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In this paper we consider discounted, unbounded rewards, denumerable state Markov
decision processes which depend on unknown parameters. Following the approach of Her-
ndndez-Lerma and Marcus [6], we combine the nonstationary value iteration scheme of
Federgruen and Schweitzer [4] with a finite-state procedure introduced in [1], to obtain
a finite-state iterative method, which in the presence of a strongly consistent method
of estimation, is used to find the optimal total expected discounted reward corresponding
to the true parameter value. Also, an adaptive policy with asymptotic optimality properties
is proposed.

1. Introduction and summary

In this paper we deal with denumerable state, discounted, unbounded
rewards Markov decision processes which depend on unknown parameters.
We consider the problems of determining: (i) a finite-state iterative method
to find the optimal total expected discounted reward corresponding to the
true parameter value, and (ii) adaptive policies with asymptotic optimality
properties. We follow the approach in [6] where these problems were solved
for the finite-state, bounded rewards case.

Let (S, A, p, r, B) be the usual discounted Markov decision process (MDP)
where § is the state space, assumed to be an arbitrary non-empty denu-
merable set endowed with the discrete topology, A is the action (or control)
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set, assumed to be a metric space endowed with the Borel o-field; for x€S§,
A (x) < A is the measurable (non-empty) set of admissible actions at state x.
Now, let K be defined by K:= {(x,a)lacA4 (x),xeS}. r:K—R is the
(measurable) reward function and p is the transition law; that is, if the
present state is x and an action a€ A4 (x) is selected, an 1mmcdlate (expected)
reward r(x,a) is obtained and the next state will be y with’ probablhty
p(x,y,a). B is the discount factor and we suppose that 0 < ff < 1.

Let ® be a metric space and suppose that, for each 6e®, we have
a MDP (S, 4, p(6),r(0), ) with transition probabilities p(x, y, a, ) and
rewards r(x, a, ) depending on 6. For n=0,1,2,.., X, and A, denote
(respectively) the state and the action at stage n, while I,=(X,, 44,..
vy X1, Ay—q, X,) stands for the history of the process -or information
vector- up to stage n. I, is a random vector taking values in H,, where
Hy:=S8 and for n>1, H;:=KxH,_,. Let (x,,a,,n=0,1,2,..)eH, be
a given realization of the state and action sequences. In this case, we write
Iy =(Xg, gy ey Xn—1, y—1, X,) for the corresponding history up to time n

A (randomized) policy D= {D,|n=0,1,2,..} is a sequence such that,
for each n. D, is a function defined on H, and taking values in the set
of probability measures defined on the Borel o-field of A4, in such a way
that, for each i,eH,, D, (-|i,) is concentrated on A (x,). A policy D is said
to be deterministic if, for every n and i,eH,, D,(-|i,) is concentrated on
a single point of A(x,). The class of all deterministic policies will be
denoted by %. A policy De ¥ is said to be a Markov— or memoryless— policy
if, for every n and i,eH,, D,(-|i,) depends only on the present state x,:
that is, for a Markov policy there exists a sequence {f,:S — A|f, (x)e A (x),
xeS, n=0,1,2,..} such that D, (-]i,) is concentrated on f, (x,) and, if we
have that f, =/, =f;, =.., the Markov policy is said to be a stationary
policy. It is clear that the class of stationary policies can be naturally
identified with the cartesian product [[ 4 (x).

xe8

For every policy D, xeS and fe@, let
v (D, 0) (x Z B*E2?r (X,, Ay, ) (L1)

be the total expected discounted reward when policy D is employed, x is
the initial state and 6 is the parameter value, and let

v*(0) (x):= sgp v (D, 0) (x) ' (1.2)

be the optimal expected discounted reward when 0 is the parameter value
and the initial state is x. (The supremum in (1.2) is taken over all policies).
If »(-,-,0) is bounded, there is no difficulty to see that the series defining
v (D, 0) is well defined and, in this case, v (D, 0) is uniformly bounded on S
and so is v*(0); moreover, v* () (x) is the supremum of » (D, 0) (x) over all
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stationary policies and v*(0) can be obtained by the well known method
of succesive approximations ([11], chapter 6). On the other hand, if r (-,-, 6)
is not bounded, conditions must be imposed in order to have v (D, 8)(x)
well defined. Several sets of sufficient conditions have been proposed; see,
for instance, [17, [5], [8] and [14]. The conditions in [1] and some results
obtained there are briefly sketched in section 2.

DeriniTioN 1.1. (1) A policy D is discount optimal (when 6 is the parameter
value) if

v(D,0)(x)=v*(0)(x) for every xe8§.

