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The problem of determining the input-output transferences of a composite system represented 
by a signal flow graph is considered. Each transference is first expressed as the ratio of two poly
nomials in terms of numerators and denominators of path and loop transferences. Then, to apply 
Mason's formula it is necessary: (i) to find all input-output paths, (ii) to find all loops in the graph, 
and (iii) to detect the loop-loop and loop-path contacts. To solve these problems some operations, 
that may be carried t'Ut on the original graph (i.e. its connection matrix), are suggested. In parti
cular, a new heuristic procedure to find the loops is described. All operations are applied to a graph 
of reasonable complexity, thus showing the practicality of the method. 

1. Introduction and problem statement 

This paper deals with the problem of determining the effects of system inputs 
on one or more outputs when the system under study is composed of interacting 
parts whose analytic description is known and whose mutual relationships are 
represented by a directed gr.aph. In particular, linear, time-invariant, finite-dimen
sional, multivariable systems are considered and it is assumed that the overall sys
tem is represented by a signal flow graph, i.e. by a directed graph whose nodes 
correspond to system characteristic quantities and whose branches are weighted 
with suitable tranferences (if the original representation is in terms of the usual 
state equations, then these transferences are eit.her constants or equal to 1/s). 

Our objective is to express symbolically the transfer functions relating the 
applied inputs to the outputs of interest. Of course, the problem could be solved 
by manipulating the state or input-output representations of the component parts 
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according to their actual connections. However, this often involves cumbersome 
procedures. It is therefore very useful to have at our disposal methods leading 
to a more efficient solution at least with reference to particular classes of systems 
(even if they may not prove to be equally satisfactory when different classes are 
considered). 

The procedure presented in this paper seems to be particularly suited to com
puter-assisted or fully automatic application, but may be applied also manually 

in the simplest cases. Essentially, it is based on the well-known Mason's formula 
[1, 2, 3] which is rewritten in a way that allows us to obtain directly the correspond
ing numerator .and denominator polynomials from numerators and denominators 
of branch transferences. 

The paper includes proposals for searching paths and loops and for determining 
automatically their contacts. In this regard, referring for example to the loop search, 
it may be observed that when the graph connection matrix is not sparse, the number 
of loops can be very large so that their search is a hard job even with the most efficient 
techniques. In many practical cases, however, the connection matrix is reasonably 
spar se and the number of loops is not too high. In this case, a method may be con
sidered effective if the solution of the problem is achieved in an easy way, even 
though it does not always ensure this result. The method presented in this paper 
has these characteristics; moreover, its application is always worthwhile because 
the original problem is decomposed into simpler subproblems for which exhaustive 
methods can be used more economically. 

2. Symbolic form of the transference 

According to Mason's formula, the transference Wu (s) relating the output 
corresponding to node i to the input corresponding· to node j may be written in the 
form: 

1tfJ { .. }* · £ Puh (s) /J [1-L~r. (s)] 

W11 (s)= { .. }* /J [1-L~<(s)] 
where 

n11 is the number of path~ from j to i, 
P11h (s) is the transference of the h-th path from j to i, 

A. is the number of loops in the graph, 
L~~, (s) is the loop transference of the k-th loop, 

(1) 

and the star indicates that all terms containing products of the type L, (s) L$ (s) 
or L, (s) P. (s) corresponding to pairs of touching loops and/or paths are to be 

cancelled. 



A procedure to obtain 

Pw, (s) and L" (s) are rational functions of s: 

P;Jh (s) 
Ruh (s) 

Quh (s) ' 

N" (s) 
L" (s)= M" (s) 

where R;1h (s), Q11h (s), N" (s) .and M" (s) are polynomials. 

By using the above symbols, the denominator of (1) takes the form: 

I- ~ N" (s) + ~* Nk (s)N1 (s) _ '\1* NT<(s)N1 (s)Nm (s) + = 
.L.J M" (s) .L.J Mk (s) M 1 (s) .L.J Mk (s) M 1 (s) Mm (s) ... 

