
· . .
Control
and· Cybernetics
VOL. 15 (1986} No. 3-4

Constraint generation for the graph
partitioning problem

by

STANISLAW WALUKIEWICZ

Systems Research Institute
Polish Academy of Sciences
Newelska 6
01-447 Warszawa, Poland

MARIO LUCERTINI

University of Rome
Dpt. of Informatics and System Science
Via Eudossiana, 18
00181 Rome, Italy

We study the linear programming relaxation of the graph partitioning problem and give some
bounds for dual variables. The Lagrangean relaxations of the problem are also discused. Next
we show how additional constraints for the problem can be generated and describe a general branch'
-and-bound algorithm, which includes the problem preprocessing procedure and the constraint
.generation procedure.

The problem of finding the last cost partition of a given weighted graph into
a number of suitably defined subgraphs apears in many diverse fields as e.g. allo
cation of tasks in distributed computer systems, clustering analysis, taxonomy and
districting, placement of components of an electronic circuit on boards. The cost
of partition is defined as the total cost of edges connecting different subgraphs
(see e.g. Chistofides and B:rooker [2], Perng-yi et al. [11] and Simeone [12]).

As the problem is NP-complete (see e.g. Bertolazzi et al. [l]), then a general
approach to solving such problems is a branch-and-bound method, which, besides
suppling on optimal or near-optimal solutions, gives the possibility of taking into
account additional requirements that can be expressed as integer programming
constraints.

The aim of this paper is to show that additional constraints for the graph parti
tioning problem can be easily generated in the way described by Crowder et al. [3].
In fact we show that from a given minimal cover one has at the same time up to p
additional constraints, where pis the number of subgraphs. Having in mind a sucess-

448 ~. WALUKIEWICZ, M. LUCERTINI

ful application of the constraint generation procedure described in [3], it is re

asonable to assume that incorporating such a procedure in a general branch-and

-bound algorithm for the graph partitioning will substantially increase its efficiency.

In contrast to the so far published papers on the graph partitioning problem we

give in Section 1 the full formulation of the problem fi1st as a nonlinear 0-1 problem
and next as a linear one. In Section 2 we study the linear programming relaxation

of the problem. Some other relaxations and equivalence are discussed in Section 3.

In Section 4 we give a self-contained discription of a constraint generation procedure.

In Section 5 we describe how such a procedure can be incorporated in a general

branch-and-bound algorithm and also discuss some possibilities of preprocessing
of the graph partitioning problem. Some topics fur further research are discussed

in Section 6.

1. Formulation and reformulation of the problem

Consider a finite undirected graph G=(V, E) with V being the set of nodes

and E-set of edges, where IVJ=n~2 and JEI=m>l. Let a1 be the ''Weight" of
the vertex i, i= 1, ... , nand let c11 be the "capacity" of the edge (i,j) E E. We assume
that cu>O, iff (i,j) EE. Without loss of generality we may assume that G has no
isolated nodes.

Th~ graph partitioning problem is to find a partition of G into at most p sub
graphs Gk, k=1, ... ,p, 2:::;;p~n-l, such that the ,total capacity of edges connecting
different subgraphs is minimal and the total weight of nodes in each subgraph is
not grater than a given number b. Obviously minimization of the total capacity
of intersubgraphs edges is equivalent to maximization of the total capacity of edges
within each subgraph Gk=(Vk, Ek), therefore introducing the decision variables

if iE vk
ifif#Vk

i=1, ... , n, k=1, ... ,p

the graph partitioning problem can be formulated as

(GP)

subject to

P · n-1

v (GP)=max .J; .J; .}; c11 .xtk x 1,.

k=l 1=1 J>i

n

.J; a1 x1k~b, k=1, ... ,p
i= 1

p

.J; Xtk= 1, i= 1, ... , n
k=l

x1k=0 or 1, i= 1, ... , n, k= 1, ... ,p.

(1)

(2)

(3)

(4)

Constramt generation 449

For given problem P by v (P) ·we denote the value of the objective function at an
optimal point and by F(P) (F* (P)) we denote the set of all feasible (optimal) so
lutions to P.