(ii) A policy D is asymptotically discount optimal in the sense of Schil
(ADOS) (when 6 is the parameter value) if, for each xe§,

vy (D, 0) (x)—E20p*(0) (Xy)—=0 as N— oo,

where, for xeS, N=0,1,2, ..,
oy (D,0) (x):= Y. BN E2?r (X,, A,, 0)
n=N

is the total expected reward from stage N onwards discounted from stage N.
Now, we can pose our problems as follows: Given that the true parameter

value, say 0*¢ @, is fixed but unknown, determine

(A) a finite-state iterative scheme to find v*(0*), and

(B) adaptive policies with asymptotic optimality properties, for instance,
ADOS.

Our approach parallels the work of Herndndez-Lerma and Marcus in [6],
where these problems were solved for the bounded rewards, finite state case.
Their solution is a straightforward application of the Non-stationary Value
Iteration (NVI) scheme of Federgruen and Schweitzer [4]. which is a variant

of the method of succesive approximations ([11], chapter 6). In the same’

way, under Assumptions 4.1-4.3, we obtain a solution to problems (A4) and
(B) as a by-product of the Truncated Non-stationary Value Iteration (TNVI)
scheme introduced in section 3.

The TNVI scheme is a combination of the finite-state approximation
method proposed in [1] and the NVI scheme. In order to have that the
TNVI scheme is useful to solve our problems, we need a sequence converging
to the true parameter value. So, we suppose that, as the system is in
progress, the controller can use the registered history to obtain such a sequence
(cf. Assumption 4.1). Finally, under conditions regarding continuous depen-
dence on @ of r(-,-,0) and p(-,-,-,6) (cf. Assumptions 4.2 and 4.3), we
obtain a solution to our problems using the results on the TNVI scheme
obtained in section 3.

[ col id Lyb, 2
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2. Preliminaries

Because we deal with discounted MDP’s with unbounded rewards, we need
to impose conditions to warrant that v (D, 0)(x) is well defined. In this
section we sketch briefly the conditions proposed in [1] and some results
obtained there which will be useful later.

DeriniTioN 2.1. Let 0€@®.
(i) For each nonnegative extended function u:S— R¥, define Hyu:S —»R*
as follows:

Hou(x):= sup ) p(x,y,a,0)u(y), xe8,
)

as A(x

where the summation is over all yeS; see Remark 2.1 below. We write
H)u:=u and for n=1,2, ...
Hju:= Hy (Hy ' u)
(ii) Ry:S—R™ is defined by
Ry (x):= aggg}lr (x,a,0), xeSs.

(ili) Z:S > R™ is defined as follows:

Ry (x):= ni::o B"H"Ry(x),  xE€S.

RemArRk 2.1. A convention about the symbol ) will be used consistently
throughout the following: For (x,a)eK, 0e® and V:S—R

Zp(xay’ase) V(y):= Z p(xs.vaaaﬂ) Vy)

ye§

whenever the right-f‘land side is well defined, that is, whenever the series

in the right-hand side is absolutely convergent or V has constant sign.
The condition imposed in [1] to have that v (D, 6)(x) is well defined

is that #,(x) < oo for every xeS. T

TueoreM 2.1. Let 0€® and suppose that % (x) < co for every x€S. Then,
for every policy D and xe€S8,
(i) E2|r (X,. A, 0)] < Hy Ry (x) for n=0,1,2, ..
(i) |v (D, 0) (x)| < % (x), where v (D, 0)(x) is defined by (1.1) and the series
appearing there is absolutely convergent.
(ii1) [v*(0) (x)| < Hy (x), where v* (0) (x) is defined by (1.2). Define % as follows:

Soi={u:S—>R| |u(x)| < % (x), xeS}.
(iv) For every uc% and (x,a)eK,
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(@) Y p(x,y,a,0 u(y) converges absolutely

(b) Ir (x,a,0)+B Y p(x,y,a,0) u(y) <R (x)
Define Ty: % — % as follows: for every ue % and xeS8S,

Tou(x):= s [r(x,a,0)+B Y p(x,y,a,0) u(y] (2.1)

(v) Ty v*(0) = v* (0). (2.2)

Moreover, v*(0) is the unique fixed point of T; and it can be obtained
by succesive approximations, that is, for every ue.% and every xeS,

Td u (x)— v*(0) (x) as n— o0,

In short, Theorem 2.1 asserts that %, (x) < oc for every xeS, implies
that v (D, 0) is well defined, v*(0) is the unique fixed point of the operator
Ty defined by (2.1), and v*(0) can be obtained by succesive approximations.
Equation (2.2) is known as the optimality equation. A proof of this theorem
can be found in [1], section 2; indeed, part (i)Hiii) are Theorem 2.1,
(iv) is part (b) in Corollary 2.1 and (v) is Theorem 2.2 in [1]. Observe
that T, is monotone, that is, u,ve % and u <v together imply Thu < T, v.
Finally, although this will be not used later, we note that under the
assumption in Theorem 2.1, the supremum in the definition of v*(6) can be
taken only over all stationary policies (cf. [1], Theorem 2.3).

