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The paper presents and discusses possible applications of adaptive controllers to continuous 
path control (CPC) of a robotic arm. The attention is focused on decentralised adaptive controllers 
since in practical applications the decentralised motion controllers are preferred to multi-input-mul
ti-output controllers. The reason is fairly obvious: a decentralised control structure is much more 
simple and provides for easy real-time implementation of multi-microprocessor facilities. One 
possible ~olution of a CPC algorithm design which would preserve a simple decentralised form 
of the controller and yet could be capable of achieving a required performance of continuous path 
control is offered by the use of adaptive decentralised controllers with adjustable gains. In the paper 
several possible ways of introducing such controllers are presented when basing upon simple "con
ceptual" models of joint dynamics. The approach of Dubowski and Des Forges as well as 
some other approaches to design model reference decentralised adaptive controllers are discussed 
and relevant modifications to these control schemes are proposed. Finally simple sampled-data 
adaptive controllers for a hydraulic robot are presented together with discussion of simulation 
results regarding possible implementation--.tQ_ the industrial robot RIMP-1000. 

1. Introduction 

Numerous applications of robots require robotic arm to follow a desired con
tinuous path in order to perform the prescribed tasks (e.g. painting, arc welding etc.). 
Design of continuous path controllers is made difficult by extremely complicated 
nonlinear dynamics of manipulators, varying weights of manipulated objects and 
by stringent requirements on the performance (precision of motion) of the mani
pulator systems. 

Before a brief discussion of possible approaches to the CPC design let us con
sider the basic model of a robotic arm with n joints. Each joint is driven by an 

\ -
actuator (an electric d-e motor or a hydraulic actuator) via a trapsmission system. 
If we define a ~-coordinate system, where ~ denotes e.g. a vector of the schaft 
angles of the d-e motors or a vector of the joint angles, then (transmission equations 
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-can be treated as holonomic constraints) the vector ~ can be used as a vector of 
generalized coordinates and one can obtain a mathematical model of a robotic 
arm in the Lagrange form: 

i=1, .. . , n, (I) 

where T, U denote the kinetic and the potential energies and Qi, s are the gene
. ralized forces (including friction and the external forces e.g. those exercised by the 
actuato~s). Balestrino et. al. (1983) and Stokic, Vukobratovic (1984) show that 
eqn. (1) can be written in the following form: 

(2) 

where u denotes the vector of control inputs. 

Now, the task of a continuous path controller will consist of applying such 
control inputs so as keep an errore: (t)=r (t)-~ (t) (where r ( ·) is a desired trajec- . 
tory of motion specified in ~-coordinate system over, say, time interval [! 0 , tf]) 
within a prescribed region E (t) (i.e. we want to have e: (t) E E (t)). This time-de
pendent requirement represents an objective of the CPC design. As far as the de
sired traj~ctory r ( · ) is concerned the following two cases are worth mentioning : 

A . r ( · ) is known in advance, 
B. r ( ·) is specified (by higher control layers) during the motion of a robotic arm 

(e.g. r (t) is specified at time t-At). 

One possibility of designing a CPC system in case A is to use eqn. (1) or eqn. 
(2) and r ( ·) to compute a nominal control u0 (t) for t E (10 , tf] (this is time con
suming task and requires a very good model) and then to use a linearized (or other
wise simplified) manipulator model in order to design a controller 1,1sing deviations 
of~ (t) from r (t) to provide for control input corrections Su (t) (then u (t) =u0 (t)+ 
+Su (t)). 

Another possibility is to design a sliding-mode control algorithm. In such case 
the reference trajectory has to be specified as the intersection of several sliding 
surfaces (see eq. Balestino et. al (1983) and (Slotine (1984)) and the controller itself 
will be nondiagonal (nondecentralized) and will have a complicated structure (di
fficult for real-time microprocessor-based implementation). 

In case B the situation is even more difficult. It is also clear that any controller 
capable of doing its job in this case will be also applicable to case A. One, theoreti
cally obvious, possibility to design a (CPC) controller is to perform this design 
in two stages, that is to build a complicated compensator in order to decouple 
nonlinear dynamics of eqn. (2) and then to design "decentralized" control algorithm 
for a decoupled system. This, however, requires a good knowledge of the robot 
dynamics, adjustment of compensators as the weight o~ manipulated object changes 
and leads to a very complicated nondiagonal controller. Implementation of such 
control algorithm requires then quite powerful computing facilities. On the other 
hand "classical" decentralized linear controllers (like P or PD controllers), which 
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are simple and easy to implement and therefore are still commonly used in an in
dustrial robot design (see Paul (1981)), are not capable of yielding a high performance 
of continuous path control over a wide range of manipulator tasks. 