Adding all constraints (2) by (3) we have that, if

n

.}; a1>bp,
1=1

then F (GP)=f/J. Without loss of generality we may assume that all data in GP are
positive integers. By .our assumption in (l) we have only mp quadratic terms. We note
that in practice pis small in comparison with nand m; typically p~4, while n~ 100,

m~500.

The problem can be linearized at least in two ways. First, if we introduce the
binary variables z11"=x~kxJk• i=1, ... ,n-1, j>i, k=1, ... ,p and aqd to GP con
straints

2zw,-x1"-x1"~0, i=1, ... , n-1, j>i, k=l, ... ,p, (5)

then we obtain the linear binary problem having (mp+n+p) constraints andp (m+n)
variables. It is easy to check the equivalence of these tw? formulations.

Let V (i) be the set of all nodes adjacent to a given node i, i= 1, ... , n. We note
that the variable x1" appears only in the quadratic terms x 1" x1" when j E V (i).
The second way of linearization (Goldman ... [7]) of GP consists in introducing bo
unded continuous variables y 11"=x1kxJk• i=1, ... ,n-1, j>i, k=1, ... ,p such that
O~y11"~ 1 and in adding instead of (5) constraints

.2; YtJk-j'V(i) ixtk~O, i=1, ... ,n-1, k=1, ... ,p. (6)
jEV(l)

Therefore the linear form of the graph partitioning problem (we will denote
it by the same symbols GP) is the following mixed integer programming problym

p n-1

(GP) v (GP)=max .}; .}; .}; cif YtJk
k=l k=1 J>i

subject to

n

.}; a, x1"~b, k=1, ... ,p
1-1 .

p

.}; x1"=1, i=1, ... , n
k=1

/

}; YtJk-IV(i) ix,"~o. i=1, ... , n, k=1, ... ,p .
JEV(I)

x 1"=0 or 1, i=1, ... , n, k=l, ... ,p

O~y11"~1, i=1, ... , n,j>i, k=1, ... ,p

(7)

(8)

(9)

(10)

(11)

(12)

450 \S . WALUKmWICZ, M . LUCERTINI

Such a linear form has fewer constraints, namely n+p (n+ 1), and the same
number of variables, but among them mp are continuous ones. We also note that
the constraint matrix for (8)-(10) is sparse; its density can be estimated as

d
2mp+3np 3

$.----
(n+p+np) (mp+np) """' n+p+np

So e.g. for n= 100 and p=4 we have d~ 0.6 %. The sparsity .of the matrix is an im
portant factor of a sucsessful ·application of a constraint generation procedure.

2. Linear programming relaxation '

For a given integer programming problem P by P we will denote its linear pro
gramming relaxation. So GP differs from GP by the constraints (11) as instead of them
we have

O~x1"~1, i=l, ... ,n, · k=I, ... ,p. (13)

The linear programming problem (7)-(10), (12) and (13) is called the linear graph
partitioning problem.

If we define the dual variables as uk> v1, w1", q11", t1" respectively to the constraints
(8), (9), (10), (12) and (13), then the dual to GP takes the form

p 11 p n

(DGP) v(DGP)=min [b}; u"+ 2 v1+}; }; }; qu"+
k=1 1=1 k=l i=c1 i>i

+ i; J; ltk] (14)
1<=1 1=1

subject to

ai u1 +vt -IV (i) lwtk + tt";;;:O, i= 1, ... , n, k= 1, ... , p (15)

W;k+w1k+q11";;;:cu, i=I, ... ,n-1, j>i, k=1 , .. . ,p (16)

uk ;;;:o, w,k;;;:o, qiJk ;;;:o, tik ;;;:o, i=1, ... ,n-1, J>i, k=1, ... ,p (17)

v1 unrestricted in sign, i=1, .. . , n (18)

From (15) one has

v1;;;: IV(i) lw1k-a1 uk-ttk for k= l , .. . ,p. (19)

Therefore

(20)
k=l, . .. , p

As the variables w1" do not appear in the objective function of DGP, but q11~
do, then by (16) and (17) we have that:

Constradnt generation ~51

Therefore •
q11k=max {0, cil-(wu,+w1k)}, i=1, ... , n=1, j>i, k=1, ... , p (21)

If w1k>0, then by the complementary slackness we have equality in (10), but
this means that if x 1k= 1, then Yilk= 1 for all j E V (i). Hence we are interested in
having w1k as large as possible. But w1k is bounded from above by (15)

a1 uk+v1+t1k
W;k:(

IV(i) I
i=1, ... , n, (22) k=1, ... ,p

Since graph G has not isolated nodes I V (i) I >0 for all i, therefore (21) can be
rewritten as

(23)

for i=1, ... ,n-1, j>i, k=1, .. . ,p.

3. Other relaxations of GP

In this section we study some relaxation of GP which seem to be promising
from the computational point of view.

Consider again GP in its linear form (7)-(12). If we define h1k";3:;0, i= 1, ... , n,
k= 1, ... , p, to be Lagrangean multipliers for (10), then a Lagrangean relaxation
L of GP is a mixed integer programming problem of the form

p n p n

(L) v(L)=max [~ ~ ~ CuYtik-~ ~ h,k(~ YtJk+
k=l i=l J>l k=l i=l jeV(i)

-I V (i) lxtk)] (24)

Subject to (8), (9), (11) and (12). We note that continuous variables do not appear
in the constraints of L. If (x, ji) is an optimal solution to L, then for given h1k

1

1, if cu-h1k>0

YtJk= 0, if C;j-htk<O

a, where O:(a:(l, if cu-h1k=0

So optimal values of the continuous variables can be easily computed.
A reasonable choice of h1k is putting h1k=w1k at the beginning, where w 1k is a part

of an optimal solution to DGP. In the following iterations we compute h1k using
subgradient technique (see e.g. Geoffrion [5]).

In general problem L has not the Integrality Property [5], therefore it can pro
vide better upper bound on v (GP) than the linear programming relaxation.

Next relaxation of GP we obtain from L by aggregating all constraints (8) into
one of the form

(25)

,

452 S. WALUKIEWICZ,).\{. LUCERTINI

where g";?:O, k= 1, .. t , pare given aggregation coefficients. Without loss of generality
we may assume that

In such a way we obtain a surrogate Lagrangean relaxation of GP, which can be

formulated as '"·

p n p n

(SL) v (SL)=max [~ ~ 2 cu Ytik- 2 J; h11, (}; Y11k+
1<=1 i=l J>l k=l i=l }EV(i)

-I V (i) lx1"} J (26)

subject to '

P n

2 2 gk at Xtk~b
k=l i=l

p

}; x 1k=l, i=l, ... , n
k=l

x 1k=0 or 1, i=l, ... , n, k=1, ... ,p

O~Yuk~l i=1, ... , n, j i, k='i, ... ,p

(27)

(28)

(29)

(30)

This is in fact the multiple-choice knapsack problem and for such a problem we
have efficient in practice methods for solving it or its linear programming relaxation
(see Dudzinski and Walukiewicz [4] for a survey). We also not~ that it is possible
to reduce the number of binary variables in SL using the reduction methods for
multiple-choice knapsack problem [4]. We will discuss this question in Section 6.

We can propose two methods of computing aggregation coefficients: First
start with iik> where ii" is a part of an optimal solution to DGP and normalize it.
In the subsequent iterations the value of gk may be changed in ways described in
Karwan and Rardin [8].

The second methods bases on the aggregation of equalities in bounded integer
programming problems (see Onyekwelu [9]). Although (8) .are inequalities, but
they are disjoint and in an optimal solution many of them are equalities. So if for
a moment we will treat (8) as equalities, then we can multiply them by an integer
aggregation coefficients g":;;,O, which are e.g. first p prime numbers i.e. g1 = 1, g 2 =2,
g3 =3, g4 ~5 etc. In such a way we obtain multiple-choice knapsack proolem SL.
It is resonable to assume that there is a good chance that v (SL)=v (L), i.e. such
coefficients are really aggregation coefficients. If it is not the case then we may
correct the vector gE ZP, where ZP is a set of all p-dimensional vectors with nonne
gative integer components, in a way described by Walukiewicz in [13].