We are going to deal with several operators T, simultaneously. To handle
this situation we introduce the following definition:

Derinition 2.2, Let M be a non-empty subset of @.
(i) Ry:S—R™ is defined by

Ryt (x):=sup Ry (x), xeSs.
feM
(i) For each u:S—>R*, Hyu:S—>R* is defined
Hyp u(x):=sup Hg u (x), xeSs.
feM
HYu:=u and for n=1,2, .

= Hy (Hiy ' u)
(iii) #y:S—R" is defined by

2

Ry (x):= ), p"H Ry (x), xeSs.
n=g
(iv) %4y is defined as follows:
L= {u:S > R| u(x)] < Ay (x), xeS}.

We need the following properties of Hy,:
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Lemma 2.1. Let u,w:S—R*, M a non-empty subset of ©, and ¢ > 0.
Then. the following hold:
(i) Hps(cu) = cHy (1) (Homogeneity)
(ii) Hyu < Hyw if u <w (Monotonicity).
(i) If Hy u(x) < oo for every x€S and v:S— R satisfies that |v (x) < u(x)
for every xeS8, then
a) For every 0e M and (x,a)e K
E pix,y,a,0)viy) is absolutely convergent.
by For every xe8§

sup |Y p(x,y,a,0) v ()| < Hyux).

as Aix),0e M

(iv) Let u,:S—>R*, n=0,1,2,... Then, for k=0,1,2,..,
[+ 2]

HY (S w)< Y Hiu, (Subadditivity)
n=0 n=p

(v) For k=0,1,2, ..,
KHY (Y "Hiyu)< ), "Hyu.
n=0 n=p
For the case in which M is a singleton, Lemma 2.1 is proposition 2.1
in [1]. The proof given there still applies in our present case if every time

sup appears, we substitute it by  sup . It is clear that %, (x) < Zy (x)
ae Alx) ' ae Alx).0e M

for every xe§ and 8eM and then, if %, (x) is always finite, the conclusions
of Theorem 2.1 are valid for every @€ M and, in this case, the next theorem
shows that T, can be extended to %, and v*(f) is still the unique fixed
point of Tj.

THEOREM 2.2. Suppose that M is a non-empty subset of @ and Ry (x) < oo
Jor every xeS8. Then, for each e M,

(i) Using (2.1), Tyu can be defined for every ue ¥, and, in this case,
Toue Py for ue Ly
(i) For every xe€S,
B HY; Ry (x) >0 as k— o0.

(iii) v*(0) is the unique fixed point of Ty in L. Moreover, v*(f) can be
obtained by successive approximations, that is, for every ue %y and xe8,
Ty u (x) — v*(0) (x) as n— 0.
(iv) Ty is monotone on %y; that is, u,ve %y and u < v imply
Thu<sTv.

Proof. (i) By part (v) of Lemma 2.1 with ¢=f, u=R, and k=1, we
have that, for every xeS,
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BH yr Pag (x) < Ry (X)— Ry (x) < 00

Then, by part (iii) of the same Lemma, the sum in the right hand side
of (2.1) is well defined as soon as we have |u(x)| < %y (x) for every xeS,
that is, as soon as ue %, and, in this situation, we obtain the following
inequalities where x€S and sup is taken over ae A (x):
|sup [ (x, a, 6)+BZp (x, y, a, O) u (y)]| < sup |r (x, a, O)| +

+Bsup Zp(x,y,a,0) ju@y) <

< Ry (x)+ BH,y [u| (x) <

< Ry (x)+ BHy %y (x) <

< Ry (X)+ 2y (x)— Ry (X) = Ry ().
So, Tyu(x) can be defined by (2.1) for ue %, and in this case, we have .
that Ty ue %.

(i) By part (v) of Lemma 2.1 with ¢=pf and u= Ry, we have that, for
every xeS and k=0,1,2, .., )

B* Hy 9By (x) < i B"H Ry (%)

Now, the result follows from the convergence of the series defining %y, (x).
(iii) We will use the following fact:

If w and z are real valued functions bounded from above on a set A,
then,

ae ae asA

jsup w (@)—sup z (@) < sup w (a)—z (@) 2.3)
A A

Let u,ve %, and xeS§. Using (2.3) we obtain the following inequalities,
where sup is taken over ae 4 (x):

Ty u (x)— Ty v (x)] < sup |BZp (x, ¥, a,0) (u(y)—v () <
< PsupZp(x,y,a,0)|uy)—v )= pHlu—v| (x).
Then, because x€S is arbitrary, we have
[Ty u—Tyv| < BHg lu—1vl, u, ve %y, 24

and an introduction argument gives
[T u—T3'v| < " Hg lu—v) for n=1,2,..
Now, using the fact that |u—v| <24, we obtain
|Tg' u—Tg'| < 28" Hy Ay < 2B" Hyy Ry for n= L2
and then, by part (i) of this Theorem,
Jirgl?}"u(x)—i’},"v(xH:O, xeS§. (2.5)