IT M,. (s)- .EN" (s) n Ml (s)+ .E {[Nk (s) NI (s)]* n Mm (s)}- ... 
=------------~1~#~"----~-------------~m~#~k~,l~------

), 

fl M"(s) 
k=l 

with the above-mentioned meaning of the stars. 
The right-hand side numerator polynomial of (3) may be rewritten as 

), 

.E* nF"(s) 
k=l 

427 

. (2) 

(3) 

(4) 

where the polynomials F" (s) in each product correspond to either -N" (s) or Mk (s) 
and the summation is over all combinations of l factors of the type - N" (s) and 
M,. (s) related to different values of subscript k, excluding those with two (or more) 
polynomials N" (s) related to touching loops. 

The numerator of (1) may be written in the form: 

{[J! Ruh (s) • fl Qu" (s)] [x:* n F" (s)]}* 
h=l k#h k=l 

(5) 

-so that (1) may be expressed as the ratio of two polynomials: 

{[£ Ruh (s) · fl Qu" (s)] [x:* n F" (s)]}* 
w: ( )- h=l k#h k=l 

tJ S - [ "IJ ] [ ;, ] .' JI Quh (s) .E* E\ Fk (s) 

(6) 

To compute Wu (s) it is then necessary: 

1) to find all paths from node j to node i; 
2) to find all loops in the graph; 
3) to detect the loop-to-loop and loop-to-path touching conditions; 
4) to determine polynomials R11h (s), Qlih (s), Nk (s) and M~; (s) related to all paths 
.and loops. 
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A specific section will be devoted to each of these problems. They will be pre~ 
ceded by a section in which some useful preliminary simplifications of the original 
.graph are suggested. ' 

3. Preliminary manipulation of the graph 

Although the procedure described in the following sections could directly be 
applied to the original signal flow graph, a siinple manipulation of this graph often 
allows us to reduce appreciably the computations involved. 

It is straightforward to associate with the given signal flow graph the connection 
matrix Q whose generic element qhk is equal to 1 if there is a branch from node k 
to node hand is equal to zero otherwise. Clearly, since Q cannot account for parallel 
branches (if any), these must firstbe replaced by single branches whose transference 

· is equal to the sum of the transferences of the original parallel branches. This ope
ration will be repeated whenever a parallel arises from a graph modification at any 
step of the procedure. 

First of all, isolated nodes and isolated selfloops are to be removed since they 
do not influence the transference (and, in fact, the corresponding loop transference 
would be a factor both of the numerator and of the denominator of Mason's formula). 
This operation can directly be performed on matrix Q: an isolated node corresponds 
to a row and a column of equ~l index whose elements are all zeros; an isolated 
selfioop corresponds to a row .and a column of equal index with a 1 on the main 
diagonal and all other elements equal to zero. 

In order to carry out further simplifications as well as the next steps of the pro~ 
' cedure, it is useful to subdivide the nodes into the following classes: 

- input nodes I (sources); 
-;- output nodes 0 (sinl}s); 
- single-input single-output nodes S; 
_:_ convergence nodes C with at least two entering branches and one outgoing branch; 
- divergence nodes D with one entering branch and two or more outgoing branches; 
- multiple-input multiple-output nodes M with at least two ingoing and two. 

outgoing branches. 
For this purpose, then sum m of all the elements of each row and column of 

Q is computed. Then, each node is classified according to Table I depending on the 
m values of the row and the column whose indices are equal to that of the node, 

TABLE I(a) 

~ ~~m=O m=1 m>1 
I row "--... . 

I 
m=O I I 

m=l 0 s D 

I m>l 0 c M 
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The different types of node are illustrated in Fig. 1. 

s M 

Fig. 1. Types of nodes 

Next, nodes I different from j and nodes 0 different from i are removed together 

with the branches connected with them; this operation and the consequent re-classi~ 

fication of the remaining nodes is to be repeated until no further br.anch elimination 

is possible. 

The S nodes are then absorbed by replacing the pair of branches incident to 

each S node by a single branch with transference equal to the product of the two 

related transferences. As a consequence, new parallels may arise, as shown in Fig. 2 ~ 

as already said at the beginning, these parallels should in turn be reduced to single 

branches. Again, such an operation and the consequent node classification must 

be repeated till all S nodes have been eliminated. Notice that a situation of the kind 

depicted in Fig. 2 can easily be detected from matrix Q: indeed, after node 4 has 

been absorbed, the resulting connection matrix is ·equal to the corresponding part 

of the previous connection matrix; so, the presence of a parallel from node 3 to 

node 5 is revealed by the fact that element q53 is already equal to 1 before the ab~ 

sorption of node 4. 