Constraint genea:ation 453

We finish this section with the other equivalent formulation of the graph parti-'
tioning problem. Consider again the formulation (1)-(4). Introducing p integer va
riables zk~O, k=l, ... ,p, we may write (2) as equalities

n

.}; a1 x 1k+zk=b, k=l, ... ,p
1=1

and next aggregate them into

where gk is the k-th prime number. Thu~ the graph partitioning problem (1)-(4)
. is equivalent to

(GP)

subject to

P n

v (GP)= 2 }; · .2 cli Xtk XJf>
k=l i=l J>i

p

.}; X 1k=l, i=l, ... , n
k=l

x1k=0 or 1, i=1, ... , n, k=1, ... ,p

'This is an equality - constrainted quadratic knapsack problem with multiple-choice
constraints.

4. Constraint generation

The aim of this section is to provide self-contained discription of the constraint
generation , procedure.

The convex hull of 0-1 solutions to the single inequality

(31)

is called the knapsack polytope W, so

"
W=conv {x ER": .2; a1 x1~b. x1 E {0, I}}

1=1

The dimension of W, dim W, is the smallest dimension of the real space containing W.
Without loss of generality we may assume that dim W=n. An equality hx:=ho·
in Rn is a supporting hyperplane of W, if hx~ h0 for any x E Wand H = Wn { x ER":

14

454 iS. WALUKIEWICZ, M. LUCERTINI

. : hx=h0 }=ff/J. The polytope Hand the corresponding inequality hx~h0 is called
a face of W. If dim His n-1, then His called a facet o f W. A complete list of
facets for the knapsack polytope is unknown to date (see Padberg [10]), but some
facets can be obtained from minimal covers defind below.

A subsetS of N={l, ... , n} is called a minimal cover of (31) if

and ,}; a1 -ak~b for all k E S.
jES

Then every binary solution x to (31) satisfies

2 Xj~ I S I -l.
j E S

(32)

Usually ISI < n and (32) defines only a face of W. To obtain a facet, i.e. the best
possible inequality defining W, (32) must be lifted by so called lifting procedure.
Initially we set h1= 1 for j E Sand h0 = ISI-1. For every kEN- S we compute

vk =max{ ·]; h1 x1;}; h1 x1~h0 -ak> x1 E{0, 1}, jES}, (33)
jES jES

define hk=h0 -vk> redefine S to S-{k} and repeat until N- S is empty. The re
sulting inequality is a facet of W.

Consider now a general 0-1 programming problem formulated as

(P) v(P)=max{cx:Ax~b, x1 E{0,1}, j=1, ... ,r},

where A is m by r matrix. Let Q=conv F(P) and let W1 be the knapsack polytope
corresponding to the i-th constraint. Clearly we have

(34)
i=l

Equality in (34) does not, in general, hold, but does hold if, for example, P decom
poses into m knapsack problems. Therefore if matrix A is sparse then it is reasonable
to expect that the intersection of m knapsack polytope < wi provides a fairly good
approximation to Q. Computational results [3] confirm that it is a reasonable
assumption.

The idea of so called constraint generation approach consist in solving P and if
x E F* (P) is not a binary vector, then we look for a minimal cover inequality (32)
which cuts off x, if such an inequality exists. To do this we consider a single ine
quality a1 x~b1 of P and using a variaple substitution x'=1 -xi> where necessary,
we bring it into a form of (31) with all nonzero coefficients positive. Dropping
the index i for_notational convenience we consider thus a knapsack inequality

(35)

where N£{1, ... , r}.
For given x E F* (P) and (35) we consider the following knapsack problem

q=min{}; (1-xi)Yi:}; a1 y1>b, y1 {0, 1}, jEN}. (36)
jEN jEN

Coostradnt generation 455

It can be proved that there exists a minimal cover inequality (32) which cuts off x
if and only if q< 1 (see [3]). Such a minimal cover S* is defined in the following
way: Let y* be an optimal solution to (36). If y* is unique, then S*={j EN: y*=l}.
If y* is not unique, then among the optimal solutions there exists at least one solu-

- tion for which the corresponding set S* is a minimal cover for (35).