R. CAVAZOS-CADENA
38

. Take v = v*(0). Because Ty v*(0) = v*(0), n=1,2, .., we get from (2.5) that,
"ILIE T u (x) = v*(0) (x), ue %y, xeSs. (2.6)

Then, v*(#) can be obtained by succesive approximations and is the unique
fixed point of Ty in %, Indeed, if ue %, and Tyu=u, we have that
Tou=u for n=1,2,.., in which case (2.6) implies that u = v*(d). This
completes the proof, since (iv) is clear. [ |

We need to estimate the difference between two operators T, and T,
for parameter values 0,7e®. To handle this situation, we introduce the
following definition.

DeriniTION 2.3. Let M be a non-empty subset of @ and suppose that
PRy (x) < oo for every xeS8.
(i) For xe8§, 7,0eM,
E(x,M,t,0):= sup [Ir(x,a,1)—r(x,a,0)+
as A(x) )
+BZ Ip (x, y,a, )= p (x, y, a, 0) 2 (v)],

where the summation is over yeS.
(ii)) For F< S, 7,0eM,

E(F,M,t,0):=sup E (x, M, 1, 0).

xeF

THEOREM 2.3. Let M be a non-empty subset of @ and suppose that Ry (x) < ©
for every xeS8. Then, for every ueouy, t1.0eM and xe8§. '
(1) [Tu(x)-Tou(x)| < E(x, M, 1, 0).
@) sup |, u(x)—Tyu (x)| <E(F,M,z,0).

xeF
Proof. Part (ii) follows immediately from (i). To prbve (i), we use (2.3)
to obtain the following inequalities, where the summation is over yeS and
sup is taken over aeA (x):

T, u (x)— Ty u (x)| < sup |r (x, a, ©)—r (x, a, )+ BZ (p (x, y, a, 7)—
—p(x,y,a,0) u®)| <sup [Ir (x,a,1)~r (x, a, 0)| +
+BZ p(x,y,a,t)—p(x,y,a,0) By (y}] =E(x,M,1,8). i

3. The truncated non-stationary value iteration scheme

Throughout this section Fy, Fy, F,, ..., is a (fixed) sequence of subsets
of S. We suppose that
(i) F, = Foeys =012

(ii) nDo B8
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DerFiNiTION 3.1, (The Truncated Non-stationary Value Iteration scheme).
Let {6,/Jn=0,1,2,..} be a convergent sequence in ©. Define M by

M:=1{0,0,,6,,0,,..} where 6= 1lim®,

n—+oo

Suppose that #, (x) < oo for every xeS. Finally, let ue ¥,. The sequence
{v:§—>Rln=—1,0,1,2,..} is defined as follows: :

v_y:=u, and for n=0,

Uy (x):= Sup [r(x!a!ﬂn)+ﬁzp (x! .v!a!or:) Un—l{y)] lf XEFm

as A(x)
U, (x):=u (x) if xé¢F,

REMARK 3.1. The iterative scheme in Definition 3.1 will be called the TNVI
scheme. In the case when M is a singleton, the TNVI scheme is nothing
but White’s extended scheme introduced in [1]. On the other hand, if S
is a finite set, u=0 and F,= S for every n, we obtain the NVI scheme
of Federgruen and Schweitzer introduced in [4], which for the case of bounded
rewards was used by Hernandez-Lerma and Marcus in [6] to solve problems
(4) and (B) posed in section 1. Now, using the fact that ue %, a simple
induction argument gives that v,e ¥4, for n=0,1,2, .. and then, the sums
appearing in Definition 3.1 are well defined. The function u will be referred
to as the seed of the scheme and will always belong to %,. On the other
hand, from a computational viewpoint, it seems desirable to take u =0 but,
although this will be done in section 4, we prefer to maintain u arbitrary
at this moment and study the relevance of u in relation to the convergence
of {v,} to v*(f). Finally, note that once we have selected the sets F,
n=20,1,2,.. and the seed u that are going to be used in the TNVI scheme,
v, (x) depends only on (8, ..., 0,). To emphasize this dependence, we some-
times write v, (03) (x) instead of v, (x) where 65:= (0,, ..., 8,) (cf. section 4).
However, in this section we consider a fixed convergent sequence {0,}
and then we simply write v, (x).

The idea in the TNVI scheme is to produce approximations to v*(6).
Our first result concerning the limit points of {v,} is the following.

