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A class ot nonlinear diffusion-consumption problems with hysteresis effects is considered. 
The problems under consideration refer ·to biochemical systems; with parabolic equations of evo· 
lution such that the terms which represent volumetric cources are dependent on some switching 
on-off functional. This functional depends on history of the system via a bysteretic nonlinearity. 
Presence of such nonlinearity essentially complicates an analysis of questions concerning uniqueness 
of solutions and character of their continuous dependence on initial conditions. In this paper, 
a result on the uniqueness and continuous dependence on initial data is formulated and proved 
in the case of a problem in one space dimension, 

1. Introduction 

The phenomenon of "hysteresis" is taken here in a generic sense to refer to 
situations in ..yhich a physical process governing the development of a system may 
unfold in any one of a finite number of modes, with the mode which is selected 
dependent on the previous history of the system. Thus, in a sense the allowance 

of hysteresis in the formulation of a problem is really a consequence of an economy 
effected in representing the essential dynamics of the system, since one may give 
an equivalent description of the problem in whiCh the overt dependence of tbe 
mode of evolution on the past development is eliminated by the following expedient: 
Adding to the system representation a dependent variable, the values of which 

. . 
at any time have the sole effect of determining the mode according to which the 
system develops, and adding an equation for the evolution of this dependent va:dable 
in terms of the other variables describing the system. 

* This paper completes the special issue on Recent Advances in Free Boundary Problems, 
M. ;Niezg6dka, I. Pawlow, Editors. Control and Cybernetics, vol. 14, no 1-2, 1985. 

· *.*Supported by the National Science Foundation. 
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Systems containing hysteresis occur naturally in the mathematical modeling 
of numerous phenomena. The system in which the hysteresis occurs may be governed 
by hyperbolic or parabolic equations. Examples of the former type are . afforded 
by the equations describing elastic-plastic flow and some electromagnetic pheno
mena. Our concern in this paper will be the presence of hysteresis in systems go
verned by parabolic equations. A rather pristine model containing a parabolic 
equation with hysteresis arises in the theory of thermostats due to Glashoff and 
Sprekels [3]. In this theory, the system evolves in two possible modes, according 
to whether or not the thermostat is switched on or off. More complicated mode1s 
have been used to describe chemical and biological phenomena. In particular, 
systems of equations with hysteresis have been proposed to govern chemical and 
biological processes exhibiting pattern formation, in an attempt to explain this 
phenomenon [4-7]. 

Typically, as in the biomathematical papers of Jager and Hoppensteadt [4, 5], 
one encounters coupled parabolic equations for the concentrations of species in 
the system, and the source terms for the various species depend on some sort of 
switching~ functional, which is dependent on the previous history of the system. 
In a chemical example, the model proposed by Keller and Rubinow to describe 
the formation of Liesegang rings [6, 7], the notion of hysteresis does not appear 
directly. However, if one eliminates the concentration of precipitate from the list 
of dependent variables, one obtains a set of coupled reaction-diffusion equations 
for three species, with a term representing the rate of precipitation which takes 
two forms, according to whether or not precipitation has taken place at a locale 
in the past. The occurrence of precipitation is itself triggered by the crossing of 
a th·eshold for one of the three interacting species. 

In all the examples referred to above, a salient feature of the hysteresis is the 
discontinuous dependence of a term representing "sources" or "sinks" of densities 

on the past hi<;tories of those densities. The presence of such hysteretic discounti
nuities severely complicates the proof of t_he uniqueness of solutions of initial value 
problems for the equatiom modeling the system, as Lipschitz-continuous dependence 

of the source term on the dependent variables is a standard prerequisite for esta

blishing the uniqueness of solutions of ordinary or partial differential equations. 

As of this writing, very little has been established with regard to the uniqueness 

of solutions of any of the systems referred to above [3-7]. 

For the equations modeling a physical process, one is usually interested in prov

ing not only the uniqueness of solutions of an initial value problem, but also their 

continuous dependence on the initial data. A simple example may clarify our remarks. 
Consider the following equation modeling a diffusion-consumption problem with 
hysteresis: 

u =Llu- {1, u(x, t'~>l 
{ 

1 0, otherwise 
u (x, 0)=u0 (x), x ERN. 

for some t' E (0, t] 
(1.1) 
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The "hysteresis" occurs in the possibility of the "consumption" term having either 
of the values 0 or 1. The same problem could be represented by the solution of 
a pair of equations without hysteresis: 

A {0, v>O : 

{
ut= u- l; v=O, (x, t) ERN xR+, (1.2a) 

vt=='(u-1)+, (x, t) E RNxR+, 

with 

u (x, 0)=u0 (x), 
v (x, 0)=0, 

(1.2b) 

