2 w~ always have 

f(xk):;:;inf {f(x): x E RN}-v~+lv~l 112 sup {ix-xki :f(x):;:;f(xk)} 

(see [4]). The above optimality estimate justifies the stopping criterion of the method. 
If no termination occurs, Step 3 )s entered with vk < - s :::; 0. 

The sets J:+ 1 are selected so that the new linear pieces from yk+ 1 and the "active" 
pieces indexed by J~ (which contributed to yk+l, 1) are retained, whereas the remain
ing pieces are dropped. Note that y1 need not be stored, since one can use the recur
sive formulae 

at Step 4. 

f(i, (yl)+(g(iJ (yi), x-yl)=fu> (xk; yi)+(g(il (yi), x-xk)' 

k> (xk+1; yi)=f(i) (xk; yl)+(gu> (yi), xk+1_xk) 

3. Convergence 

Convergence properties of the method are analyzed in detail in [4] (including 
the case of not necessarily polyhedral/;). We shall now strengthen the analysis 
of [4] by presenting a result on finite termination in the polyhedral case~ 

We suppose that each/; can be represented as the pointwise maximum of a finite' 
number of affine functions, and that the subgradient mappings gf, have finitely 
many values. This assumption is realistic when the minimization in (1.2) is carried 
out by a simplex-like method, since then we may compute 

I 

where .A.1 is the Lagrange multiplier of (1.2). Moreover, we assume thatfis bounded 
from below, i.e. problem (1.1) has a solution. We also suppose that Algorithm 2.1 
uses parameter values s8 =0 and m= 1 (the case of s8~0 and mE (0, 1) is discussed 
in [41). 

THEOREM ..'. 1 Under the preceding assumptions Algorithm 2.1 will terminate in 

a finite number of iterations with a point xk that minimizes f 

Proof. (Due to lack of space, we only give an outline of the proof.) For c0ntra
diction purposes, suppose that the algorithm does not stop. 

(i) Suppose that only finitely many serious steps occur, i.e. xk+ 1 =xk for all large k. 
Reasoning as in the proof of Lemma 3.5 in [4], one can show that after each null 
step the optimal value of at least one of the n subproblems (1.5) stlictly increases, 
whereas the remaining optimal values do not ·decrease. But we have constant x" 
for large k and only a finite number of possible linear constraints (1.5c) (generated 
by the finitely many pieces of};, lE/), so there is but a finite number of possible 
optimal values of subproblems (1.5), a col}tradiction. 
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(ii) Next, suppose that the algorithm executes infinitely many serious steps. 
define a subsequence {z1

} of {xk} by setting z1 =x1 and l= I at Step 0, and at Step 3 
by setting z1+ 1 =xk+ 1 and increasing I by 1 if xk+ 1 #x\ so thatf(z1 + 1)~f(z1)+vk 

for all/ and the corresponding k. Using this fact and simple properties of subpro
blems (1.5), one can show that 

z1+ 1 =argmin {!(z) + ~ lz-z' l2 : zERN}for all/. 

Hence, the sequence {z1} is generated as in the proximal point ,method of Rockafellar 
[7], and [7, Proposition 8] implies that z1 is constant for large!. But z1+ 1 :f;z1 for 
all l by construction. This contradiction completes the proof. • 

4. Conclusions 

We have presented a new decomposition method for large-scale linear programs 
with dual block-angular structure. It differs from the existing algorithms in that 
it is a descent method with finite termination and a priori bounded storage. 

We shall present elsewhere an extension of the method for problems with in
duced constraints and not necessarily finite-valued partial objectives (1.2). 
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Metoda dekompozycji dla zadali programowania liniowego 
z dualnl! blokowo trojkl!tDI! strukturl! 

W pracy przedstawiono metod~ dekompozycji dla zadaii programowania liniowego wielkiej 
ska!i z dualn<t blokowo tr6jk4tn<t struktur4. Metoda ta wywodzi sice z algorytm6w spadku dla 
optymaljzacji nier6zniczkowalnej, wymaga ograniczonej pami~ci i ma skonczonl! zbiezuosc. Jej 
podzadania programowania kwadratowego moi;na efektywnie rozwil!zywac istniejllcymi progra
mami optyma1izacji wielkiej skali. 
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~eTOA AeKOMDOl~HH AnH laAa~ nnue0uoro nporpa~poBaHHH 
c AYaiTLnou 6no~uo-TpeyronLnou cTpyKTypou 

K. C. KIWIEL 

B pa6oTe npep;cTaBJieH M:eTop; p;eKo¥no3mu;rn: )J,JUI pemeHIDI 6ollbllfiX 3a,ll,a'i mmemmro npo

rpaMMHpoBaiDill C JlYallbHOH ,6JIO'iHO-TpeyrollbHOH CTPYKTypo:i!:. 3TOT MeTO.l( HCXO,n;HT H3 Me~O)J,OB 
CITyCKa .l(llll He,n;Hij_)!lJepem:t;HpyeMOH OITT~al.IHH, ,HCITOJib3yeT orpaHH'ieliH)'lO ITaMal!Tb H HMeeT 

KOHe'iHyiO CXO,n;HMOCTb. Ero ITO,ll,3a)J,a'iH KBap;paTH'iecKOfO nporpaMMHpOBaHIDI MOJKHO 31j_)lj_)eK• 

THBHO peiiiaTb CymecTBYIOm;HMH nporpaMMaMH OITTHMH3au;HH 60llbiDO:i!: pa3MepHOCTH. 


