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Linear goal programming (GP) is a widely used tool for dealing with problems involving mul-
tiple objectives. This paper aims to introduce a new concept of duality for GP. In this concept the
dual to a minsum GP problem is a GP probleni and the dual to a lexicographic GP problem is
a multidimensional lexicographic GP problem. We prove most of typical dual relations including
the saddle-point property and the formula for marginal values.

1. Introduction 2

This paper deals with lexicographic linear goal programming, i.e., with the
specific form of linear goal programming wherein one seeks the lexicographic mini-
mum of an ordered set of goal deviations. This approach, also described as preemp-
tive priority based goal programming, is widely used in multiobjective optimization.
It covers the minsum goal programming as a special (scalar) case.

Ignizio [1, 2] developed practical sensitivity analysis for lexicographic GP and
introduced. the so-called multidimensional dual. The Ignizio’s dual has, however,
some weaknesses which can be summarized as follows:

— dual to the GP problem is not any GP problem,

— dual variables cannot be directly considered as marginal values for several ]

goals.

The purpose of this paper is to present a slightly different duality concept which
is free from the above weaknesses. We present such a duality theory in which the
dual to a minsum GP problem is also a GP problem and the dual to a lexicographic
GP problem is a multidimensional lexicographic GP problem. Moreover, this GP
duality covers all the typical LP dual relations including the saddle-point property
and the Mills’ formula for marginal values.
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We shall use throughout this paper the following notation connected with vector

inequalities:
wSv<w;<v; for each index i,
w<wv<w;<v; for each index i,
wxu<w;<v; or w;<v; for some j<i,
w<ov<w=<v and w#v

where w and v are column vectors.

For matrices (or row vectors) the above relations are understood as follows
Yr U<Y;r U for each pair of columns Y; and U,.

For any number o
(o o« if =0
*7|0 otherwise.

/

The operator (+), applied to a vector or matrix is understand componentwisely.
Similarly, for any column vector ¢

v if 220
(Z’)L_{O otherwise.

For a matrix (or row vector) (Y). is defined by

(V) li=(Y)), for each column Y; of the matrix Y.

2. The primal

The typical formulation of the lexicographic linear GP problem is as follows
Find a vector x=(x, ..., x,)¥ to lexicographically minimize

a=[g, (d~, d*), g, (@, d*), ., gx (=, d )] @1

subject to
N cyxd; —di=b, foriel ' 2.2)
JjeJ
x20,d=20,d* =20 2.3)
where

I={1,2,...,m} —set of goal indices,
- J={1,2,..,n} —set of decision indices,
x; — j-th decision (structural) variable,
¢;; — coefficient of x; in the i-th goal constraint,
by — target for goal i,
d; — negative deviation for goal i,
d; — positive deviation for goal i,
s(d-,d +) — linear function of the deviation variables to be mmm'nzed at
priority k (k=1, 2, ..., K).
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Function g, can be written in the form

g @™, d")= D @Pd; +w® d})
iel
where .
u® — weight assigned to the variable d; at priority k,
w® — weight assigned to the variable d; at priority .
In this paper we consider a different form of the GP problem with the constraints
' (2.2) and (2.3) replaced by the following

D' cyxtd; —df=0 foriel (2.4)

i€J
by<x,;<bf for jeJ 2.5)
d-20, d*+20 (2.6)

where some bounds b; and b; can take the value co or —oo, respectively.

Note that the constraints (2.2) and (2.3) of any GP problem can be written
in the form (2.4)-(2.6). Such a transformation can be performed for instance by
introducing additional (logical) variables similarly as in the standard simplex codes.
Moreover, many real relations can be easily handled via constraints (2.4)—(2.6).
This approach allows to consider some bounds on the original decision variables
as well as makes possible to introduce the interval goals (goals with the interval
targets). There are many practical reasons for using intervals as targets for some
goals (see [5]).

For convenience in discussion, we shall rewrite the GP problem (2.1) and
(2.4)-(2.6) in matrix form as shown below.