Among the class of solutions of the initial value pcoblem (1.1) will be the spa-
tially-independent ones: 

I du __ {1, u (t')> 1 for some t' E (0, t] • 
dt - 0, otherwic;e , t>O, 

u (0)=u0 • 

(1.3) 

It is clear that solutions of (1.3) depend discontinuously on the initial data: 

u (t)={u0 - t, 
Uo ' 

u0 >1 
1

, t>O. 
Uo~ 

(1.4) 

Thus, if we are to prove continuous dependence of solutions of (1.1) on the 
initial data, we must somehow exclude initial data with u (x, 0)= 1 for all x in some 
set of positive measure. On the other hand, we do not want to restrict ourselves 
t~ the situations I 

(1.5a) 

or 

(1.5b) 

as the corresponding problems do not exhibit the interesting characteristics associated 
with hysteretic phenome.tliL Appropriate classes of initial data on which solutions 
of (1.1) will depend continuously will be presented in the sequel. 

Let us note the difference between the diffusion-consumption problem with 
hysteresis, (1.1), and a standard diffusion-consumptiop problem [1, 8]: 

where 

{
Ut=Lfu-g(u), (x,t)ERN x R+, 
u (x, 0)=u0 (x), x ERN, 

g(u)=g 
u>l 
u~1. 

/ 

(1.6a) 

(l.6b) 

The problem (1.6) is a semilinear problem. Although the consumption term g (u) 
·does not depend continuously on u, it may be obtained as the limit, as e-+O+, of 
a family of Lipschitz-continuous consumption terms g, (u), to each of which there 

16 



, 
486 J. C. W. ROGERS 

corresponds a solution u. (x, t) which is continuous in its dependence on u0 (x), 
uniformly\_in e [8]. Moreover, tl;te solutions u. (x, t) depend monotonically on both 
e and u0 (x), and their limit u (x, t) depends monotoRically on u0 (x). Accordingly, 
one can prove the continuous dependence of solutions of (1.6) on u0 (x). As an 
example, in the case of spatial independence of u0 (x), the solution of (1.6) is 

\

u0 - t u0 > I, t~ u0 - 1 
u(t)= 1, . ' u0 >1, t>u0 -l, 

_ u0 , u0~l 
(1.7) 

which does not display the discontinuous dependence on \u0 that appeared in (1.4). 
In the problem with hysteresis, it is the possible persistence, for all time, of the 
discontinuity in the evolution of the system that can lead to d-iscontinuous depeq.~ ) 
d·ence on.the initial data, as in (1.4), when they are not appropriately chosen, and 
which leads, in general, to a loss of monotone dependenc_e on the initial data. 

For the remainder of this paper, our attention will be focused on solutions of 
(1.1). This is an extremely simple equation, but we feel that the essential difficulties 
in treating the questions of uniqueness and continuous dependence are encountered 
here in a form free of unnecessary encumbrances. In the form (1.2), the initial value 
problem bears a resemblance to the treatment of the formation of Liesegang rings 
by K~ller and Rubinow [6, 7]. V would take the place of the "precipitate" in the 
Keller-Rubinow theory, and u would be the concentration of one of the reacting 
and diffusing species (silver dichromate). The threshold value at whit:h precipita
tation begins, denoted by c* in the Keller-Rubinow treatment, is u= 1 here. 

_Naturally, equation (1.1) will not possess the richness of the systems proposed 
by Jii.ger and Hoppensteadt, and ~y Keller and Rubinow, with regard to the stu~y 
of pattern formation. ln these systems there will be reversible (reaction) and irre
versible (diffusion) processes, with the possibility of oscillatory behavior. However, 
it is our belief that a careful treatment of (1 .1) can then be extended to fuller systems, 
such as would be obtaine.a, for example, if (1.1) were replaced by a reaction-di
ffusi0n semilinear system in which all the nonlinear terms had a Lipschitz-conti
nuous dependence on the dependent variables, except for one hysteresis term like 
that on the right-hand side of (1.1). Solutions of the fuller system would be obtained -... 
by taking the lin'\it, as the time step in a time djscretization goes to 0, of appro-
ximate solutions which evolve from one discrete time to the next by combining 
solutions, over the intervening time step, of the reaction-diffusion system without · 
hysteresis, with solutions of (1.1) over the same time interval. This approach is 
currently being ptlTSued by Eid, who is extending the results of this paper to the 
Keller-Rubinow model of Liesegang rings, as well as obtaining numerical solutions 
tlfereof. [2]. 