6 

2 

3 5 

7 

Fig. 2. S-node absorption and reduction of parallel branches: 

The above operations are summarized in the diagram of Fi2. 3. 
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Fig. 3. Preliminary graph simplification · 

4. Search of the 1/0 connected subgraph and of the strongly connected subgraphs 

The path and loop search is much simplified by considering only the I/0 con

nected subgraph; this comprises the nodes that are reachable from input j and 
from which output i may be reached. Within this subgraph, the strongly connected 
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subgraphs (S.C.S.) are then identified, which is particularly useful in the search 
of the loops since a loop may belong to one and only one S.C.S .. 

To do this, the reachability matrix QR is obtained from Q according to the pro

cedure described in [4], i.e. 

(7) 

where k is the lowest inte'ger not less than log2 (v-1) and 'V is the number of nodes 
of the simplified graph. Alternatively, the cascade algorithm of Farbey et al. [5, 6] 
may be applied in a simplified version according to the Boo lean nature of the problem. 

Then, the column of QR corresponding to input node j and its row corresponding 
to putput node i are considered; the nodes corresponding to unit entries both in 
that column and in this tow belong to the 1/0 connected subgraph. All other nodes 
may be removed from the graph, which entails deleting (or replacing by . zeros) 
the corresponding rows and columns of Q and QR; the resulting matrices will be 

denoted by Q and QR. 
To determine the strongly connected subgraphs, it is enough to consider that 

the S.C.S. containing the generic node k is formed by all nodes corresponding 
to unit entries both in the k-th iOW and in the k-th column. 

5. Search of the input-output paths 

For the sake of simplicity, we shall proceed by examples. Consider the graph 
of Fig. 4a: there are two S.C.S.; one is formed by nodes c, d, e and the branches 
connecting them, the other is formed by nodes f, g and the related branches. The 
original graph may be replaced by a graph in which each S.C.S. is condensed to 
a single node (Fig. 4b). It is easily realized that the paths fromj to i belong to one 

of the following catetories: 

1) a path consisting of a single branch connecting directly node j with node i; 
2) paths formed by branch sequences that do not touch any node belonging to an S. 

S.C.S. (cf., for example, path j, a, b, i, in Fig. 4); 
3) paths formed by branch sequences that, although they touch some S.C.S., do 

not include any branch of such S.C.S. (cf., for example, pathj, c, a, b, i of Fig. 4a); 
4) paths containing branches belonging to some S.C.S. (cf., for example, path 

j, c, d,f, g, i of Fig. 4a). 

This classification is clearly exhaustive. A path of type 1 is readily found since 
it corresponds to the fact that entry q11 of Q is equal to 1. The search of the paths 
of types 2, 3 and 4 may be carried out, in a first phase, on the condensed graph, 
which is in general much simpler than the original one. Each path of the condensed 
graph not touching any condensed node corresponds to a single path of type 2 
formed by the same branches. For the paths touching condensed nodes a more 
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detailed analysis is necessary; in fact: (i) a branch of such paths may correspond 
to distinct branches of the original graph (for instance, the branch from j to c' 
in Fig. 4b corresponds to the branches from j to c and from j to d); (ii) within a con
densed S.C.S. more distinct paths may exist that connect the node where the input
-output path enters the S.C.S. with the node from which such path leaves the S.C.S.; 
if these two nodes coincide (cf. path j , c, a, b, i of Fig. 4a) for all touched S.C.S., 
then the corresponding path is of type 3 and no search is necessary within the S.C.S.; 

Fig. 4. Graph condensation for path search 
11 

if, on the contrary, the considered terminal nodes are different for at le
1
ast one 

S.C.S., it is necessary to search for the subpaths· collllecting these nodes within 
the S.C.S .. 