We note that the additional constraint hx~h0 preserves the sparsity of the matrix
A as we have hj"/=0 only if ai#O in (35). This is a very important difference between
additional constraints and traditional cutting planes, as the last ones are typically
dense and lead to explosive storage requirements and numerical instability. Com
putational results reported in [3] show that relatively few additional constraints
added toP increase the efficiency of the branch-and-bound method~substantially .

Moreover instead of solving some number of knapsack problems (36) and (34)
we can solve its linear programming relaxations. It is well-known that the linear
knapsack problem can be solved in 0 (n) time [4]. The inequality hx~h0 obtained
in such a way is not, in general, a facet of a corresponding knapsack polytope, but
as [3] shows, still has a big computational value.

A . generalization of a minimal cover is so called (1, k)-configuration. Consider
again (35) and let Tc;;N and tEN-T. If

..2; a1~b and T'u{t} is a minimal cover for (35) for every
jET

T'c;;T such that IT'I=k, (37)

then the set Tu {t} is called a (1, k)-configuration for (35). It is easy to see that
every zero-one solution to (35) satisfies the following set of inequalities:

(s-k+l) xt+ ..2; xi~s,
j E T(r)

(38) .

where T(s)cTvaries over all subsets of cardinality sofT and k~s~ JTj. If k=JTJ,
then the (1, k)-configuration is a minimal cover. If Tu {t}#N, then an inquality
(38) can be transformed to a facet of the knapsack polytope by means of the lifting
procedure {33).

5. Branch-and-bound methods

We now describe how a general branch-and-bound method (see e.g. Geoffrion
and Marsten [6]) can be modified to solve GP in the linear fmm (7)-(12) of the
graph partitioning problem.

First we solve GP obtaining (x, ji) E F* (GP). If x is a binary vector, than we
stop- GP was solved. If .X is not a binary vector then we solve GP in three phases:

1. Preprocessing Phase,

2. Constraints Generation Phase,

3. Branch-and-Bound Phase.

456 (8. WALUKIEWICZ, M. LUCERTINI

i. PREPROCESSING PHASE

Let v (GP) be a lower bound on the value of the optimal solution to GP, i.e.
:v (GP) may be taken from practiCe or obtained from so far done. computations.
Let d1" be the optimal reduced cost in the simplex tableau for GP. Then for any
nonbasic variable x1k the following holds:

i) If.X1k=0 and v (GP)+d1k<v (GP), then x;k=O
in every optimal solution (x*, y*) to GP.

ii) If .X1"=1 and v(GP)-du,<v(GP), then x;k=l
in every optimal solution (x*, y*) to GP.

In the branch-and-bound method the above test is made each time when a new,
better, feasible solution is obtained. If the test is successful, then x1k is removed,
number of zero-one variables is decreased by one and moreover further reduction
of variables and/ or constraints are possible:

i') If x;k=O, then the i-th constraint (9) reads
p

}; Xir=l
1=1
ry6k

and from {10) follows that y;1k=0 for all j E V (i) and therefore we may
remove these y 11" from GP, wich in turn may give further reductions.

ii') If x;k=l, then by {9) x;,_=O for r=-1, ... ,p, r=l=k and further reduction
of Yuk and/or x1k is possible.

The above reduction for a given v (GP) ends when alr' nonbasic variables x 1"

passed the tests i) and ii). Having in mind that the similar procedure in the case of
the multiple-choice knapsack problem reduces up to 90% of vsriables, one ;hould
expect similar results for GP.