Equation (1.1) is similar to, but simpler than, a parabolic equhtion with hyste-
, resis studied by Visintin [9]. In equation (1.1)~ the consumption term is "switched 
on" when the "concentr-ation" u exceeds 1. In Visintin's work, there is in addition 
a lower threshold at which the consumption is ''switched off". In the system studied 
by Jii.ger and Hoppensteadt [4, 5J, there are also· thresholds for switching on aJ1d / 
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switching off of a growth term. It appears to us that the extension of the results 
of this paper to an equation with two thresholds is quite feasible, and it is our in
_tention to study the fuller system of Jiiger and Hoppensteaqt with this goal in mind. 

In the next section we will obtain a proof of the continuous dependence of 
solutions of(l.l) on the initial data for one-dimensional problems (N=l), provided 
that the initial data are suitably restricted. Work on e~tending the result to higher-
-dimen'sional problems is continuing. · · · · 

2. A special one-dimensional .case 

We will study the problem 

u = u _fl, u (x, t')> 1 for some t' E (0; t] or x E I (0) 

{ 

1 
xx \0, otherwis~ , - , (x, t) ERxR+, 

u (x, 0)=u0 (x), x ER, 
' 

where 

I (0)=( - CO, 0). 

(2.la) 
(2.lb) 

(2.lc) 

We will restrict our analysis to the case that u0 (x) is a differentiable function sa
tisfying the following conditions: 

u0 (x)~ 1 for . x~O, 

u~ (0)<0, 

sup lu~ (x) I~M1 <co; (2.2) 
XER . .· 

lu~(x) - u~(y)I~K(a)lx -yla, (x,y)ERXR, aE(O,l), 
I 

u0 (x)~l-17(o) forx~o, wheren(o)>O foro~O. 

We will compare solutions, if any, of (2.1) with solutions, if any, of 

___ {l,ii(x,t')>lforsomet'E(O,t)orxE1(0) . 

{~t-Uxx- _ 0, otherwise · . , (x, t) ER X R+, (2.1a? 
u (x, 0)=u0 (x), x ER, · (2.lb) 

where 

1 (O):;:,{x liio (x)> 1}. (2.lc') 

We can find numbers e0 , X 0 such that 

sup lu0 (x)-u0 (x) l~e0 , 
XER (2.3) 

11 (0)-I(O) I+II(0)-1.(0) I~Xo . 

Our procedure will be to construct functiop.s u± (x, t) such that 

u- (x, t)~min (u (x, t), u (x, t))~max (u (x, t), ii (x, t))~u+ (x, t) . (2.4) 
\ Jf \ 
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whenever solutions u, ii of (2.1) and (2.1 ') exist, and such that 

u- (x, t)~ u+ (x, t), (2.4') 

in any case. We shall show that suitable functions r.± (x, t) may be found for · 
which the difference u+ (x, t)-u- (x, t) goes to 0 as X 0 and e0 go to 0. It will be 
apparent from tlie construction of u± that they satisfy a pair of coupled differential 
·equations. Upon taking the limit X0~0 and e0~0 i1_1 which u+ and u- converge 
to the same function, one will find that they are solutions of (2.1 ). Thus, the existence 
of solutions to (2.1) will be established at the same time that their continuous de
pendence on the initial · data is demonstrated. 

Before we state our uniqueness theorem, we will dispense with some notation. 
Give~ a set E and a function v (x, t), we define 

I {v (t); E}=Eu {x lv (x, t') > l for some t ' E (0, t)]} . (2.5) 

The sets I have two obvious monotonicity properties: 

(2.6) 

and 

I{v1 (t);EI}:=>I{v2 (t);E2 } ifE1 :=>E2 an:dv 1~2 'v't ' E(O, t]. (2.7) 

S (t) is used to denote the semigroup generated by Lf in RN : 

S (t)=et.1, (2.8a) 

1 J 2 (S (t) v) _(x) . e-(x-y) / 4 t V (y) dy . 
(4nt)Nf2 RN 

(2.8b) 

S (t) has th~ familiar mon~tonicity property: 

S(t)v 1 ~S(t)v2 if V 1 ~Vz. (2.9) 

The principal result of this section is stated by the following theorem. 

THEOREM 2.1. Let u and ii be solutions of (2.1) and (2.1 '), and let u0 (x) satisfy the 
conditions listed in (2.2). Given any time T>O and e0 , X 0 in (2.3) sufficiently small, 

there exists a constant C (T) such that, for 

0~ t~T, sup !u (x, t)-ii (x, t)/1 +yT [I I {u (t); I (0)}-I {ii (t); i (0)} I+ 
XER 

+ I I {ii (t); i (0)}- I {u (t); I (0)}1]~ C (T)(e0 + y T X0). (2.10) 

The first step in the proof of the theorem is construction of the functions u± 

of ~(2.4) . Following this, we will state some lemm'as which will enable us to bound 
u+ -u-. 