THEOREM 3.1. Suppose that
E{(x,M,0,,0—-0 as n— o for every x€eSs. (3.1)

Then, for every seed u, and every xe€S§,
lim inf v, (x) = v*(0) (x). (3.2)

Proof. Let I (x):= lim inf v, (x), x€S. We note that |v, (x)| < %y (x) for every
xeS, implies that |l (x)] < %y (x) for every xeS and then, le.%,;. Now,
let xS and select m such that xeF,. Then, for n =>m and aeA (x),
we have, from the definition of »,, that
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Uy (JC) 27 (xs a, Bn)‘i‘ﬁZP (X, y,a, 8ivl-l} Up—1 (y) =
=[r(x,a,0)—r(x,a,0)+pZ (p(x,y, a,0,)—
—P (x-: y'! a! 9)) Uu—l (}’)]'H’(x, ﬂ, 6)+ﬂ2p (xs ya ﬂ, B) vn—l (Jv’)

Using the fact that |v,_;| < ), and the definition of E (x, M, 8,, 0), we seé"
that. for n = m.

Un (x) = —E (x, M, 0,,0)+r (x,a, 0)+BZp(x, y,a, 0) v,—1 ().

Taking liminf as n— oo in both sides of the above inequality we have,
using (3.1) that,

1(x) =7 (x,a, 0)+pliminf Zp (x; y, a, 0) v,_4 (). (3.3)

Next, we note that Zp(x,y, a, 0) Ay (y) < Hg Zy (X) < Hyy By (x) < 00 and
[v,— 1] < Zy. These facts allow us to use Fatou’s Lemma, in which case we
conclude that

liminf Zp (x, y,a,0) v,—, (y) = Zp(x, y,a,)1(y),
and this inequality, in combination with (3.3), gives
1(x)=>r(x,a,0)+Zp(x,y,a,0)1(y).
Now, taking the supremum over ac A4 (x), we obtain
1(x) = Ty 1 (x).

Using the arbitraryness of x and the monotonicity property of T, it is
easily seen that

iI=2T71 n=0,1,2,..
and the result follows from Theorem 2.2 (iii). |

Remark 3.2. In our approach, a continuity requirement like (3.1) seems
unavoidable if we are going to have v, (x)— v*(#) (x) for every xeS. When
(3.1) as well as some restrictions on the tails of the transition probabilities
hold, we can show that, for every seed u, {v,} converges pointwise to v*(0)
(cf. Theorem 3.3). On the other hand, suppose that M is a singleton.
In this case, it was shown in [1] that if the seed u satisfies u < T u,
then {v,} converges pointwise to v*(0) and then it might be thought that
the same occurs if (3.1) holds and the seed u is appropriately chosen.
The example below shows that is not the case.

ExampLE 3.1. Suppose the following:
(i) @ =[0,1]
(i) S=N:={1,2,..}
(iii) A (x)=1[0,1], xeN
(iv) r(x,a,0)= 0", xeN, a0, 1]
(V) p(x,y,a,0)=p(x,y,a) satisfies that,
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given xeN and n=0, 1, 2, ..., there exists a*€ A (x) such that

Z p (x, Vs a*)= 1 (34)

nf2<sysn+l

Now, take F,={l,.,n+1}, n=0,1,2,.. and let u be an arbitrary seed
(of course, in this case u is bounded).
Finally, let {0,} be a sequence in (0, 1] tending to 0.

In this situation we are going to show that, if {6,} goes to 0 slowly
enough, we have strict inequality in (3.2) for every seed u. A simple induction
argument, using the fact that r > 0 and condition (v) with n = 0, shows that

v, ()= p""tu(l) for n=0,1,2,.. and xeF,

Then, for n=0,1,2,.. and xeF,,,

Ons1 (X) =7 (x, @, 0,11)+BZp (x, y, a*) v, (y) = 0,5+ B" 2 u (1)
where a* satisfies (3.4), and then, for n=1,2,.. and xeF, .,

Ons1 (%) = BEp (x, p, @*) (0,7 +B" 1 u (1) = B (0" + B 2u(1).
where a* is like above. We conclude that

lim inf v, (x) > B lim inf (8,)*™, x€eS.
Thus, if 0,— 0 slowly enough, we have:
lim inf v, (x) > 0.

(For instance, if 6,n*— C #0 for some x>0, we have lim inf v, (x) = f).
Now, since r (-,-,0) = 0, we have v*(0) = 0 and therefore, the strict inequality
holds in (3.2), whatever the seed u is. Observe that in this example, we have,
for every xeS:

E(x,M,0,0)=r(x,0,)=0*->0 as n-oo, but
E(S,M,0,00=1 for n=0,1,2,..

The next theorem shows that a strengthened version of (3.1) and an
appropriate selection of the seed u, are enough to have pointwise convergence
of {v,} to v*(6).

THEOREM 3.2. Suppose that
E(S,M.0,,0)-0 as n— oo (3.6)

and
u < v*(0). (3.7)

Then, for every xeS§,

v, (x) = v*(0) (x) as n— 00.

