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Linear goal programming (GP) is a widely used tool for dealing with problems involving mul­
tiple objectives. This paper aims to introduce a new concept of duality for GP. In this concept the 
dual to a minsum GP problem is a GP problem and the dual to a lexicographic GP problem is 
a multidimensional lexicographic GP problem. We prove most of typical dual relations including 
the saddle-point property and the formula for marginal values. 

1. Introduction 

This paper deals with lexicographic linear goal programming, I.e., with the 
specific form of linear goal programming wherein one seeks the lexicographic mini­
mum of an ordered set of goal deviations. This approach, also described as preemp­
tive priority based goal programming, is widely used in multiobjective optimization. 
It covers the minsum goal programming as a special (scalar) case. 

Ignizio [I, 2] developed practical sensitivity analysis for lexicographic GP and 
introCiuced. the so-called multidimensional dual. The Ignizio's dual has, however, 
some weaknesses which can be summarized as follows: 

-dual to the GP problem is not any GP problem, 

- dual variables cannot be directly considered as marginal values for several 
goals. 

The purpose of this paper is to present a slightly different duality concept which 
is free from the above weaknesses. We present such a dua_lity theory in which the 
dual to a minsum GP problem is also a GP problem and the dual to a lexicographic 

GP problem is a multidimensional lexicographic GP problem. Moreover, this GP 
duality covers all the typical LP dual relations including the saddle-point property 
and the Mills' formula for marginal values. 
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We shall use throughout this paper the following notation connected with vector 
inequalities: 

w~v-<=> W(~V; for each index i, 
w<v-<=>w1<v1 for each index i, 

w~v-<=>w1 <v1 or w1<v1 for some j<i, 
W-<V-<=>W~V and W#V 

where w and v are column vectors. 
) 

For matrices (or row vectors) the above relations are understood as follows 
Y r U-<=> Y1 r U1 for each .pair of columns Y1 and U1. 

For any number IX 

{

IX if a~O 
(1X)+ = 0 otherwise. 

The operator ( · )+ applied to a vector or matrix is understand componentwisely. 
Similarly, for any column vector V 

{
v if v~O 

(v)L= 0 otherwise. 

For a matrix (or row vector) (Y)L is defined by 

[(Y)L]1=(Y1)L for each column Y1 of the matrix Y. 

2. The primal 

The typical formulation of the lexicographic linear GP problem is as follows 

Find a vector x=(xl> ... , Xn)T to lexicographically minimize 

subject to 

.}; cu x 1+d: -di =b1 for i el 
jEJ 

where 

!={1, 2, ... , m}- set of goal indices, 
1={1, 2, ... , n} -set of decision indices, 

x1 -j-th decision (structural) variable, 
cu- coefficient of x1 in the i-th goal constraint, 
b,- target for goal i, 

d: -negative deviation for goal i, 
di -positive deviation for goal i, 

(2.1) 

(2.2) 

(2.3) 

gk (d-, d+) -linear function of the deviation variables to be minimized at 
priority k (k= 1, 2, ... , K). 
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Function gk can be written in the form 
( 

gk ea-, a+)=}; (uik) a; +,;,;k) an 
iEI 

where '\ 

u;k)- weight assigned to the variable a-; at priority k, 
w~k)- weight assigned .to the variable a; at priority k. 
In this paper we consider a different form of the GP problem with the constraints 

(2.2) and (2.3) replaced by the following 

}; cu x1+a; -at =0 for i El 

tEJ 

bj"~xi~bj for jEJ 

a-?;:.o, a+?;:.o 

where some bounds bj and bj" can take the value oo or -oo, respectively. 

(2.4) 

(2.5) 

(2.6) 

Note that the constraints (2.2) and (2.3) of any GP problem can be written 
in the form (2.4)- (2.6). Such a transformation can be pefformed for instance by 
introducing additional (logical) variables similarly as in the standard simplex codes. 
Moreover, many real relations can be easily handled via constraints (2.4)- (2.6). 
This approach allows to consider some bounds on the original decision variables 
as well as makes possible to introduce the interval goals (goals with the interval 
targets). There are many practical reasons for using intervals as targets for some 
goals (see [5]). 

For convenience in discussion, we shall rewrite the GP problem (2.1) and 
(2.4)- (2.6) in matrix form .ilS sl'own below. 