To construct the subfunction u- (x, t) and superfunction u+ (x, t), we begin 
by setting 

(2.11) 
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On account of (2.3), . we have 

(2.12) 

Likewise, 

sup (ut -u;;"):~2e0 • (2.13) 
xeR 

. In addition, we define J 

J-(0)=/(0)nl(O). (2.14) 

We will also define a set J+ (0). For the moment, we require only that 

J+ (O)=>I(O)ul (0). (2.15) 

J+ (0) will be determined with more definiteness in the sequel. See equation (2.32). 
It follows from (2.3) that· 

If+ (0)-I- (0) I<Xo+IJ+ (0)-J(O)ul(O) 1. (2.16) 

Next; we construct the functions 

t 

u~o) (x, t)=S (t) ut- J S (t-t') X (I- (0)) dt' , (2.17a) 
0 

and, for i)::O, 

t \ 

u(2i+l) (x, t)=S (t) u;;- J S (t-t') x (I {uc 2o (t'); J+ (0)}) dt', (2.17b) 
. 0 

t 

u< 21 + 2
) (x, t)=S (t) ut-J S (t- t') x (I {ur 21 + t) (t'); I- (0)}) dt'. (2.17c) 

0 . 

Here x (E) is the characteristic function of E. 
Note that the solutions of (2.1) and (2.1 ') must satisfy, if they exist, 

t 

u(x;t)=S(t)u0 - J S(t-t')x(I{u(t');I(O)})dt' (2.18) 
0 

and 

t 

ii(x,t)=S(t)u0 - J S(t-t')x(I{u(t');l(O)})dt'. (2.18') 
0 

On ~ccount of (2.11), (2.12); (2.14), and (2.15), and the monotonicity properties 
--(2.6), (2.7), and (2.9), we obtain the inequalities 

u< 21> (x, t))::u(2 1+ 2> (x, t) , i)::O, 

ur2 t+t) (x, t)<u< 21 + 3> {x, t), i)::O, (2.19) 

u(2i) (x, t);;;:::ur 2J+l) (x, t) . , i)::O, j)::O. 
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Similarly, if solutions of (2.18) and (2.18') exist, it follows from the same ine-
qualities that · . 

u< 21 +1>(x, t)~min (u (x, t), u (x, t))~max ( u (x, t), ii (x, t))~ 

~ u< 21> (x, t), t~O. (2.20) 

An immediate consequence of (2.19) is that the. functions 

u+ (x, t)=lim u< 21> (x, t) and u- (x, t)=lim u<Zt+l) (x, t) (2.21) 
i~OO j-+OO 

exist. Likewise, (2.4') and (2.4), when applicable, follow from (2.19) and (2.20), 
when applicable. Taking 'the limit of (2.17) as i-+ oo, we obtain 

t 

u+ (x, t)=S (t) uci-J S (t- t') x (I {u- (t'); I - (0)}) dt', 
0 

t 
. (2.22) 

u- (x, t)=S (t) u;-J S (t-t') x (I {u+ (t'); J+ (0)}) dt'. 
0 

Our purpose is now to bound u+ -u- in terms of X 0 and e0 • To this end, we 
introduce the majorizing functipns ' 

X(t)= sup II{u+ (t');I+ (0)}-I{u- (t');I - (0)} I (2.23a) 
0~ t'~t 

and 

e(t)= sup (u+(x,t')-u-(x,t')). (2.23b) 
xeR,O:e;;t'~t 

First, let us use the conditions (2.2) to find a relatively simple function which 
serves as an upper bound on u0 (x) for x;?:O. Clearly, 

I 

u~ (~)~u~ (O)+K(cx) Xa~O for O~x~<'l0 , (2.24) 

where 

<'l0 =( -u~ (O)(K(cx) 1 fa.. (2.25) 

Integration of (2.24) yields 

Since 

we can write 

where 

u0 (x)~ 1 + cxx ~~ (0) for O~x~ <'l0 • 

{
1-Po x 

Uo (x)~ 1-Po <'lo 

- . ( ' '1 ( <'lo) ) 
{30 =mm - cxu0 (0), -

6
- . 

\ 0 

1 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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Note that, on account of (2.11), 

wher.e 

+ ( )s:fl-,B9 (x-a) 
Uo X "'ll- .Bo <51 

O<x-a<ot 
x-a~ol 

We JU:ay n9w give J+ (0) with less ambiguity than appears in (2.15): 

J+ (0)=( -oo, a). 

From {2) D and (2.2) it follows that 

sup I (ut)' (x) I<Mt 
·'"ER 

:and 

I (ut)' (x)-(ut)' (y) I<K (a) lx-yl", (x, y) E RXR . 

491 

(2.30) 

(2.31) 

(2.32) 

(2.53a) 

(2,33b) ' 

From .(!._33) and (2.22), a similar sort of regularity can be deduced for u+ (x, t). 
For this purpose we use the following lemma. 