Find a vector x to lexicographically minimize

: a=[® d~+wV d*), .., B d= 4w dHT=Ud~+Wd+ 2.7
ngbject to ' '
Cx+I, d- —I, d*+=0 , ©.8)
b-<x<hbt .9)
" d-30,d*320 (2.10)
where

u® — 1 x mrow vector of weights associated with the negative deviation variables
at priority k, _
w® — 1xm row vector of weights associated with the positive deviation va-
riables at priority %,
U — KX m matrix consisted of the rows u®,
W — Kxm matrix consisted of the rows w®,
C — mXn coefficient matrix,
I, — mXm identity matrix,
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b~ — vector of lower bounds on the decision variables '
(a column vector, nx 1),
.b* - vector of upper bounds on the decision variables
(a column vector, nXx1),
x — decision variables vector (a column vector, nx 1),
d~ — vector of negative deviation variables (a column vector, mx 1),
d* — vector of positive deviation variables (a column vector, mXx1).
Some infinite coefficients in the problem (2.7)-(2.10) are allowed. More precisely,
the following can occur:

1° b =—o (x; has no lower bound),
2° bj=o (x; has no upper bound),
3 UP=uP= .. =u®=0w (d; =0, ie., the negative deviation for goal i is
forbidden),
4 wWh=yP= . =w®=c0 (d}=0, ie., the positive deviation for goal i is
forbidden).

In what follows we assume that 0-c0=0 and 0+ (—00)=0.

For further simplification we prefer to use an explicit form of the deviations
in the GP model. Due to the equality (2.8) the deviation vectors d~ and d* can be
expressed as ' »

d~=(—Cx), and d*=(Cx),
provided that (d~)T d* =0. The property (d )T d* =0 is usually guaranteed for all

the optimal solutions by some requirements on the weight coefficients.
Finally, we formulate the GP primal as the lexicographic problem

GPP: lexmin {U (—Cx).+ W (Cx),: b~ <x<b*) (2.11)

A vector x is called to be feasible to the problem GPP if it satisfies the inequality
b~ <x<b™*. A feasible vector x is said to be optimal if it lexicographically minimizes
the achievement (vector) function a=U (— Cx), + W (Cx), over the whole feasible
setiiiien

U(—Cx),+W(Cx).U(—Cx),+W(Cx), for any feasible x.

The problem (2.7)~(2.10) will be referred to as an expanded form of the GP
primal (2.11).

ProrosITION 2.1. If the weight matrices satisfy >
U+ W =0, (2.12)
then the achievement function is lexicographically convex, i.e.,
: a(oy x' 4o, xH)<ey a (x4, a(x?)
for any x!, x2 and oy, 2,0, o3 +o,=1.

PRrOPOSITION 2.2. If the inequality (2.12) holds, then the GP primal and the correspon-
ing expanded GP problem are equivalent in the sense of having the same optimal ,
vectors Xx. ‘
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Note that the problem (2.7)—(2.10) is not a well-posed problem if the weight
coefficients do not satisfy the requirement (2.12). Similarly, it is unreasonable to
consider the GP problems which do not satisfy the requirement

bt —b=320 2.13)

since they are explicitly infeasible. We say that the GP problem is well-posed if
both the inequalities (2.12) and (2.13) are valid. In what follows we shall only con-
sider the well-posed GP problems.

3. The multidimensional GP dual

Consider, at first, the GP problem with the scalar achievement function (i.e.,
K=1). This case, called minsum or weighted GP, is the oldest and simpliest form
of goal programming. Any minsum GP problem can be formed as a traditional
LP problem with the special structure of the coanstraints. Thus LP duality leads
to some definition for the scalar GP dual. The scalar GP primal takes the form

min {u (—Cx) . +w (Cx), : b~ $x<b™} 3.1

where u=u®) and w=w are rows of the weight coefficients. It can be rewritten
in the expanded form as the LP primal:
Find a vector x to minimize

a=ud~ +wd*

subject to the conditions (2.8), (2.9) and (2.10).
The corresponding LP dual is given as follows:
Find a vector y to minimize

a*=9~ b~ —ov*t ht - ' (3.2)

subject to
yC+v~ I,—o* I,=0 3.3)
—wSy<u ' (€X)
v~ 20, 0t 20 (3.5)

where
y—1Xm row vector of dual structural variables,
v~ — 1 Xn row vector of dual negative deviation variables,