Control and Cyb
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Proof Let ¢>0 and let n be a positive integer. Let xeF, and select
ac A (x) such that

vn (x) <7 (X, 4, 0,)+B2p (x,y,a,0,) v,y (y)+e&.
Now, by the optimality equation,
v*(x) = r(x,a, 0)+BZp(x, y,a, 0) v*(y),
where we write v* instead of v*(6). Then,
v, (x)—v*(x) < [r (x, a, 0,)—r (x,a, )+ pZ (p (x, y, a, 0,)—
—p(x,9,a,0) v,y O)]+BZp (x, y, a,0) (0—; ()=v* () +e. (38

In the right-hand side of (3.8), the term in brackets is less than or equal
to E(x, M, 40,,0) (because |v,—| < %,y). On the other hand,

Yp(x,y,a,0) (v W)—v*))= Y p(x,y.a,0)x

yeFp_1

X(Vaey )=0*O)+ Y, p(x,¥,6,0) ()—v*()

yéFn—1

Using (3.7) we see that the second term in ‘the right-hand side of the above
equality is < 0. Then, from (3.8) we obtain

O (X)=1*(x) SE (x, M, 0,, 0+ Y. p(x,y,a,0,)x
yeFn—y
X(vy-1 )—v*()+e  (39)

Now, for k=0,1,2, .., define d; :S— R as follows:
df (x):=v, (x)—v*(x) i oy)=>v*(x) and xeF,
df (x):=0 if v (x) < v*(x) or x¢F,.
It is clear that
Y p(xp,a,0) (tu-r =0* ) ST p(x,p, 4,0 d,—1 () < Hpdy— (x).

veFy—1

From this and (3.9) we conclude the following.

df (x) <E(x,M,0,,0)+BHyd;_ (x)+e&
and, from the arbitraryness of ¢ > 0, we obtain

dy (x)<E(x,M,80,,0+pHyd,_, (x).
Finally, because x is an arbitrary element of F,, we get, since E (F,,-,-,-) <
S E(8yrs 5 )i

dy <E(S,M,0,,0+pHyd, ;.

Let 6 >0 and select meN such that n>m implies E(S, M, 8,,0) <.
Then, for n = m we have

df <6+BH,d;_,,
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and an induction argument gives that, for k=0,1,2,..
mik SO (1=B)/(A=B)+ B Hg T dpyy (3.10)
Now, observe that d,_; < 2%, and then, for every xeS§,
B*H*d:_ , (x)—=0 as k— o0.

This result and (3.10) imply, since d > 0 is arbitrary, that, for x€§,

df (x)=»0 as n—o00. (3.11)
Let xe§ and observe that
v, (X) = 0¥ (x)+ v, (x)—v*(x) < v*(x)+d, (x), and then,

lim sup v, (x) < v*(x)+1im sup d;7 (x) = v*(x), xeS. (3.12)

where we have used (3.11) in the last equality. Now, (3.12) and Theorem 3.1
show that, for every xeS§
v, (x) > v*(0) (x) as n— o0. @

RemARrk 3.3. In the case when M is a singleton, we have already mentioned
that the TNVI scheme becomes White’s extended scheme ([1]). In this
circumstance, if the seed satisfies u < v*(f) (and %, (x) < co for xe8§), we
obtain, from Theorem 3.2, that {v,} converges pointwise to v*(). This is
a slight improvement with respect to Corollary 3.1 in [1] where it was
proved that, if the seed u satisfies u < Ty u, then, {v,} converges pointwise
to v*(0).

Concerning the estimation of |v, (x)—v*(0)(x), our main result is
Lemma 3.1 below. Before establishing it, we introduce some notation.

DeriniTioNs and ComMenTts 3.2. Let the sequence {0,n=0,1,2,..}, €0,
the set M and the sequence {v,Jn= —1,0,1,..} be as in Definition 3.1.
For xe§ and £¢>0 (¢ can be o), we define

Cx,e):={FcS|Y p(x,y,a,0) Ry (y) <& for every acA(x)).

yéF
Observe that, for every FeC(x,¢) and n=20,1, 2, ...,

Y p(x,y,a,0)|v,- (¥)—v*(6) (y)] <2 for every acA(x). (3.12)

V¢F

This is so, because both v,_; and v*(0) belong to %,. Also, we always
have SeC (x,&). Now, let f(-,&) be a choice function, that is,

f(-,8):8>U[C(x,8)|xeS]
satisfies
f(x,e)eC(x,¢) for every xX€eS. (3.13)
For n=0,1,2,.., e>0 and xe8, we define
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fox,e):={x}, andfor n>x1

£ x,0:=ULf(yDlyef" " (x,8)].
We write v* instead of v*(f) and from now on, d, stands for |v,—v*(6),
that is,

v¥:=v*(0)
d,:= v,—v* ()| = |v,—v¥|.
For each V:S—R, |V| stands for the supremum norm of V;
[V]|:= sup[V (x)],
xe8§

and, for Fc S, V|F:S—R is defined by
4% V(x) xeF
V|F (x):= {0 xéF.