In conclusion, the suggested procedure may be summarized as follows: 

'(i) determine the paths from j to i in the condensed graph; 
{ii) find the condensed nodes 'crossed' by these paths, i.e. such that in the original 

graph the entrace node and the departure node of the S.C.S. are different; 
{iii) find the subpaths connecting the nodes of interest within the crossed S.C.S.; 
(iv) determine the input-output paths by combining the paths of the condensed 

graph with the internal subpaths of the crossed S.C.S .. 
In this way, the search is carried out on structures that are simpler than the 

original one, which often requires a reduced amount of computation. According 
to the complexity of each subproblem, one of the methods described in [7, 8, 9) 
as well as other methods may be used. 
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6. Search of the loops 

The search may conveniently be restricted to each of the strongly connected 
subgraphs. 

Before applying exhaustive methods, it :is suggested to use a heuristic procedure, 
called the Base Frame method, described by the present authors in [4]. This method 
is of easy application and often leads to the complete solution of the problem; 
even if this is not the case, it simplifies the original problem thus facilitating the 
application of general methods like the one described in [9]. 

By recalling the node classification: of section 3, we first observe that after absorb
ing the S nodes, an S.C.S. may contain only C, D and M nodes or may reduce to 
a selfloop. Now, by indicating the subgraph branches with pairs of letters where 
the first denotes the node from which the considered bran/eh departs and the second 
the node . reached by the branch, a Base Frame (B. ·F.) is a connected subgraph 
formed by branches of the types CC, CM, CD, MD, DD. An example of a B. F. 
within an S.C.S. is given in Fig. 5 where the B. F . branches are represented by 
solid lines and the others by dashed lines. 

Fig. 5. Example of base frame (solid lines) 

If all nodes of the S.C.S. are M noc~es then no B. F . branch exists; on the other 
hand, more separate B. F. may be identified within the S.C.S .. 

The most general structure of a B. F. is of the type depicted in Fig. 5: it is formed 
by a convergent arborescence (with only C nodes) followed by a divergent arbo
rescence (with only D nodes); they are connected either by a CD branch or by an M 
node. Clearly, a B. F. may well reduce to a single arborescence or to a single CD 
branch. 

Although the search of the B. F. may be carried out directly on the connection 
matrix corresponding to the considered S.C:S. (which is obtained from Q by de
leting the rows and columns corresponding to the other nodes), for ease of expo
sition we shall refer only to operations on the graph. 

To form a B. F. we may start from a CD branch or an M node (if any). In the 
first case all DD branches connected with the D node of the selected branch and 
all cd branches connected with its C node are added to the CD branch; this ope-
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ration is repeated for the new terminal C and D nodes of the already determined 
part of the B. F .. In the second case, all CM and MD branches incident to the cho
sen M node are looked for and the procedure develops as in the previous case. 

After all B. F. have been found, the remaining branches are analysed and those 
incident to pairs of nodes of the same B. F. are identified. It is easily seen that each 
of these branches forms one and only one loop with the B. F. branches connec
ting the considered pair of nodes and will therefore be called 'closing branch'. 
The part of the loop within the B. F. is easily found by following the route indi
cated by the arrows from the node of arrival of the closing branch to the first M 
or D node and by going in the direction opposite to the arrows from the node of 
departure of the closing branch to the terminal M or D node of the first subpath. 
Notice that the path within the B. F. is unique and that the procedure outlined 
above does not involve any choice between alternatives. 

The loops corresponding to the closing branches are recorded and the closing 
branches are removed from the subgraph. Then the nodes are classified again, 
the new S nodes, if any, are absorbed and the resulting parallel branches, if any, 
are reduced to single branches (which may require a new classification of their 
departure and arrival nodes), a new B. F. is searched and so on. 

~~· 
c<2§>57b 

Fig. 6. Extension of the B. F. (bold lines) after elimination of the dashed closing branches 

The procedure, which is exemplified in Fig. 6, is iterated until: 

1) all branches have been included in a loop (as closing branches or B. F. branches); 

2) the graph reduces to a selfl.oop; 
3) no new loops may be found even if not all branches have been included in a loop. 

In the last case it is necessary to use a general exhaustive method like the one 
described in [9]. 

The suggested procedure is summarized by the flow chart of Fig. 7. The method 
may fail when no B. F. exists or no closing branch is found. These situations, ho
wever, are rare and, anyway, a limited effort is required before abandoning the 
attempt and using a different method. In all other cases the B. F. method seems to 
be worthwile since either it leads to the complete solution of the problem in an 
easy way or it simplifies the original graph thus facilitating appreciably the search 
of the remaining loops by means of other methods. 