9t — 1Xn row vector of dual positive deviation variables.
The problem (3.2)-(3.5) has a special structure of goal programming. Namely,
it is an-expanded form of the GP problem

max {(—yC)4b~ —(¥C)sb*: —wSy<u} . (3.6)
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It is easy to verify that this problem is a well-posed GP problem whenever the GP
primal (3.1) is well-posed. The problem (3.6) will be referred to as the GP dual
to the GP primal (3.1). Thus in the scalar case dual to a GP problem is also a GP
problem. Using the LP duality theory we can state typical dual relations between
the GP primal (3.1) and the GP dual (3.6). Moreover, if the problem (3.6) is treated.
as a GP primal, then the problem (3.1) is obtained as the GP dual.

The above GP duality concept can be extended to general lexicographic linear
GP problems using the idea of the multidimensional dual (see [2, 3]). The multi-
dimensional dual is obtained from the scalar dual by replacing variables y; by K-di-
mensional vectors Y;. Then all the scalar inequalities are understand as lexicographic.
Given the GP primal (see (2.11))

GPP: lexmin {U(—Cx), +W(Cx),:b-<x<bt},
we may write its dual as the multidimensional GP problem
GPD: lexmax {(—YC), b~ —(YC), b*: — W<LY<U} 3.7

where
Y is a KxXm matrix of dual variables and each row y® (k=1, 2, ..., K) of the
matrix Y is associated with priority level k.
Similarly as in the scalar case, the lexicographic GP dual is a well-posed (multi-
dimensional) GP problem whenever the requirements (2.12) and (2.13) are satisfied.

PRrROPOSITION 3.1. The achievement function of the multidimensional GP dual is
lexicographically concave, i.e.,

a* (¢ Y'4a, Y?) 7 e, a* (Yl)‘f'“z a* (Y?)

for any Y!, ¥?2 and o4, 2,20, a;+a,=1.

COROLLARY 3.1. The optimal set to the multidimensional GP dual is convex.

The lexicographic GP primal and the multidimensional GP dual satisfy all ty-
pical duality relations. More precisely, one can find lexicographic analogues of the
principal results in LP duality.

ProrosiTION 3.2. If x is feasible to the lexicographic GP primal and Y is feasible
to the multidimensional GP dual, then the following lexicographic inequality holds

U(=Cx)p+W(Cx)s 3= — YCx3=(—YC) b~ —(YC)L b .

THEOREM 3.1. If cither the lexicographic GP primal or the multidimensional GP
dual posses a finite optimal solution, then the other also does.

COROLLARY 3.2. If all the data coefficients are finite, then both the lexicographic GP
primal and the multidimensional GP dual have finite optimal solutions and the corre-
sponding optimal values of the achievement (vector) functions are equal.
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The next theorem summarizes the necessary and sufficient optimality conditions.
All the typical LP optimality conditions have some analogues in lexicographic GP
including even the saddle-point property.

THEOREM 3.2. The following statements are equivalent:
1°  x° is an optimal solution to the lexicographic GP primal and Y° is an optimal
solution to the multidimensional GP dual;
2°  x% and Y° are feasible and the corresponding values of the achievement (vector)
Jfunctions are finite and equal to —Y° Cx° ie., U(—=Cx°),+W(Cx°),=
=({=Y2C) b~ —(¥°C)  bT==Y° Cx% :
3°  x° and Y° are feasible and the complementary slackness holds, i.e.,
(FO+W) (Cx), =0,
(U-Y°) (- Cx°), =0,
(=Y°C) (x°—-b7)=0,
(Y° C), (bF —x%)=0;
4°  the pair (x°, Y°) is a lexicographic saddle-point of the vector function
L(x )=(U-Y) (=Cx)++(Y+W) (Cx). — (= YC)p (x—b")—(YC), BT+
—x)—YCx, that is, _
L (x°, V)L (x°, YO<L (x, Y°) for any x € R* and Y € REXR™;
5°  x° and Y° are feasible and the pair (x°, Y°) is a lexicographic saddle-point of
the vector function L (x, Y)=—YCx, i.e.,
—YCx°<—Y° Cx°< —Y° Cx for any feasible x and Y.