One possible solution which would preserve a simple decentralized form of the 
controller and yet could be capable of achieving a required performance of con
tinuous path control is offered by the use of adaptive decentralized controllers 
with adjustable gains. In the next sections of this paper we will be concerned with 

r;everal possible ways of introducing such controllers. In section 2 we consider 
simplified (conceptual) models of joint dynamics and an adaptive simple control 
law- thinking in terms of an analog (continuous) implementation of this law. In sec
tion 3 we present briefly the approach of Dubovski, Des Forges (1979) and the 
approach of Narendra et. al. (1978, 1980 a, b, c) to adjust the gains of -the control 
laws. We also suggest some modifications to those schemes and we briefly address 
the stability issue. Finally, in section 4 simple sampled-data adaptive controllers 
for a hydraulic robot are presented together with the simulation results. 

2. Conceptual models of joint dynamics and decentralized adaptive control laws 

One way to approach the problem of designing a decentralized controller for 
a robotic arm is to assume that each joint together with an associated actuator 
can be described by the following "conceptual" model: 

J, (t) tf;+g; (t) tfr; (t)=u1 (t), (3) 

where time-dependent functions 11 ( ·) and g1 ( ·) represent changing dynamical 
properties of tbe joint due e.g. to the motion of the other joints. 11 (t) represents 
the inertial (dynamic) properties (e.g. an effective moment of inertia as seen at the 
rotor of the i-th d- e motor) and g1 (t) represents e.g. viscous friction and the other 
effects. In the case when one type of the effects (inertial or velocity) dominl!,te the 
other it is possible to consider further simplified models of the joint, namely 

(4) 
or 

(5) 

In particular the "conceptual" model as given by eqn. (4) will be useful for joints 
driven by d-e motors (especially for large-size robots like IRb-60 and for fast mo
tions) and the model given by eqn. (5) can be used for hydraulic robots driven by 
powerful hydraulic actuators (like RIMP-1000 robot). 

As far as a decentralized adaptive control law is concerned one may propose 
the following simple form of such law: 

U1 (t)=Kp1 (t) [r; (t) - ljl; (t)]-Kvt (t) • tfr1 (t), (6) 

where Kp1 (t) and Kvi (t) are adjustable position and velocity gains. Kvi (t) can be 
equal to zero in the case when velocity measurements are not directly available 
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· (especially in the case when the model (5) is an adequate one). Implementation 
of the control law (6) reGiuires specification of rules for adjustment of the gains 
Kp; (t) and Kv1 (t). Such rules art described in the next sections. Since further on we 
are going to consider each joint separately then the subscript index i is dropped 
for convenience. 

3. Model reference adaptive controllers 

In order to develop the rules according to which KP and Kv are to be adjusted 
one can use the reference model, say 

ay (t)+b.Y (t)+y (t)=r (t) (7) 

describing desired dynamics of a closed-loop system. Let us assume that the joint 
dynamics may be expressed by eqn. (4). Then, using control law .as given in eqn. (6) 
the closed-loop system is described by the following equation: 

I 
ex (t) ·l/1 (t)+ .8 (t) ljJ (t)+\fl (t)=r (t), (8) 

where 

I ex (t)=J (t)/KP (t), ,8 (t)=Kv (t)JKP (t). 

The errore (t)=y (t)-\fl (f) between the output of the reference model and the 
joint · coordinate \If (t) is then given by an equation: 

~ (t)=AM; (t)+d • wT (t) • [J- 1 (t) K (t)- cp0 ], (9) 

where 
; (t)= [e (t), e (t)]T, K (t)= [Kp (t), Kv (t)Y 

and 

w (t)=[\fl (~(t; (t)], <po=[:a-:1], d=[ ~] • AM=[ -~-1-b~-1] 
Dubovski and Des Forges (1979) introduce the error function to be minimized as : 

(10) 

and propose the following relations to be achieved: 

of of of of 
&=--~- {3=--~-oex - oa ' . o.B - ob (11) 

- assuming that ex~ a and .B ~b. Then it is also assumed that J (t) changes "slowly" 
in comparison to rx (t) and K (t). This leads to the following rules for the adjustment 
of KP and Kv 

(12) 
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where 

u=oefoa and aii +bU+u= -y 
W=oejob and aw+bw+w=-y 

477 

(13) 

In the above algorithm the sensitivity functions u, w do not depend on the actual 
behaviour of lfl (t). Therefore if the manipulator dynamics change suddenly (e.q. 
when the manipulator picks up some heavy object) then the functions u and w 
will still remain the same. The alternative approach to introduce the gain adjustment 
rule could be as follows: 

Let us write the error eqn. (9) in the form 

~ (t)=AM · ; (t)+d • wr (t) • z (t), where z (t)=J- 1 (t) • K (t)- cp0 (14) 

If we define a sensitivity matrix A as: 

a; 
A=-- A ER2 x 2 

az ' 
then the following equation can be obtained 

A (t)=AM A (t)+d· wr (t). 