We write |V|, instead of |V|F,|.

LemmA 3.1. Let ¢ >0, xeS8, and let k be a positive integer. If
fs(x98)CFn-ss S=0,1,..‘,k-—1, Ihen,

kel

M) d()< ) FE(f(x,8), M, 0y, 0)+ B H (dy -4l f*(x, &) (x)+
s=0

+2eB (1-B4/(1—-P)
k=1

(i) d,(x)< ) PE(f°(x,8), M, 0, 0)+2p* H (Bylf* (x, &)) (x)+
=0

+2eB/(1-B).

Proof. Observing that d,_, < 2%, (ii) follows immediately from (i) We
prove (i) by induction.
Let xeF,. Then,

dy (x) = v, (x)—v*(x)] = |Tp, v,— (x)— Ty v*(x)| <
< |Tg, vy g (X)— Ty U1 () +1Tp V-1 (x)— Ty v* (x)].

In the right-hand side of the last inequality, the first term is bounded '
above by E(x, M, 0,,0) (Theorem 2.3 (i)) and the second one is less than
or equal to BHyd, - (x) (see (2.4)). Then,

d,(x) <E(x,M,0,,0+pH,d,_,(x) for xeF,. (3.14)

Now, observe that
Hgd, ; (x)= SUPZ p(x,y,a,0)d,_;(y) <

<sup Y p(x,y,a,0)d,_ (W+sup Y p(x,y,a,0)d,— (),
yefix.e) v fix.e)

where sup is taken over ae A (x).
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In the last inequality, the first term in the right-hand side is Hy(d,- | f (x, €))
and the second one is <2¢ (see (3.12) and (3.13)). Then, (3.14) implies,
for xeF,,
dy (x) < E (x, M, 0,, 0)+ BHy (d,- 1| f (x, &)) (x)+2¢B.

This proves (i) for k= 1.

Suppose that (i) holds for k =r and that

ffx,e)cF,—,, s=0,1,..,r

Now, take yef"(x, ¢)  F,_,. Using the case k = 1 that we have just proved,
we get

Ay (D) SE(y, M, 0,,, 0)+BHo (dy—, -1l f (v, 2)) () +26B <

<E(f'(x,e), M, 0,_,,0)+BH, (d,—,—1|f""" (x, ) (y)+2¢P.

Observing that yef"(x, ¢) is arbitrary, we conclude that

dn-r'ff (X, E] < E (fr(x’ 5)! Ms Gn‘—n 9)+ﬁHﬂ (dn—r- llfllh'—1 (_xa 8))+2£ﬁ .

From this inequality and inequality (i) with k =r, the corresponding ine-
quality with k =r+1 follows easily. ]
Now, we study some consequences of Lemma 3.1.

THEOREM 3.3. Suppose that

(i) E(x,M,0,,0)>0 as n— oo for every xe€S.

(i) Given x€S and ¢ >0, there exists a finite set F such that for every
ae A (x),

Z p(x,y,a,0) %y (y) <e.

yéF
Then, for every x€S and every seed u,
d,(x)—0 as n— oo, that is,
{v,} converges pointwise to v*.
Proof Assumption (ii) asserts that C(x,&) contains finite sets for every
xeS and &> 0. Then, we can assume that f(x,¢) is always a finite set
and then, so is f*(x,¢), s=0,1,2,... Let 6> 0 and take ¢ = 6 (1— B)/6p.
Now, let xeS. Select k > 1 such that f* Hy 2% (x) < 6/6 (Theorem 2.2 (ii)).
Finally, select m such that
k—1
(@) J f*(x,e) = Fy-g+1 and,
=0
(b) for n=m
E(fs{xs E)s M, Sn—-sa 8) <9 (l_ﬁ)/sa s=0,1, .., k—1.

The selection of m is possible by assumption (i) and because f*(x,é¢) is
always a finite set. Then, for n > m, Lemma 3.1 (ii) implies that
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k=1
d,(x)< Y Bo(1—P)3+8/3+6/3 <. e
. 8=0

The following Theorem will play an important role in the study of the
adaptive policies constructed in section 4. To establish it, we need a sub-
sequent definition.

DeriniTioN 3.3, Let B a non-empty subset of @. For each #e® and
r=0,1,2, ., we define ¢ (r, B, 0) as follows:

e(r,B,0):= sup Y p(x,y,a,0) %Ay

(x,a)eK y¢F,

THeEOREM 3.4. Let n,k,r be nonnegative integers, k =1 and let ue %y be
an arbitrary seed. Then

(i) xeF, and n =r+k—1 together imply that,
k-1
@ dy(x)< Y, E(F,, M,0,_,0) F+E(x, M, 0,,0)+
s=1

+ 2B H (Ay|F,) (x)+2¢ (r, M, 0) B/(1—B).
k—1
©®) [dala < T E(S, M, 00-s,0) f+2 ||B* H (2| F)||+

+2¢(r, M, 0) B/(1—PB).
(i) If
(@) e(r,M,0)—>0 as r— oo,
(b) E(S,M,0,,0)—-0 as n— oo, and
(c) %y is bounded on every set F,,

Then
[dalln+ 1 Hp dyll = O as n— oo.