The complementary slackness conditions are usually interpreted by implications:
“If a variable in one problem is active, then the corresponding constraint in the
other problem must be tight” and “If a constraint in one problem is not tight, then
the corresponding variable in the other problem must be on the limit level”. The
following corollary states such a form of the complementary slackness conditions
for the lexicographic GP. '

CorOLLARY 3.3. If x° and Y° are any optimal solutions to the lexicographic GP
primal and multidimensional GP dual, respectively, then the following implications hold
YO —W;=c' x°<0
X0 Ve — W,
Y U, = ¢ %020
et 2 e0= ¥7=1,
x9>b; = ¥° C;20
Y C< 0= x3=bj-
x<hy e POl
Y% C;3-0=x)=bt

where ¢' denotes the i-th row of matrix C and C; is the j-th column of matrix C.




420 W. OGRYCZAK

The lexicographic GP primal is, usually, solved as a sequence of 'scalar GP pro-
blems. It turns out that several rows of a dual solution (matrix) correspond to these
problems.

THEOREM 3.3. If Y° is an optimal solution to the multidimensional GP dual, then
the k-th row of Y°(k=1,2, ..., K) is a dual solution to the GP primal subproblem
to be solved at priority k

P: min {u® (—Cx), +w® (Cx),: b~ Sx$b*, x€ Si_y}

where Sy_y is the optimal set to the problem P,_,.

COROLLARY 3.4. The multidimensional GP dual can be solved as a sequence of scalar
GP problems.

In linear programming, having known dual solution one can calculate the so-
-called marginal values with respect to some data perturbations. Marginal -values
for LP problems are given by the Mills’ formula (see [6]). Similar analysis can be
performed in goal programming. In the scalar case we get a formula for marginal
values by using the Mills’ formula to the expanded form of GP problem.

For lexicographic GP one may consider the marginal vectors

a, (H)= lim —i— [a (H+ ah)— a (H)]
=04
where H and A denote the data and their perturbations, respectively. However,
the lexicographic minimum is, in general, unstable (see [4]) and therefore some
coefficients of the marginal vector are infinite. The instability is caused by specifity
of the lexicographic relation. Namely, the dual feasible set defined by lexicographic
inequalities is not closed.

PropOSITION 3.3. If —w(™ <u® for some r<K, then the feasible set to the multi-
dimensional GP dual is not closed. :

Fortunately, the lexicographic GP problem is stable with respect to small per-
turbations of the bounds coefficients, i.e., if only the bounds coefficients are allowed
to be perturbed. Thus it is possible to perform analysis of the bounds coefficients
changes and give a formula for the coriesponding marginal vectors.

THEOREM 3.4. Let J, denote the set of equality bounds, i.e., J,={jeJ:b; =b]}.
If the lexicographic GP primal has a finite optimal solution and all the weight coeffi-
cients u® and w® are finite, then there exist an «y>0 such that the perturbed GP
problem

lexmin {U (—Cx), +W(Cx),:b~+p~sxs$b+p7}
is soléable provided that
1By l<ao and |Bf|<eay for jeJ—J,
and By <B; for jelJ.,.
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8

The corresponding marginal vector is then given by the formula

-,y y=lexmax [(~ YC), f=—(YC)y f*]
Yyes*

where S* denotes the optimal set to the multidimensional GP dual.

Typical postoptimality analysis depend on calculating of the marginal values
with respect to single entry perturbations. In goal programming one can consider
three types of the bound coefficient perturbations:

1°  lower bound perturbation
by =b; +« for jeJ;={jeJ: —o0<b; <b}},
2°  upper bound perturbation A
by =b} +a for jel,={jeJ:b; <bj <+o0},
3°  equality bound perturbation (b; =b} =b))
5; =5j+ =b;+a for jeJ,.