Some extensions of the B. F. method will be illustrated in the Appendix. 
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Consider the 'rth stron g ly connected 
subgraph and the 'relevant Q., matrix 

>----l Record the 

Apply another procedure to 
the remaining subgraph 

Fig. 7. The Base Frame method 

7. Detection of the contacts 

loop 
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To apply Mason's formula it is necessary to determine which loop-loop or 
loop-path pairs have at least one common node (touching condition). To this pur
pose it is suggested to carry out some elementary algebraic operations. 
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Notice first that a loop may touch another loop or an I/0 path only at nodes 
of strongly connected subgraphs. Let n be the total number of nodes of all S.C.S 
(n<v) and, as previously said, A. be the total number ofloops and nil the total number 
of I/0 paths. A rectangular (A.+ nu) x n Boo lean matrix A is formed whose element 
apg is equal to 1 if node q belongs to the p-th path or loop and is equal to 0 otherwise. 

n 

The Boolean product B=AAT is then computed whose element bpg equals 2 apr a,v, 
r= 1 

where the products and the sum are Boolean. B is a square (A.+nu) X (A.+nu) matrix ; 
bpg is equal to 1 if and only if the p-th loop or path touches the q-th loop or path; 
therefore B will be called the contact matrix. Of course, it is not necessary to compute 
all elements of B; in particular, the elements of the main diagonal and those corre
sponding to path-path contacts are not interesting; moreover, since B is symmetric,# 
only the relevant elements above the main diagonal need be computed. Notice, 
finally, that the Boolean nature of the operations can be exploited to reduce the 

a 

Fig. 8. Example for the analysis of the touchihg conditions 

amount of computation. The above procedure is illustrated with reference to the 
graph of Fig. 8. By using the methods suggested in sections 5 and 6, the following 

\ paths Pk and loops lk are found: 

p 1 =U. b, a, c, i) 
P2 =(j, b, a, c, e, i) 
p3 =U, b, d, e, i) 
p 4 =U, d, e, i) 

l 5 =(a, b, a) 
l6 =(a, c, a) 
l7 =(a, c, b, a) 
l8 =(d, e, d) 

Since the nodes belonging tf> the strongly connected subgraph are a, b, c, d, e, 
matrix A is 

a b c d e 

1 1 1 0 0 
1 1 1 0 1 
0 1 0 1 0 
0 0 0 1 1 (8) 
1 1 0 0 0 
1 0 1 0 0 
1 1 1 . 0 0 
0 0 0 1 1 
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Then the contact matrix B is given by: 

P1 Pz P3 P4 Is 

P1 1 

Pz 1 

P3 1 

P4 0 

Is 

16 

/7 

la 

where only the entries of interest are reported. 

8. Evaluation of the transference 

1 
1 
0 

1 
1 
1 

0 
1 
1 

0 0 1 

1_1_ 1 0 

1 1 o 
-l_o_ 
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(9) 

The application of (6) requires the previous identificatioa of: (i) the I/0 paths, 
(ii) the loops, and (iii) the touching coaditions. This h'ls been done in the preceding 
sections. The evaluation of Wll (s) involves the following steps; 
1) For any path from j to i, the numerator Rllh (s) of the transference P;1h (s) (h= 

= 1, 2, ... , n:ll) is expressed as the product of the numerators of the relevant 
branch transferences; the same is done for the denominator Quh (s) of Puh (s). 

2) The numerators Mk (s) and denominators Nk (s) of each loop transference Lk (s) 
are similarly formed. · 

3) By taking into account the contact matrix B, expression 
J. 

E* nFk(s) 
k=l 

(4} 

'is computed, where Fk (s) equals either ~Nk (s) or Mk (s) and the products with 
at least two factors [ -Nk (s)] corre3ponding to touching lo::>p3 are excluded. ' 

4) The denominator of (6) is formed by multiplying expressioa (4) by 'the pro:iuct 
"I} 

of the denominators of all path transferences: n Qi}h (s). 
h=l 

5) Each numerator R 11h (s) is multiplied by n Quk (s) and by the addenda of 
k*h 

(4) not containing factors [ - N1 (s)] such that bh1=1. 
6) The numerator of (6) is fo rmed by adding the terms determined at step 5. 