Find a vector x to lexicographically minimize 

a= [(u(l> a- +w(l> a+), ... , (u<K> a- +~<K> a+)y = ua- + wa+ (2.7) 

Sfibject to 

• 
where 

/ 

(2.8) 

(2.9) 

(2.10) 

u<k> - 1 x m row vector of\yeights associated with the negative deviation variables. 
at priority k, 

w<k) - 1 x m row vector of weights associated with the positive deviation va-
riables at priority k, 

U- Kxm matrix consisted of the rows u<k>, 

W- Kx m matrix consisted of the rows w<k), 
C - m X n coefficient matrix, 

1111 - m X m identity matrix, 
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b-- vector of lower bounds on the decision variables 
(a column vector, n x 1), 

.b+ _L. vector of upper bounds on the decision variables 
(a column vector, n x 1), 

x- decision variable~ vector (a column vector, n X 1), 
d- -vector of negative deviation variables (a column vector, mx 1), 
d+ -vector of positive deviation variables (a column vector, m X 1). 
Some infinite coefficients in the problem (2.7)-(2.10) are allowed. More precisely, 

the following can occur: 
1° bj = -oo (x1 has no lower bound), 
2° bj =oo (x1 has no upper bound), 
3° u~1>=u~2>= ... ·=J:l~K>=oo (d;=O, i.e., the negative deviation for goal i is 

forbidden), 
4° w< 1>=w<2 >= ... =w<K>=oo (dt =0, i.e., the positive deviation for goal i is 

forbidden). 
In what follows we assume that 0 • oo =0 and 0 • ( -oo )=0. 

For further simplification we prefer to use an explicit form of the deviations 
in the GP model. Due to the equality (2.8) the deviation vector:s .d- and d+ can be · 
expressed as 

d-=(-Cx)+ and d+=(Cx)+ 

provided that (d-)T d+ =0 .. The property (d-)T d+ =0 is usually guaranteed for all 
the optimal solutions by some requirements on the weight coefficients. 

Finally, we formulate the GP primal as the le?'icographic problem 

(2.11) 

A vector x is called to be feasible to the problem GPP if it satisfies the inequality 
b- ~x~b+. A feasible vector xis said to be optimal if it lexicographically minimizes 
the achievement (vector) function a= U (-Cx)+ + W (Cx)+ over the whole feasible 
set, i.e., 

U(-Cx)++W(Cx)+=:::;U(-Cx)++W(Cx)+ for any feasible x. 
The problem (2.7)-(2.10) will be referred to as an expanded form of the GP 

primal (2.11 ). 

PRoPOSITION 2.1. If the weight matrices satisfy 

U+W~O, 

then the achiev~ment function is lexicographically convex, i.e., 

a ( a1 x 1 + a2 x
2)~ a1 a (x1)+ a2 a (x2

) 

• 
(2.12) 

PROPOSITION 2.2. If the inequality (2.12) holds, then the GP primal and the correspon­
ing expanded GP problem are equivalent in the sense of having the same optimal • 
vectors x. 
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Note that the problem (2.7)-(2.10) is not a well-posed problem if the weight 
coefficients do not satisfy the requirel)lent (2.12). Similarly, it is unrea~onable to 
consider the GP problems which do not satisfy the requirement 

(2.13) 

since they are explicitly infeasible. We say that the GP problem is well-posed if 
both the inequalities (2.12) and (2.13) are valid. In what follows we shall only con­
sider the well-posed GP problems. 

3. The multidimensional GP dual 

Consider, at first, the GP problem with the scalar achievement function (i.e., 
K= 1). This case, called minsum or weighted GP, is the oldest and simpliest form 
of goal programming. Any minsum GP problem can be formed as a traditional 
LP problem with the special structure of the constraints. Thus LP duality leads 
to some definition for the scalar GP dual. The scalar GP primal takes the form 

(3.1) 

where u=u< 1> and w=w< 1> are rows of the weight coefficients. H can be rewritten 
in the expanded form as the LP primal: 

Find a vector x to minimize 

subject to the conditions (2.8), (2.9) and (2.10). 
The corresp~mding LP dual is given as follows: 