Due to Theorem 3.4 the marginal vectors with respect to positive or negative per-
turbations of the single bound coefficient are given as follows:

1° g ,;=lexmax (- YC))., a_,;=lexmax—(—YC)), for jeJy;
Yes* Yes*

2° a2+b}t)=lexmax —(YC))., a('_,,j-)=1exmax(YCj)L for jeJ,;
Yes® Yes*

3 a£+,u)=lei(max—YCj, a_p,=lexmax YC; for jeJ.,.
€8*

YES*

Some bounds b; and b) represent, usually, targets for goal functions. The
corresponding column C; -is then equal to minus unit versor —e;. Thus several
multidimensional dual variables prove to be multidimensional shadow prices for
the corresponding goal functions.

COROLLARY 3.5. If a logical variable associated with the goal function f; is included
“in the GP primal formulation, then the marginal wectors with respect to perturbations
of the corresponding target [r; ;] are given as follows:

1°  ay=lexmax (Y)), and a3 =lexmax—(Y),
¥es* Yes*

Jor positive or negative perturbation of the lower limit, respectively;

2 ayp=lexmax—(—Y), and a_F=lexmax (—Y;),
YEes* YeS*

for positive or negative perturbation of the upper limit, respectively;

3° ay, =lexmax Y, and a_,,=lexmax —Y,
Yes™ Yes*

for positive or negative perturbation of the point target, respectively.

12
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4. Conclusion

This paper has presented a symmetric duality theory for linear goal programming.
It definitively disproves the opinion that duality does not exist in linear GP or it
is less efficient than in linear programming.
For the scalar (minsum) GP primal

min {u (- Cx) +w(Cx), : b~ $x$b*}
we get the GP dual
max {(+~yC), b~ —(¥C), b*: —wsysu}

which is a typical GP problem.
Similarly, for the lexicographic GP primal

lexmin {U (—Cx).+W (Cx),: b~ $xsbt}
we get the GP dual
lexmax {(—YC) b~ —(YC) b*: —W<Y<U}

which is a lexicographic multidimensional GP problem.

The paper has presented GP analogues to all classic LP duality relations inclu-
ding the saddle-point property and the Mills’ formula for marginal values. Mo-
reover, some special GP duality relations have been introduced.”
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Symetryczna teoria dualnosci
dla liniewych zadan programowania celowego

Programowanie celowe jest powszechnie stosowana technika rozwiazywania zagadnien wielo-
kryterialnych. Praca prezentuje kompletng teori¢ dualnosci dla liniowych zadaf programowania
celowego. Problem dualny do skalarnego zadania programowania celowego jest rowniez skalarnym
zadaniem programowania celowego. Natomiast problem dualny do leksykograficznego zadania
programowania celowego jest wielowymiarowym leksykograficznym zadaniem programowania
celowego. Udowodnione sg typowe relacje dualne.
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CumMMeTpuYHasl TEOPHE TyAJHHOCTH
IS JTHHEHHbIX 33734 IeJieBOre HperpaMMHpPOBAHHS

IleneBoe MpOrpaMMAPOBAHAE ABJSIETCA HIAPOKO HCIONB3YEMBIM METONOM DEIICHAS MHOrO-
KPWTEPHAIBHEIX 337124, B paboTe mpecTaBiieHa MOJHAS TEOPHS MyalbHOCTH sl ITUHEHHEIX 33124
LENEBOro NporpamMMEpoBanms. [lyanbHas 3aa¥a B CKaJSpHOM LEIEBOM IPOrpaMMHPOBAHUK
SIBIIETCH TAKXKe CKAJSPHOM 3amadeif LEIEBOrO NPOrPAMMEPOBAHES. B CBOIO O¥EpeNsb MyasIbHAS
npobremMa B NexcuxorpaduIeckoil 3a/iaue NEJIEBOTO IPOrpAMMEDPOBAHES SBISETCS MHOTOMEPHOMN
neKCEKOrparueckoi 3ajiaveil IENEBOro OpOrpaMMHAPOBAHES. JIOKa3aHLI THIAYHGLIE yalILHBIE
OTHOILICHHASI.
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