The above procedure will be illustrated with reference to the already considered 
_ example of Fig. 8. For the sake of simplicity we neglect steps 1 and 2, and let 

Ph (s)=Rh (s)/Qh (s), h=l, 2, 3, 4, and Lh (s)=Nh (s)/Mh (s), h=5, 6, 7, 8. 
By taking into account matrix (9), expression ( 4) becomes 

M 5M 6M 7 M 8 - N 5M 6M1Ms- MsN6M,Ms- M 5 M 6N 7 M 8 -

- MsM6M,Na +NsM6M,Na + MsN6M,Na+ M 5 M6N,Na (10) 

1J 
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The denominator of the I/0 transference equals the product of (10) and 
Q1Q2Q3Q4. 

By referring again to matrix (9) for determining the path-loop contacts, we may· 
write the numerator of the I/0 transference in the form: 

R1QzQ3Q4MsM6M7Ms-RlQ2Q3Q4MsM6M7Ns+ 

+Q1RzQ3Q4MsM6M1Ms+Q1QzR3Q4MsM6M1Ms + 
-Q1QzR3Q4MsN6M7Ms+Q1QzQ3R4MsM6M7Ms+ 

-Q1QzQ3R4NsM6M7Ms -Q1QzQ3R4MsN6M7Ms + 
-Q1QzQ3R4MsM6N7Ms (11) 

9. An illustrative example 

The main phases of the suggested procedure )Vill be illustrated in the sequel 
with regard to a meaningful example. For the sake of simplicity, only the graphs 
resulting from the various matrix manipulations will be reported without entering 
into the details of the operational aspects. 

The original signal flow graph of the considered example is shown in Fig. 9 
together ·with the classification of the nodes. The input and output nodes of the 
transference of interest are assumed to be node l and node 20, respectively. 

Fig. 9. Original graph and first node classification 

First of all, the I nodes different from node 1 (i.e. node 10) and the 0 nodes 
different from node 20 (i.e. node 11) as well as the branches connected with them, 
are eliminated and the S nodes (i.e. node 2) are absorbed. The resulting graph is 
reported in Fig. 10, where the pair of dashed-line branches incident to the S node 2 
are replaced by a solid-line branch from node 3 to node 9. 
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Fig. 10. Preliminary graph simplification 

Next, the parts not belonging to the I/0 connected subgraph (in the specific 
case, nodes 3, 8, 9 and the branches connected with them) are removed. This result 
is shown in Fig. 11. 

20 

Fig. 11. I/0 connected subgraph 

The strongly connected subgraphs are then identified: they are represented in 
Fig. 12a. After this, the graph is condensed by replacing each strongly connected 
subgraph by a supernode (cf. Fig. 12b where the 'identity' of the nodes within each 
supernode has been preserved). First, the path search is carried out on the acyclic 
condensed graph; then the relevant subpaths inside each S.C.S. are determined: 
in the case considered, there is only one subpath for each pair of terminal nodes . 

In conclusion, the I/0 paths are formed by the following sequences of nodes 
(for completeness also the sequences relative to the condensed graph are reported): 

Pt=(1, 20) 
Pl=(1, A 5 , C18, 20)=(1, 5, 18, 20) 
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p 3 =(1, A 5 , B15, B14, C1s, 20)=(1, 5, 15, 14, 18, 20) 

p 4 =(1, As, B15, B11, Ct3• C1 s, 20)=(1, 5, 15, 14, 17, 13, 19, 12, 18, 20) 

p 5 =(1, As, A 6 , B14, C18, 20)=(1, 5, 6, 14, 18, 20) 
p 6 =(1, As, A 6 , B14, B17, C13, C18, 20)=(1, 5, 6, 14, 17, 13, 19, 12, 18, 20) 

p 7 =(1, A 5 , A7 , C12, C18 , 20)=(1, 5, 6, 4, 7, 12, 18, 20) 

p 8 =(1, As, A7 , B14, C18, 20)=(1, 5, 6, 4, 7, 14, 18, 20) 
p 9 =(1, As, A7 , B14, B17, C13 , C18, 20)=(1, 5, 6, 4, 7, 14, 17, 13, 19, 12, 18, 20) 