Find a vector y to minimize 

a*=v- b- -v+ b+ 

subject to 

where 
y- 1 x m row vector of dual structural variables, 

v- - 1 X n row vector of dual negative deviation variables, 
v+- 1 xn row vector of dual positive deviation variables. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The problem (3.2)- (3.5) has a special structure of goal programming. Namely, 

it is an -expanded form of the GP problem 

(3.6) 
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It is easy to verify that this problem is a well-posed GP problem whenever the GP 
primal (3 .1) is well-posed. The problem (J.6) will be referred to as the GP dual 
to the GP primal (3.1): Thus in the scalar case dual to a GP problem is also a GP 
problem. Using the LP duality theory we can state typical dual relations between 
the GP primal (3.1) and the GP dual (3 .6). Moreover, if the problem (3.6) is treated 
as a GP primal, then the problem (3.1) is obtained as the GP dual. 

The above GP duality concept can be extended to general lexicographic linear 
GP problems using the idea of the multidimensional dual (see [2, 3]). The multi­
dimensional dual is obtained from the scalar dual by replacing variables Y; by K-di­
mensional vectors Y;. Then all the scalar inequalities are understand as lexicographic. 
Given the GP primal (see (2.11)) 

GPP: lexmin {U( -Cx)+ + W(Cx)+: b- ~ x~b+}, 

we may write its dual as the multidimensional GP problem 

where 
Y is a Kxm matrix of dual variables and each row y<k) (k=1, 2, .. . , K) of the 
matrix Y is associated with priority level k. 
Similarly as in the scalar case, the lexicographic GP dual is a well-posed (multi­

dimensional) GP problem whenever the requirements (2.12) and (2.13) are satisfied . 

PROPOSITION 3.1. The achievement fudction of the multidimensional GP dual is 
lexicographically concave, i.e., 

COROLLARY 3.1. The optimal set to the multidimensional GP dual is convex. 

The lexicographic GP primal and the multidimensional GP dual satisfy all ty­
pical duality relations. More precisely, one can find lexicographic analogues of the 
principal results in LP duality. 

PROPOSITION 3.2. If x is feasible to the lexicographic GP primal and Y is feasible 
to the multidimensional GP dual, then the following lexicographic inequality holds 

U ( -Cx)++ W(Cx)+~- YCx~(- YC)L b- - (YC)L b+. 

THEOREM 3.1. If either the lexicographic GP primal or the multidimensional GP 
dual posses a finite optimal solution, then the other also does. 

COROLLARY 3.2. If all the data coefficients are finite, then both the lexicographic GP 
primal and the multidimensional GP dual have finite optimal solutions and the corre­

. sponding optimal values of the achievement (vector) functions are equal. 
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The next theorem summarizes the necessary and sufficient optimality conditions. 
All the typical LP optimality conditions have some analogues in lexicographic GP 
including even the saddle-point property. 

THEOREM 3.2. The following statements are equivalent: 
1 a x 0 is an optimal solution to the lexicographic GP primal and Y 0 is an optimal 

solution to the multidimensional GP dual; 
2o x 0 and Y 0 are feasible and the corresponding values of the achievement (vector) 

functions are finite and equal to -Y° Cx0
, i.e., U(-Cx0 )++W(Cx0 )+ = 

=(- Y° C)L b- -(Y° C)L b+ =- Y° Cx0
; 

3o x 0 and Y 0 are feasible and the complementary slackness holds, i.e., 

(Y0 + W) (Cx0)+ =0, 

(U- Y 0
) (- Cx0 )+ =0, 

(- Y° C)L (x0
- b-)=0, 

(Y° C)L (b+ - x 0 )=0; 

4° the pair (x0
, Y 0

) is a lexicographic saddle-point of the vector function 
L (x, Y)=(U- Y) (- Cx)+ +(Y+ W) (Cx)+ -(- YC)L (x-b-)-(YC)L (b++ 
-x)-YCx, that is, 
L(x0 , Y)'<L(x0

, Y 0 )'<L(x, Y 0 )for any X ERn and YERKxRm; 
5° x 0 and Y 0 are fe(lsible and the pair (x0

, Y0) is a lexicographic saddle-point of 
the vector function L (x, Y)=- YCx, i.e., 

- YCx0 '<- yo Cx0 '<- yo Cx for any feasible X and y. 