' 
J...EMMA 2.1. Let u satisfy the following initial value problem: 

{
Ut=Au+f , (x, t)ERNxR+, 

. u (x, 0)=u0 (x), x ERN, 
(2.34) 

with the conditions 

sup 1/(x, t) I<M, 
(x, t)ERN x R+ 

sup !Vu0 (x) I<M1, 
(2.35) 

XERN 

I'Vuo (x)-\lu0 (y) I<K(a) Jx-yJ", (x, y) E RNxRN, a E (0; 1). 

Then, given T> 0, the following regularity results hold for times t E [0, T]: 

!Vu (x, t-} I<M1 (T), x ERN, t E [0, T], (2.36a) 

I'Vu(x,t) - \lu(y,t)I<K(a,T)Ix-yl", (x,y)EJ!.NxRN, tE[O,T], (2.36p) 

' lu(x,s)-u (x,t)I<K1 (T)Is-tl ; 2
, XERN, (s,t)e[O,T]x[O,T], (2.36c) 

(2.37) 
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(2.38) 

(2.39) 

P r o o f. The solution of (2.34) is written as 

t 

uo(t)=S(t)u0 + f S(t-t')f(t')dt' (2.40) 
0 -, 

Using {2.8) and carefully bounding the terms in vu (x, t), vu (x, t)-vu (y, t), and 
u (x, s)-u (x, t) corresponding to the two terms on the right-hand side of (2.40), 
we obtain the desired~ result. • 

Observe that it follows from the continuity of u in time, as given by (2.36c), 
that J{u(t);0}=>J(O) for t>O if u(t) is a solution of (2.1) and u0 {x)>l for 
x<O. With that restriction, solutions of (2.l)will also be solutions of (1.1) for the 
case N=l. 

We proceed with the task of bounding s (t) and X (t).~ From ~2.13), 

s (0)~2s0 , (2.4la) 

and from (2.32) and (2.16), 

X(O)~X0 +a. (2.41b) 

The next lemn;1a enables us to bound s (t) in terms of X (t). 

LEMMA 2.2. With s (t) and X(t) given by (2.23), 

s (t)~2s0+ V ; X (t). 
/ 

(2.42) 

P r o o f. From (2.22), 

u+ (x, t)-u- (x, t)=S (t) (uci -u;;)+ 
t 

+ J S'(t-t') X (I {u+ (t'); I+ (0)}-,.I {u- (t'); I - (0)}) dt' . (2.43) 
0 

S (t)(uci -u;;) is bounded by 2s0 , from the maximum principle. With regard to 
a bound on the other term on the right-hand side of (2.43), we use the definition 
of X(t) in (2.23a) and we use (2.8b) with N=l to bound 