20 

a 

---------~20 

/ 

b 

Fig. 12. Strongly connected subgraphs (shaded)'and corresponding condensation 

In order to find the loops, the B. F. method is applied separately to each S.C.S .. 
The procedure is illustra,ted in Fig. 13: the B. F. are represented by bold lines. 
Concerning subgraphs fl and C, the B. F. method leads immediately to the com
plete solution of the problem since all non-B. F. branches dose a loop. (Notice 
that in the case of sub graph B, the S nodes 15 and 17 must be absorbed beforehand). 
Concerning subgraph A, the initial B. F. allows us to find two loops; after the 
corresponding closing branches have been removed, the B. F. may be extended, 
and the remaining four loops may be found. 
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Fig. 13. Loop search using the B. F. method. The B. F. branches are in bold lines. The pairs .of 
dashed lines incident to S 'nodes have been replaced by solid-line branches 

The loops are therefore the following: 
subgraph A : /1 0 =(4, 7, 4) 

111 =(5, 6, 5) 
/12=(4, 6, 4) 
113=(~, 5, 6, 4) 
114=(4, 7, 6, 4) 
115 =(4, 7, 5, 6, 4) 

subgraph B : 116 =(14, 16, 15, 14) 
lt7=(14, 17, 16, 15, 14) 

subgraph C: /18 =(12, 19, 12) 
/19=(13, 19, 13) 
120 =(12, 13, 19, 12) 
121 =(12, 18, 13, 19, 12) 

Matrix A, as defined in section 7, is reported in Table I. By multiplying A by 
its transpose, we find the contact matrix B which allows us to determine the touching 
conditions. The interesting part of matrix B is given in Table 11. Expression l 6) 
of the 1/0 transference may finally be determined as already exemplified in section 8. 

10. Conclusions 

Some simple operations have been suggested to facilitate the determination of 
the input-output transferences of a composite system represented by a signal flow 
graph. 

J 
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'' Tab. l 

I 9' 12 13 14 15 16 17 18 , 
p1 0 0 0 0 0 0 0 0 0 

p2 0 0 0 0 0 0 0 0 0 0 0 

p) 0 0 0 0 0 0 0 

p4 0 0 0 0 

Ps 0 0 0 0 0 0· 0 

pi o. 0 0 0 0 

p7 0 0 0 0 0 0 0 0 

Pg 0 0 0 0 0 0 0 

p9 0 0 0 0 0 

1
10 

0 0 0 0 0 0 0 

1
11 

0 0 0 0 0 0 0 0 0 0 

1
12 

0 0 0 0 0 0 0 0 

ll) 0 0 0 0 0 0 

1
14 

0 0 0 0 0 0 

1
15 

0 0 0 0 0 0 0 0 

1
16 

0 0 0 0 0 0 

1
17 

0 . 0 0 0 0 

1
18 

0 0 

1
19 

0 0 0 c 0 0 0 0 

. 1 20 
0 0 0 0 0 0 

1
21 

0 0 0 (J 0 
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1
10 

1
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1
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The underlying idea has been that of decomposing the original problem into 
easier subproblems thus reducing the amount of computation. 

In particular, a heuristic method, called the Base Frame method, has been de
scribed which in most practical cases appreciably simplifies the loop search. 

All suggested operations have been applied to a signal flow graph of reasonable 
complexity. 

Appendix 

Extension of the B.F. method 

Some improved versions of the B. F. method may be successful even in case of 
failure of the procedure described in section 6. 

. One of these consists in finding a . set of branches that cannot belong to the 
same loop as is the case for the branches entering (leaving) the same node. The 
B. F. method is then applied successively to the graphs obtained from the original 
by removing all but one branches of the considered set. In this way either an M 
node becomes a D (C) node or a C (D) node becomes an S node, thus allowing 
the extension of the previous B. F .. Observe that a loop may be detected more 
times. The efficiency of this procedure depends on the choice of the mentioned 
of branches; a valid criterion is that of referring to the node with the largest number 
of entering (outgoing) branches. Alternatively, a two-branch loop may be looked 
for; this is easily done with reference to matrix Q = [qhk] by checking the condition 
qh~ qkh= 1; then the B. F. is applied to both the graphs obtained by removing either 
of the loop branches. 