(15) 

(16) 

Thus A (t) can be computed using either analog or digital facilities. Now we can 
consider a function V of the error; in the form V=(l/2) ;r Ps, where P=PT>O, 
and to ·propose the fulfilment of the following relationship: 

I.e. 

av · 
z(t)=-cAr.~, where c>O 

z(t)=-cATPS 

From eqn. (14) it results that 

z (t)=J- 1 (t). K (t)+J- 2 (t) [ -j (t)] K(t) 

(17) 

(18) 

If we assume that j (t) is very small, i.e., that the second term in eqn. (18) is much 
smaller than the first one and we also assume that z (t)=J- 1 (t) · K(t)-cp0 ~0 
(i.e. the controlled system tracks the model closely), then we may obtain from (14), 
(17) and (18) the following adjustment rule: 

(19) 

The properties of the above adaptive scheme are being investigated at present. 
An alternative way to specify the adaptive rule could be to consider the error function 
V=(l/2) (~T P~+zT z). and to try to achieve the condition V (t)<O. Using similar 
assumption as above we can obtain the foll<;>wing lUle: 

(20) 
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~ 
In fact the above rule is somewhat similar to the adjustment rule as proposed by 

Narendra et. al. (1978, 1980 a, b, c). If we consider the case when J (t) = J 0 = const>0, 
then one can use the following gain adjustment rule 

:K = - r · w · hr; (2l) 

where F=FT>O and his a constant vector. Assuming that the transfer function 

is strictly positive real one can prove that !; ~ 0. In order to do this it is sufficient 
t-+oo 

. to consider the Lyapunov function V(!;, z) = (l/2) (!;T P!;+ zT (Jo r- 1 ) z) and tQ 
use the Kalman-Yakubovich lemma. 

It should be noted that in case of a real importance, that is when J (t) ;F const, , 
the stability issue is much more complicated. Some attempts to investigate the sta
bility of adaptive schemes with the gain adjustment rules like (20), (21) (in the case 
when J(t);Fconst) have been made in [Malinowski and Maslowski 1987]. Let us 
mention finally that it is po~sible to consider an ~daptive decentralized control 
law (eqn. (6)) augmented with an integral feedback. In such case the gain adjust
ment rules have to be accordingly changed. 

4. Simple adaptive sampled-data controller for a hydraulic robot 

The above model reference adaptive controllers were developed essentially under 
the assumption of an analog or a very fast sampled-data implementation. Also 
the simple model in the fotm as given by eqn. (4) has been used. Now we consider 
the case when th~ term g (t) • {I (t) is dominating in the left hand side of eqn. (3), 
i.e. when eqn. (5) can be used. Such representation of the joint dynamics was found 
adequate for the hydraulic robot RIMP-1000 [Kuzan and Pilat 1984]. For this 
robot a sampled-data controller has to be used -with direct measurements of 
joint positions being provided from n-coders at every sampling time. The micro
processor based controller hardware make it possible to introduce a sampling 
interval L1 t of several miliseconds. In the partiCular adaptive controller design the 
interval Llt=50 ms was found to be satisfactory. At the same time the evaluation 
of the parameters of each joint model of the form (3) has shown that in every possible 
situation the dynamics were very fast ("time constants" were at most 1-2 ms) and 
that the term g (t) {I (t) was dominating in eqn. (3) with gi (t) changing significantly 
along typical trajectories of motion. 

The proposed adaptive control laws take into account the sampled data (If/ (t)) 
in the following ways: 
case (i) 
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and 

(22b) 

where 

vl = ifi (t) 

r (t+2Lft)-!f!(t) 

2Lft 
I 

2 [r (t+ At) -If/ (t)] V1 + V3 
V2 = At - 2 

The basic idea of the algorithm (22a, b) is depicted in Fig. 1. The objective 
of the control law is to provide for smooth velocity changes while meeting the basic 

r (t+2t,t ) 

r(t+M ) 

~ (t) 

Positions {token into account ·at t im e inst a nt t ) 

--- --- - - - - -- -~ 

I _ .. - --
' measurem ent 

velo ci ti es 

- - i 

l}' woy to go' 
I du r ing the 
I next peri od 

-- -j 

! + I'l l 

Fig. 1 

I 
I 

t + 261 

! +26t 

target of reaching the position r (t+ At) at time t+ At. The velocity V3 to be reached 
at t+At is an average velocity required over next two sampling intervals. 

The adaptive gain KP 1 (t) is adjusted according to the following simple law: 

Kp (t+ Lft)=Kp (t)+ yKP (t) • sgn e (t), (23) 
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where 

e (t)=r (t)-ljl (t), y>O. 