S (t-t') x (I {u+ (t'); I+ (0)}-I {u- (t'); I- (0)}) 
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by X (t)/y 4n (t- t') . This bound is then integrated over t', and (2.42) follows im
~~~. . . 

It remains to bound X (t) in terms of e (t) and the characteristic parameters 
e0 and X 0 of the initial data. Let 

and 

Clearly, 

From (2.23a), 

If 

then 

Otherwise, . 

x+ (t)=sup {x\u+ (x, t)> \}, 

~+ (t)=max (a, sup x+<r'>), 
0 ~ t' ~t 

x- (t)=sup {x \u- (x, t)>l}, 

~- (t)=( sup x- (t'))+ . 
. O=:s;;t'~t . 

P (O)=a and ~- (0)=0. 

X(t)~Xo+ sup U+ (t')-~- (t')). 
o:s:; t'""' ~ 

sup U+ (t')- ~- (t'))=a, 
O~t'<t 

X(t)~X0 +a. 

sup (;+ (t')-~- (t'))>a, 
O~t'~t 

t > 0, and we can define the non-empty set a (t) by 

a(t)={t'E(O,t]\lim [ sup (~+ (t")-~- (t"))]= 
P]~O t'-tl~t"""min(t'+PI, t) ; 

(2.44a) 

(2.44b) 

(2.45a) 

(2.45b) 

. \ (2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

= sup U+ (t')- ~- (t'))} (2.5la) 
O::s;;t' :s:;:r 

and the time t* (t)?O by 

t* (t)=inf {t' \t' Ea (t)} . (2.51b) 

We must have 

(2.52) 

F<>r, if u+ ( ~+ (t), t') > 1, it would follow from the differen~iability with respect 
to x of u+ (x, t') proved in lemma 2.1 that the condition (2.44) defining ~+ (t) would 
be violated. 
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On the other hand, we must have 

u+ u+ (t*(t)), t* (t)) ?: l (2.53) 

when (2.50) holds.. First of all, if (2.50) holds, it foll'Ows from (2.46) that, in order 
to have t* (t)=O, it would be necessary that ~+ (t) be discontinuous at t=O. This 
can be shown to be false by exaplining solutions of(2.22) with the initial data u; 
satisfying (2.30). If ~+ (t) were discontinuous at t=O, it wouJd follow that u+ (x, t) 
was not continuous in t, in violation of the result of lemma 2.1. Consequently, 
t* (t)>O. If u+ ( ~+ (t* (t)), t* (t)) < 1, we must have, on account of the continuity 
of u+ (x, t) in t, u+ ( ~+ (t* (t)), t')~ 1 for t* (t) -17~ t' ~ t* (t)+17 and some 17 > 0. 
But then, from (2.52), u+ ( ~+ (t* (t)), t') ~ 1 for 0~ t' ~ t* (t)+17. Since u+ satisfies 

, (2.22) with uci bounded by (2.30}, one concludes from the maximum printiple for 
. u: ~ ufx that ~+ .(t* (t)+17) = ~+ .(t* (t)) for some 17> 0. Furthermore, when 

u+ (~+ (t* (t)), t* (t))<1 and ~+ (t* (t))>a, it follows from (2.44) and the con
tinuity of u+ (x, t) in X and t that u+ u+ (t* (t)), tl).=:=l for some tl <t* (t) . Then 
~+ (t1):b~+ (t* (t)). On the other hand, because of the monotone dependence of 
~- (t) on t, ~- (t 1)~~- (t* (t)). Hence~+ (t1)-~- (t1)?:~+ (t* (t))-~- (t* (t))= 

. =~+ (t* (t)+17)-~- (t* (t)), which contradicts the detJnition on t* (t) given by 
(2.51). Thus, (2.53) must hold. Having established (2.52) and (2.53), we are in a po
sition to prove the following lemma. 

LEMMA 2.3. Let u+ (x, t) be given by (2.22) with the bound (2.30) on u;. Define 
~+ (t) and t* (t) by ~2.44) and (2.51). Then,Jor O~t~T, 

flo . 
u; (~+ (t* (t)), t*-(t))<- y'nT <51 e-~if4r (2.54) 

P r o o f. W note that 

' u: =u;,, X E ( ~+ (t* (t)), CO), SE (0, t* (t)) ; 

+c O) {1-Po(x-~+(t*(t))) - . O~x-~+ ,(t*(t))~61 , 
Uo x, ~ 1- flo <51 x- ~+ (t* (t))?:ot, (+_.55) 

u+(~+(t*(t)),s)~I, O~s~t*(t), 

u+ (~+ (t* (t)), t* (t))?:1. 

A decrease in uri (x, 0) or u+ (~+ (t* (t)), s) for O~s<t* (t), and an increase in 
u+ ( ~+ (t* (t)), t* (t)) all have the effect of reducing u; ( ~+ (t* (t)), t* V)) . Thus 

u; ( ~+ (t* (t)), t* (t))~ V)' (0, t* (t)), 

where 

V,= Vn, yE (O, .co), sE (0, t* (t)), 

V (y, O)={l- /lo y, O~y~ o1 , 

1- fJo ol ;• y?:ol, 
(2.56) 

V(O, s)=l, O~s~t* (t) . 
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Solving (2.56) and noting that t* (t)~t~T, one obtains the bound . 

V: (0 t* (t))~- _!!_c:__ () e-~if4T 
I " ' "" y nT 1 . ' 

and accordingly (2.54) is proven. 
To obtain a bound for X(t) in terms of e (t), we use lemmas 2.1 and 2.3: For 

X<~+ (t* (t)), 

Integrating this and using (2.53), we get, for X<~+ (t* (t)), 

Po 2 (. ·) ) u+ (x, t* (t))~l + .;- 151 e- 61f4 T ~+ .(t* (t) - x + 