As an example of application of the above variants let us consider the simple 
but complete graph of Fig. Ala. Fig. Alb illustrates the first variant with reference 
to the branches entering node 1 (loop 3, 2, 3 is found two times). Fig. Ale shows 
the operations corresponding to the second variant with reference to the two-branch 
loop 1, 3, 1 (now, loops 1, 2, 1 and 2, 3, 2 are found twice). 

According to a different approach, all nodes of each remaining B. F . are con
densed to a supernode and the resulting parallel branches are replaced by a single 
branch. The B. F. method may then be applied to the condensed graph. Each loop 
of the condensed graph (which is formed by a path within a B. F . of such graph 
and by a closing branch) may correspond to more loops of the original graph: 
these, in fact, contain only one of the parallel branches that have been replaced 
by a single branch in the condensation process. Therefore, the number of loops 
of the original graph corresponding to the same loop of the condensed graph is 
given by the product of the numbers of branches of each condensed parallel. Also 
this variant may fail to solve completely the problem, but usually leads to an ad van
tageous simplification of the graph which will finally be analysed using a general 
method. 
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The procedure is exemplified in Fig. A2. In particular, Fig. A2a represents the 
initial strongly connected subgraph; Fig. A2b shows the B. F. branches (bold lines) 
and the closing branches (dashed lines). Seven loops are identified with the B. F. 
method of section 6, but the procedure stops before the complete solution of the 
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problem. In Fig. A2c the condensed graph with the relevant B. F. (bold lines) is 
reported; again, the closing branches are represented by dashed lines. In this case, 
the second application of the Base Frame method is completely successful. 
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Procedura otrzymywania wyra:ieii symbolicznych 
reprezentuj~~:cych zale:inosci wejscia-wyjscia 
w grafie przeplywowym 

W pracy rozwa:i:ono zagadnienie okreslanja wag kraw'<dzi grafu przeplywciwego reprezentu
j<tcego badany system. Kai:da taka waga jest najpierw okreslana jako iloraz dw6ch wielomian6w 
okre5laj<tcych odpowiednio wagi scie:i:ek i cykli w grafie. Nast'<pnie, przy stosowaniu formu!y Ma
son'a nale:i:y: (1) znalezc wszystkie scie:i:ki od ,wejscia" do ,wyjscia", f2) znalezc wszystkie cykle, 
(3) wykryc wszystkie pol<!czenia pomi'<dzy cyklami oraz porni'<dzy cyklami i scie:i:kami. Podano 
spos6b rozwi<!zania powy:i:szyc.h zadan, opisuj<!C mi'<dzy innymi DOW<l heurystyczn<! metod'< poszu
kiwania cykli w grafie. 

flpoqe,rzypa DOJiy'leHHH CIIMBOJIH'IeCKHX BblpKiKeHHii, 
' OT06paiKaiOiqHX 33BHCHMOCTH BXO,!J;K-BbJXO,ZJ;a 

B DOTO'IHOM rpa4le 

B pa6oTe paccMaTpHBaeTcn Borrpoc orrpe~eJieHHH secoB pe6ep noTOqHoro rpa~a, OTo6pa
JKaJOIT]ero HCcJie~eMYJO CHCTeMy. KalK):(hlli Bee onpe~eJIHeTcn, B rrepByJO oqepe,D;b, KaK qacraoe 

.n;Byx MHOfOqJieHOB, OT06paJKaiOIII,Iilf COOTBeTCTBYJOITJe BeChl nyTefi H ~JThl B rpa~e. 3aTeM, 
HCITOJTh3YH ~OPMYJIY MaCOHa CJie~eT: (1) Haii:rn: BCe TIYTII OT ,BXO~a" ,IIO ,BbiXO~a", (2) HaHTH 

see IJ;HKJThi, (3) o6Hapyxafn, Bee coe~eHHH Me:a<:~ ~JiaMH, a TaKJKe Me~ ~JiaMH H rryT3.MH • 
.L(aeTCH cnoco6 pemeHHH BI>rme yxaJaHHDIX 3a~aq, orm:ci>maH, B TOM qHCJie, HOBI>m 3BpHCTHqecKIDt 
MeTO~ DOHCKa ~JIOB B rpa~e. 