As a result of preprocessing we obtain, in general, GP with fewer variables and
constraints, but for simplicity of notation, we will not change the bounds for the

\

parameters in (7)-(12) and we will assume that in a present optimal solution {.X, ji) E

E F* (GP), the vector ~ is not a binary one. Then we proceed to the

2. CoNSTRAINT GENERATION PHASE

Only constraints (8) can produce additional constraints in the way described
in Section 4: Moreover, as the coefficients in all constraints are the same then a given
minimal cover or (1, k)-configuration gives at the same time up top different addi
tional constraints, where p is the number of subgraphs. So for constraint generation
we can drop the index k in x,k and write {8) as a single constraint (35)

(39)

where N={l, ... , n}. Obviously a 1>0 for jEN.

Let (x, ji) E F* (GP). We define x=(xh ... , .X") as

x1= min .X1r.
k-= 1 •..•• p

Constradnt gen€["ation 457

and N 1 ={j EN: xi >0}. Now we solve the knapsack problem (36) with N replaced
by N1 and xi replaced by xi. Obviously IN1 l~ INI and if IN1 l is still a large number,
than instead of solving (36) we solve its linear programming relaxation putting
O~yi~ 1 for j r;= N 1 • Let ji be an optimal solution to the above problem; then we
check if the set S'={j EN: Y; >0} is a minimal cover S for (39). If not we obtain
a minimal cover from S' by dropping some of the variables. In this way we obtain
the inequality (32). ·

If N 1 -S#f/J tberi: we extend (32) by the lifting procedure (33). Also here we
may solve the linear knapsack problem instead (33) by setting 0~ xi~ 1 for j E N 1 - S.

· Let iik be the value of such a problem, fork E N 1 - S. Then we have}1~=h0 -Lvk_j~hk,
where La _j means the integer part of the number a. So by solving linear knapsack
problems we underestimate the "true" extension coefficients in hx~h0 •

As we have solved (36) and (33) in near-optimal way, the,n we have to check,
if hx~h0 cuts off x. If it is not the case then we try to find (1, k)-configuration and
the corresponding inequality (38). If (38) after the extension do not cut off x than
the trial to construct an additional constraint in a near-optimal way was unsuccessful
and we may go to the Branch-and-Bound Phase or solve (33) a:rid (36) in the optimal
way. If the trial is successful then we lift hx~h0 for j EN - N 1 •

3. BRANCH-AND-BOUND PHASE

Obviously GP can be solved by any branch-and-bound algorithm, but few
remarks are in order.

First, branching should be done in such a way that two subproblems have the
same structure, i.e: we have to take into account the SOS constraints (IQ) (see [6]).

Second, some balance between preprocessing, constraints generating and branch
-and-bound phases has to be kept in an efficient algorithm for GP. At present we
think that we have to use the full possibility of preprocessing, then of constraints
generation and at the end the full possibility of branch-and-bound. So we try to
avoid branching as much as possible.

Third, it is advisable to have at least two algorithms for solving a linear knapsack
problem: one for ordered variables and the second one 'Yithout ordering of variables
[4] and apply one of them depending on how big is JN1 J.

6. Conclusions

In many applications of the graph partitioning problem we have a1=1 for
i=l, ... , n. Then each subgraph Gk=(Vk> Ek) contains no more than b nodes. One
can check that the Lagrangean relaxation L has the Integrality Property [5] in this
case. In other words L cannot give better bounds than the linear programming
relaxation as we have

v (L)=v (L)=fl (GP).

I

458 S. W ALUKIEWICZ, M. LUCERTINI

, And for the surrogate Lagrangean relaxation SL we have

v (SL)";;;,v (L).

But even in this case solving L or SL will, in general require less time then solving

GP, for instance we solve GP only once at the beginning of the branch-and-bound

and next for subproblems solve corresponding surrogate Lagrangean relaxations

using efficient methods described in [4].

Next particular cases come from the requirement that the connected graph

G=(V, E) should be partitioned into at most p connected subgraphs Gk=(Vk> Ek)·
In the paper in preparation we show that the connected requirements can be ex

pressed in the form of linear constraints and such an appro~ch gives a new algorithm

for solving some particular cases of the graph partitioPing problem.