The complementary slackness conditions are usually interpreted by implications: 
"If a variable in one problem is active, then the corresponding constraint in the 
other problem must be tight" and "If a constraint in one problem is not tight, then 
the corresponding variable in the other problem must be on the limit level". The 
following corollary states such a form of the complementary slackness conditions , 
for the lexicographic GP. 

CoROLLARY 3.3. If x 0 and yo are _any optimal solutions to the lexicographic GP 
primal and multidimensional GP dual, respectively, then the following implications hold 

Y~>- -- W1 => c1 x0 :;;;;0 
c1 x 0 > 0 => Y~ = - W, 

Y~-< U, => c1 x 0 ;:?:0 

c1 x 0 <0 => Y~= U, 

xJ>bj => Y° C1>'0 

Y° C1-< 0 => x~ =bj 

xJ <b! => Y° C1'<0 

Y° C/>-0 => xJ =b! 

where c1 denotes the i-th row of matrix C and C1 is the j-th column of matrix C. 
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The lexicographic GP primal is, usually, solved as a sequence of scalar GP pro­
blems. It turns out that several rows of a dual solution (matrix) correspond to these 
problems. 

THEOREM 3.3. If Y 0 is an optimal solution to the multidimensional GP dual, then 
the k-th row of Y 0 (k= 1, 2, ... , K) is a dual solution to the GP primal subproblem 
to be solved at priority k 

Pk: min {u(k) ( -Cx)+ +w(k) (Cx)+: b- ~x~b+' X E sk-1} 

where sk-1 is the optimal set to the problem pk-1• 

CoROLLARY 3.4. The multidimensional GP dual can be solved as a sequence of scalar 
GP problems. 

In line_4r programming, having known dual solution one can calculate the so­
-called marginal values with respect to some data perturbations. Marginal ·values 
for LP problems are given by the Mills' formula (see [6]). Similar analysis can be 
performed in goal programming. In the scalar case we get a formula for marginal 
values by using the Mills' formula to the expanded form of GP problem. 

For lexicographic GP one may consider the marginal vectors 

. 1 
a~(H)= lim - [a(H+ah)-·a(H)] 

a-+0+ et 

where H and h denote tbJ data and their perturbations, respectively. However, 
the lexicographic minimum is, in general, unstable (see [4]) and therefore some 
coefficients of the marginal vector are infinite. The instability is caused by specifity 
of the lexicographic relation. Namely, the dual feasible set defined by lexicographic 
inequalities is not closed. 

PROPOSITION 3.3. If - w<rl < u<rl for some r < K, then the feasible set to the multi­
dimensional GP dual is not closed. 

Fortunately, the lexicographic GP problem is stable with respect to small per­
turbations of the bounds coefficients, i.e.; if only the bounds coefficients are allowed 
to be perturbed. Thus it is possible to perform analysis of the bounds coefficients 
changes and give a formula for the con esponding marginal vectors. 

THEOREM 3.4. Let Je denote the set of equality bounds, i.e., Je=U E J: bj =bJ }. 
If the lexicographic GP primal has a finite optimal solution and all the weight coeffi­
cients u\kl and ~k) are finite, then there exist an a0 >0 such that the perturbed GP 
problem 

lexmin {U( -Cx)++ W(Cx)+: b-+p- ~x~b++p+} 

is solvable provided that 

I.B}I<ao and I.BJI<ao for jEJ-Je · 

and {Jj ~ .Bj for j E Je . 
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" 
The corresponding marginal vector is then given by the formula 

a;n-,p+)=lexmax [(- YC)L p- -(YC)L p+] 
res• 

where S* denotes the optimal set to the multidimensional GP dual. 
Typical postoptimality analysis depend on calculating of the marginal values 

with respect to single entrr perturbations. In goal programming one can consider 
thfee types of the bound coefficient perturbations: 

1° lower bound perturbation 

fr;=bj+a. for jEJa={jEJ: - co<bj<bj}, 

2° upper bound perturbation 

bJ =bj +a. for j EJ .. ={jEJ: b) <bJ <+eo}, 

3° equality bound perturbation (b) =bj = b1) 

-- -+ b1 =b1 =b1+a. for jEJe. 