ynT 

(~+ (t* (t))-x)'"+ 1 , fJo 
K(~ T)'-1 + •1 e- 6It4 T ( t:+ (t* (t))- x) (2.57) 

<X+l ~. ~ tJ y icT u ~ 

when 

(2.58a) 

where 

(2.58b) 

Hence 

u+ {x, t* (t)) > 1 +e (t) (2.59) 

if ' 

e(t)2ynT 
~+ (t* (t))- x- {3 () _62 f4'T E (0, 17) for some 17>0 (2.60) 

o 1 e 1 

and 

f3o (31 e-6ff4T 

e (t)~ 2 V nT b2 • (2.61) 

It follows from (2.59) and (2.23b) that u- ex. t* (t)) > 1 when (2.60) and (2.61) 
are satisfied. But then, from (2.45), 

: · e002y~ 
~- (t* (t))~~+ (t* (t))- {3 . . (j -~2{4T (2.62) 

o 1 e 1 

From the inequalities (2.55), we see that u+ (x, t* (t)) < 1 for x> ~+ (t* (t)). Accord
ingly,~+ (t* (t)+n)-~+ (t* (t))~o as 1'/~o+, since otherwise there would be a vio
lation of the continuity of u+ (x, t)' in t. It follows from (2.51} that 

sup (;+ (t')- ~- (t'))~ ~+ (t* (t))- ~- (t* (t)) (2.63) 
O..;t' <:;t 
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So finally, when (2.50) holds and (2.61) is satisfied, (2.47), (2.63), and (2.62) give 

Insert (2.64) into (2.42): 

. -. j-t 2yr 
e(t)~2e0 + V -; X 0 + fJo t5

1 
e - 6ft4T yt e(t)~ 

' if t~ -r, where 

·= ( fJo ol e-6ff4T )2 
-r: 4yT · . 

(2.65) and (2.66) may be inserted into (2.64) to yield, for 0~ t~ -r:, 

For i-r:~t~(i+l) -r:, i:;?;l, 

where, for i:;?;2, 

Thus, for i:;?;2, 

e(t)~2(e,+ l/ : x,), 

X~t)~2X1 + V: e1 ,. 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 
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and for o~-t~ T, 

· e(t)+ V: X(t)~4[Tit]+l (2e0 + V: X0). (2.72) 

These relations hold as long as the constraint (2.61) is valid: 

2 
e (t)~ yn yr o2 • (2.73) 

From (2.72), we see that this is the case if the initial data satisfy 
• 

. I---:;- o 2 ,. I---;-
2eo+ V -; Xo~l V -; 4- [T/tl (2.74) 

It is now a simple matter to go from the bound (2.72), when the constraint 
(2.74) applies, to the ~esult (2.10) expressed in theorem 2.1. • 
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Jednoznacznosc rozwil!zania zagadnienia dyfuzji
-konsumpcji z histerezl! . 

W pracy rozwai:ana jest klasa nieliniowych zagadnieiJ dyfuzji konsumpcji z efektem histerezy. 
Rozwa:i:ane zagadnienia odnosz~t sic:; do system6w biochemicznych, z parabolicznymi r6wnaniami 
ewolucji, w kt6rych skladniki reprezentuj~tce ir6dla przestrzenne SI! zale:i:ne od pewnego funkcjo
nalu przel'!czaj~tcego. Funkcjonal ten zale:i:y od historii systemu, eo jest wyra:i:one poprzez nieli-. 
niowosc typu histen;zy. Obecnosc nieliniowosci tego rodzaju w istotny spos6b komplikuje analizc:; 
problem6w jednoznacznosci rozwi~tzail oraz ich ci'!glej zale:i:nosci od warurik6w poczl!tkowych. 
W pracy zostaje sformulowane i udowodnione twierdzenie o jednoznacznej zale:i:no8ci rozwi~tzail 
od danych poczl!tkowych w przypadku zagadnienia przestrzennie jednowymiarowego. 
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ErorncTseHHocTL pemeHIHI npooJieMM rotciJIJ»Y3HH
-Konc~nu rucTepe3ncoM 

J. C. W. ROGERS 

B pa6oTe pacc)')K.!I;ae<c.l! KJiacc ReJIHHeiffi:biX npo6neM ,!!;H<lJ<lJy3HH-KOHC)'MIIIJ;HH c 3<lJ<lJeKTOM 

rHcTepe3.1lca. PaccylK,D;aeMLie npo6neMbi npHHa.wrexcaT K MaTeMaTH'!ecK.IIM MO,IJ;eJI.l!M 6.1loX.IlMII

qecKBX' cHcreM, c napa6oJIH'IeCKHMH ypaBHeHIDiMH 3BOmo:QHH, B KOTOphiX cnaraeMLie npe,n;cTa

. BmiiOIOie co6oH: npocTpaHCTBeHHhie HCTO'iHHK.Il 3aBHCHT OT HeKoToporo nepeKJOO'iaiOm;ero <lJyHK

IU~OHana. 3aBeC.IIMOCTh 3TOrO <iJYHKIU~OHaJia OT HCTOpHH CHCTe:MhJ BhlpiDKeHa ReJIHHeHHOCThlO 

rHcrepeJHCHoro THOa. · HeJIHHell:Hocrh TaKoro po.n:a cym:ecneHRo ycno)KID!eT aJaJIH3 npo6neM 

e,IJ;HHCTBeHROCTH pemeHHH: H xapaKTepa l!X HenpephiBHOH 3aBHC.IIMOCTH OT Ha'iiwThHhiX YCJIOBlm. 

B pa6oTe <iJOPMYJ!HPYeTC.l! H .r~oKa3hiBaeTC.l! TeopeMa o e,IJ;HHCTBeHRocm pememiH: H HX Henpe

phiBHO:ij: 3a1'mC.IIMOCTH OT Ha'iaJihHhiX yCJIOBHH B cny'lae O,IJ;HOMepHOH reoMeTPHH npo6JieMhl. 

.. . 



Wskazowki dla auto row -

W wydawnictwie Control and Cybernetics drukuje si~ prace oryginalne 
nie publikowane w innych czasopismach. Zalecane jest nadsylanie artykulow, 