Finally, we stress .the importance of study of the quadratic multiple-choice

knapsack problem. It is reasonable to assume that many results known for the

(linear) multiple-choice knapsack problem [4] can be modified for the case of

quadratic multiple-choice knapsack problem.

References

[1] BERTOLAZZI P., LucERTINI M., MARCHETTI SPACCAMELA A. Analysis of a class of graph par

titioning problems. RAIRO Informatique Theorique, 16 (1982), 255-261.

[2] CHRISTOFIDES N., BROOKER P. The optimal partitioning of graphs. SIAM J. App. Math. 30
(1976), ~5-69.

[3] CROWDER H., JOHNSON E. L., PADBERG M. W. Solving large-scale zero-one linear programming
problems, Opns. Res. 31 (1983), 803-834.

[4] Duozn'lsKI K., WALUKrnwrcz S. Knapsack problem and its generalizations. Report of Sys:
terns Research Institute, Warsaw 1984.

[5] GEOFFRION A. M. Lagrangean rel!}xation for integer programming. Math. Prog. Study, 2
(1974), 82-114.

[6] GEOFFRION A. M., MARsTEN R. E. Integer programming algorithms: a framework and state

-of-the-art-survey. Management Sci, 18\ (1972), 465-491.

[7] GoLDMAN A. J. Linearization in 0-1 variables: A clarification. Opns. Res. 31 (1983), 946-948.

[8] KARWAN' M. H., RARDIN R. L. Surrogate dual multiplier search procedures in integer pro
gramming. Opns. Res. 32 (1984), 52-69.

[9] ONYEKWELU D. C. Computational viability of a constraint aggregation scheme for integer
programming problems. Opns. Res. 31 (1983), 795-802.

[10] PADBERG M. W. Covering, packing and knapsack problems. Annals of Discrete Math. 5 (1979),
139-183.

[11] PERNG-YI R., LEE E. Y. S., TsucHIYA M. A task allocation model for distributed computing

systems. IEEE Transactions on Computers, C-31 (1982), 41-47.

[12] SIMEONE B. Optimal graph partitioning. EJOR, (to appear).

[13] WALUKIEWICZ S. Some aspects of integer programming duality. EJOR, 7 (1981), 196-202.

Constraint gen&ation

Generowanie ograniczen dodatkowych
w zagadnieniu rozbicia grafu

459

Przeanalizowano zadanie programowania liniowego stowarzyszone z zagadnieniem rozbicia
grafu i podano oszacowania na wartosci zmiennych dualnych w punkcie optymalnym. Opisano
r6wniez relaksacjc;; Lagrange'a dla tego zagadrtienia. Nast'"pnie pokazano jak mo:i:na generowac
ograniczenia dodatkowe i opisano og61ny algorytm podzialu i oszacowan, kt6ry zawiera procedur'"
wst'"pnego przetwarzania i procedur'" generowania ograniczen dodatkowych.

reuepnpoBaHUe AOUOnHHTCHLHLlX orpaHUqeHHH
B 3aAaqe pa36HeHUH rpa!Jla ·

B crarbe rrpoBep;eH aHami3 3ap;a'lli JIHHe:lllioro rrporpaMMHpoBaHIDI, corrpaJKenno:ll: c npo6ne
MO:ll: pa36HeHHH rpa$a H p;aHbi OI(eHKH 3Ha'leHH:il: ,L:(BO:il:CTBeHHbiX rrepeMeHHbiX B OIITHMallbHO:ll:
TO'IKe. OrmcaHa ra:roi<:e penaKcau:mr JiarpaHJKa ,L:(Jlll no:tt rrpo6neMbi. 3areM IIOKa3aHo, KaK MoJKHo
reHep:a:poBaTb ,L:(OIIOJlHHTeJlbHbie orpaHH'IeHHH H OIIHCaH o6rnnil: anropHTM BeTBe:it H rpaHHI(,
cop;epJKarnnil: rrpou;ep;ypy Ha'lallbHOH o6pa6orKH :a: rrpou;ep;ypy reHep:a:poBaHHa p;onoJIHHrellbHbiX
orpaHH'IeHH:ll:.

•

\