Due to Theorem 3.4 the marginal vectors with respect to positive or negative per­
turbations of the single bound coefficient are given as follows: 

1° a~+b})=lexmax (- YC1)L, a~-b'j)=lexmax-(- YC1)L for j E Jd; 
res• res• 

2° a~+bJ)=lexmax -(YC1)L, a;_bJ)=lexmax(YC1)L for jEJ,,; 
res• res• 

3° a;+b
1
)=lexmax-YCJ> a;_b

1
)=lexmax YC1 for jEJe. 

res• res• 

Some bounds b) and bj represent, usually, targets .for goal functions. The 
corresponding column C1 -is then equal to minus unit versor -e1• Thus several 
multidimensional dual variables prove to be. multidimensional shadow prices for 
the corresponding goal functions. 

COROLLARY 3.5. If a logical variable associated with the .goal function ft is inqluded 
. in the GP primal formulation, then the marginal vectors with respect to perturbations 
of the corresponding target [r;-; rt] are given as follows: 

a~+rl)=lexmax (Y1)L and a;_r~=lexmax-(Y1)L 
res• res• 

for positive or negative perturbation of the lower limit, respectively; 

and 

forpositive or negative perturbation of the upper limit, respectively; 

3° . a~+r,)=lexmax Y1 
res• 

and a~_,1)=lexmax - Y1 
r es• 

for positive or negative perturbation of the point target, respectively. 

12 
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4. Conclusion 

This paper has presented a symmetric duality theory for linear goal programming. 
It definitively disproves the opinion that duality does not exist in linear GP or it 
is less efficient than in linear programming. 
For the scalar (minsum) GP primal 

min {u (- Cx)+ +w (Cx)+: b- ~x~b+} 

we get the GP dual 

max {( -
1
-yC)+ b- -(yC)+ b+: -w~y~u} 

which is a typical GP problem. 
Similarly, for the lexicographic GP primal 

lexmin {U( -Cx)++ W(Cx)+: b- ~x~b+} 

we get the GP dual 

lexmax {(- YC)L b- -(YC)L b+:- W~Y~U} 

which is a lexicographic multidimensional GP problem. 
The paper has presented · GP analogues to all classic LP duality relations inclu­

ding the saddle-point property and the Mills' formula for marginal values. Mo­
reover, some special GP duality relations have been introduced:-
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Symetryczna teoria dualno§ci 
dla liniowych zadan p.rogramow,ania celowego 

Programowanie celowe jest powszechnie stosowan!! technik!! rozwi!!zywania zagadnieii wielo­
kryterialnych. Praca prezentuje kompletn!! teori~ dualnosci dla linioWYch zadan programowania 
celowego. Problem dualny do skalarnego zadania programowania celowego jest r6wniez skalarnym 
zadaniem prograrnowania celowego. Natomiast problem dualny do leksykograficznego zadania 
programowania celowego jest wieloWYmiarowym leksykograficmym zadaniem programowania 
celowego. Udowodnione Sl! typowe relacje dualne. 
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~erpaqnag TeOpHH ~anbHOCTH 

~~H HHHeHnLU[ 3a~aq qe~esoro uporpa~oBaHHH 

IJ:enenoe nporpa.MMHpOBaHHe RBJUieTCH IIIHPOKO HCIIOJib3yeMJ>IM MeTO):(OM peiiieHIDI MHOTO­

KpHTepHa.Jli>HLIX 3a,IIa'!. B pa6oTe rrpe,n;cTanneHa rroJIHaH TeopHH ,n;yaJibHocrn ,n;JUI mme:lim.IX 3a,n;a'l 

~enenoro rrporpaMMHponaHHH. ,n;ya.Jli>HaH 3a,n;a'la n cKaJUipHOM IJ;enenoM rrporpaMMHPOBaHHH 

RBJIHeTCH TaiOKe CKaJUipHoii: 3a,I:(a'!e:ii IJ;enenoro rrporpaMMHponaHIDI. B cnoro o'!epe.D;b ,n;ya.Jli>HaH 

rrpo6neMa n nexciiKorpa$H'!ecKoii: 3a,IIa'!e ~en~noro rrporpaMMHponaHIDI RBJUieTCH MHoroMepHOH 

neKCIIKorpa$H'!eCKoii 3a,IIa'leii ~enenoro rrporpaMMHponaHIDI. ;a;oKa3amr THIIH'lllliie ,n;ya.Jli>mre 

OTHOIIIeHIDI. 
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