w j~zyku angielskim. W przypadku nadeslania artykulu w j~zyku polskim 
Redakcja moze zalecic przetlumaczenie na j~zyk angielski. Obj~tosc artykulu 
nie powinna przekraczac 1 arkusza wydawniczego, czyli ok. 20 stron maszyno
pisu formatu A4 z zachowaniem interlinii i marginesu 5 cm z lewej strony. 
Pr~ace nalezy skladae w 2 egzemplarzach. Uklad pracy i forma powinny bye do
stosowane do nizej podanych ·wskazowek. 

1. W naglowku nalezy p0dae tytul pracy, nast~pnie imi~ (imiona) i nazwisko 
(nazwiska) autora (autorow) w porz::}:dl(u alfabetycznym oraz nazw~ reprezento
wanej instytucji i nazw~ miasta. Po tytule nalei:y umie5cie krotkie streszczenie 
pracy (do 15 wierszy maszynopisu). 

2. Material ilustracyjny powinien bye dol::j,czony na oddzielnych stronach. 
Podpisy pod rysunki nalei.y podae oddzielnie. 

3. Wzory i symbole powinny bye wpisane na maszynie bardzo starannie. 
Szczegoln::}: uwag~ nalezy zwrocie na wyraine zroznicowanie malych i 
Szczegoln::}: uwag~ nalei.y zwrocie na wyraine zroznicowanie malych i dui.ych 

liter. Litery greckie powinny bye objasnione na marginesie. Szczegolnie do
kladnie powinny bye opisane indeksy (wskazniki) i oznaczenie pot~gowe. :Nalezy 
stosowae nawiasy .okr::},gle. , 

4. Spis literatu~y powinien bye p'odany na koncu artykulu. Numery pozycji 
4. Spi·s literatury powinien bye podany na koncu artykulu. Numery pozycji 

literatury w tekscie zaopatruje si~ w nawiasy kwadratowe. Pozycje literatury po- · 
winny zawierac nazwisko autora (autorow) i pierwsze liter;y imion oraz dokladny 
tytul pracy (w j~zyku oryginalu), a ponadto: 

a) przy wydawnictwach zwartych (ksi::},zki) - miejsce i rok wydania oraz 
wydawc~; 

b) przy artykulach z czasopis~: nazw~ czasopisma, numer tomu, rok 
wydania i numer bie.Z::},cy. 

Pozycje literatury radzieckiej nalei.y pisae alfabetem oryginalnym, czyli tzw. 
gra.Zdank::j,. 

/ 



Instructions to Authors 

"Control and Cybernetics" publishes original papers which have not been 
published and will not be simultaneously submitted elsewhere. The preferred 
language of tlie papers is English, 

No paper should exceed in the length 20 typewritten pages (210-297 mm) 
of the text, double spaced and with 50 mm margin on the left-hand side. 
Manuscripts should be submitted in duplicate, typed only on one side of the sheet 
of paper. 

The plan and form of the 'submitted manuscripts is as follows: 
1. The heading should include the title, "full names and surnames of the 

authors in the alphabetic order, as well as the names ·.and addrdses of the 
nstitutions they represent. The heading should be followed by a concise 
ummaj (of approximately 15 typewritten lines). · 

2 . .t<Igures, photographs, tables, diagrams etc. should be enclosed to the 
manuscript. The texts related should be typed on a separate page. 

3. All elements of mathematical formulae ·should be typewritten whenever 
possible. A special attention is to be paid towards differentiating between capital 
and smaller letters. All the Greek letters appearing in the text should be defined. 

' ' Indices and exponents should be written with special care. Round brackets should 
not be replaced by the 'inclined fraction line. 

In general, elements easily confused are to be identified by the appropriate 
previously discussed measures or by a circled word or words explaining the element. 

4. References should be listed in alphabetical order on a separate sheet. For 
journals the following information should appear: names (including initials or 
first names) of all authors, full title of paper, and journal name, volume, issue, 
pages, year of publication. Books cited should list author(s), full title, edition, 
place of publication, publisher, and year. Examples are: 

Lukes D. Optimal regulation of nonlinear dynamical systems. SIAM J. Control? 
(1969) 1, 75-100. 

Athans M., Falb P. ·Optimal Control. New York, Me Graw-Hilll966. 
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