Application of the above algorithm (with suitably chosen y) was found to be 
very sa,tisfactory during several simulatio~s of movement of a robotic arm - using 
very a~curate dynamic model of the robot for simulation purposes. The parameters 
of the model were significantly changed during simulations (e.g. oil pressure was 
suddenly decreased by 20 %). Yet, it has appeared that the errors s (t) at sampling 
times very rarely exceeded one bit error (at the lowest n-coder position). 

It should be noted; however, that the control law (22a, b) is quite complicated 
for real time microprocessor-based implementation. 
case (ii) 

r (t+.dt)-lfl (t) 
u (t+r)=KP (t) · , O<r~.dt 

t . 
(24) \ 

The adaptive gain KP (t) is adjusted according to the sa:tile simple law as in case (i), i.e 

KP (t+ .dt)=KP (t)+ y • KP (t) • sgn e (t ) 

The application of this algorithm was also found to be quite successful during 
several simulations of movement of a robotic arm. The parameters of the model 
were changed during the simulations in the same way as in the case (i) above and 
it has appeared that errors s (t) at sampling times very rarely exceeded one bit error 
at the lowest n-coder position. In fact the results obtained were as good as in case (i) 
and the practical implementation of algorithm (24) should be much easier than t:Q.e 
implementation of algorithm (.22). It should be observed, that the implementation 
of the adaptive controller (24, 23) requires still very fast ("instantenous" computing 
of u (t+r) (input current to a servo-valve of each hydraulic actuator) from eqn. (24) 
and between sampling times there is plenty of time to adjust KP according to 
eqn. (23). 
case (iii) 

u (t+r)=u<O (t) if/· .dlfl,;;_r (t+.dt)-lfl (t)<(l+l) LlljJ , 0<-r,;;_.dt (25) 

In the control law above .dlf/ denotes the sensor resolution, ( u<O (t), ... , u0 > (t), ... , 
u(lmax>(t)) is the table of control varues adjusted at each sampling time as follows : 

u<O (t+.dt)=u(l>+ocu<O sgn (r (t)-lfl (t)), oc >O 

if I· .dljl~r (t)-lfl (t-.dt)<(l+l) Lllfl 
and u<l) (t+At)=u<l} (t) otherwise. 

(26) 

The above algorithm (25) is very convenient for a practical implementation. 
It also allows for nonlinear dependence of u(t+r) on r(t+.dt)-ljl(t). On the 
other hand the adjustment rule (eq. (26)) is rather "slow" (updating only one value 
u<O.at at time). Yet, the algorithm was also found to be very sat isfactory and has 
been used for a practical implementation. The simulation results are given in [Kuzan 
and Pilat 1984]. 
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Zdecentralizowane adaptacyjne sterowanie 
manipulatorow ramienia robota 

Praca prezentuje i omawia zastosowanie sterownika adaptacyjnego do sterowania cilloglego CPC 
ramieniem robota. Skoncentrowano si~ na sterowaniu zdecentralizowanym ze wzgl~du na jego 
znaczenie praktyczne. Wynika ono z prostoty i l!iCZ!icej si~ z tym moZliwosci sterowania w czasie 
rzeczywi,stym. W pracy zaprezentowano kilka mozliwych sposob6w sterowania bazujllocych na 
prostych modelach dynamiki. Om6wiono uzyskane wyniki symulacyjne oraz moZliwosci zastoso
wania do sterowania robota przemyslowego RIMP-1000. 

j(e~eHTPaiTH3upoBaHHoe a~anTDBHoe ynpaBneuue 
MaHHDyJIHTOpOB pLIIfara po6oTa 

B pa6ore paCCMaTpHBaeTCll HCIIOJib30BaHRe a.!(aiiTHBHOTO KOMaH.!(O-KOHTpOIIJiepa .!(Jlll He
npep'biBHOTO ynpaarreHRH CPC p'bPraroM po6ora. OcHOBHoe BHHMaHRe o6pam;eHo Ha .1(el.leHTpaJIH-
3HPOBannoe yrrpaBJieHRe BBH.!(Y ero npalCTH'IeCKOTO 3HalfeHRH. 3TO B'biTeKaeT H3 npOCTOT'bl H CBJ',I• 
3anno:ll: c 3THM B03MOJKHOCTH yrrpaBJieHRH B pealThHOM Macmra6e BpeMeHR. B pa6ore npe.!(cTaBrre
HO HeCKOJibKO B03MO:aan.IX CITOC060B ynpaBJieHRH, 6a3HpJIOID;HX Ha llpOCTbiX MO.!(eJIHX .!(HHaMlDCH. 
PaCCMOTpeHbi nOrrylfCHHbie pe3yllbTaTbl MO.!(eJIHpOBaHRH, a TaKJKe B03MOJKHOCTH HCllOJib30BaHRH 
ynpaBrreHRH npoM'bmmeHHbrM po6oroM RIMP-1000. 
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