Proof. (i) Let r be a nonnegative integer and take & =¢(r, M, 0). Then,
it follows that f (x, ¢) = F, for xe S, determines a choice function (cf. Defini-
tions and Comments 3.2) and, for s =1, 2, .., we always have f*(x, ¢) = F..
Then, (a) follows from Lemma 3.1 (ii) and (b) follows immediately from (a)
by taking sup over xeF,.

(ii) Let 6 > 0. Select r such that

2e(r,M,0) B/(1-p)< /3  (assumption (a))
Now, select k = 1 such that
26" | Hy (| F)I| < 2B ||, < /3  (assumption (c)).

Finally, let m be a positive integer such that, for n >m
k=1

> E(S,M,0,_,0)p°<d/3 (assumption (b)).
=0 i

5
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Then, for n> max [m, k+r—1], inequality (b) in part (i) implies |d,|, <
and we conclude that

dalla =0 as n—o0 (3.15)

To finish the proof, observe that
”HG drx” “'<- ”C‘IMH|v|_+":‘-,'E (ns M, G]s (316)
and the result follows from (3.15) and assumption (a). ]

4. Solution to problems (A) and (B)

In this section we solve problems (A) and (B) posed in section 1. The
solution we give is a straightforward application of the results on the TNVI
scheme introduced in section 3. Suppose that € is the true parameter value
and that the controller wants to find v*(0). The difficulty is that he does
not have a priori knowledge about 6. However the TNVI scheme allows
him to find v*(0) (x), xS, as soon as he has a sequence {f,} converging
to 0 and some restrictions are satisfied by the model. To obtain such a
sequence, the controller must observe the system while it is in progress and
then he can use the registered history to obtain the approximating sequence.
Specifically, we suppose that the controller has at his disposal, a strongly
consistent sequence of estimators of 6.

AssumptioN 4.1. For any 6€®, any xeS and any policy D, there exists
a sequence {0,:H,— S} of measurable functions, such that

6,—» 6 PBP® _—almost surely as n— oo.

The sequence {f,} is said to be a sequence of strongly consistent (SC)
estimators of 0. (cf. [3], [7], [9] and [13]).

RemARK 4.1. Throughout the following, {,} stands for a sequence of SC
estimators.

Now, the controller can decide to employ an arbitrary policy D and,
at the stage n, once he has observed i, (the information vector up to
time n), he can evaluate 0,:=0,(i,) and then obtain v, in the TNVI
scheme. Because of Assumption 4.1, the controller can be sure that the
sequence {0,} he is obtaining is going toward the true parameter value.
Since we are interested in finite-state methods, we suppose from now on
that the TNVI scheme has been defined in such a way that
(i) The seed u is identically zero
(i1) F, is a finite set for n=0,1, 2, ...

It is time to introduce some continuity requirements on the structure
of the decision model.
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AssumpTiON 4.2. (i) @ and A are metric spaces, 4 (x) is compact for every
x€eS. |-,-| stands for the metric on ©.
(i) For each xeS and each yeS, the maps

(a,)—>r(x,a,0 and (a,)—-p(x,y,a,b)

are continuous on A (x)x .
As an immediate consequence, we obtain the following result.

Lemma 4.1. Suppose that assumption 4.2 hold. Then,
(1) For each 0e®, xe8, ye$S
(@) sup |r(x,a,1)—r(x,a,0)—-0 as =0

asA(x)

(b) sup |p(x,y,a,7)—p(x,y,a,0|-0 as 0.

aec Alx)

(i) For each xeS, n=0,1,2, ..,
v, (08) (x)  is a continuous function of 0%:=(0,,...,0,)e@""!

(cf. Remark 3.1 and remember that the seed u is identically zero and the
sets F, are finite).

Proof. The proof is a straightforward application of the well known
Tube Lemma ([10], Lemma 5.8) which, for our present purpose, can be
stated as follows:

Let X and Y be topological spaces, X compact and, let g: X x Y= R
be a continuous function.

Then, for every yeY and &> 0, there exists a neighborhood V of y,
such that

suplg (x,w)—g (x,y)<e for wel. (4.1)
xeX

Thus, using (2.3) and (4.1) we obtain

[sup g (x, w)—sup gx,y)|<e for weV,
xeX
that is,
sup g (x, ) is continuous 4.2)
xeX
(i) Taking X = A(x), Y= in the Tube Lemma, we obtain (a) and (b)
using (4.1) with g (-,)=r(x,:,-) and g(-,-)=p(x,y,-,-) respectively.
(ii) The proof is by induction.
Using (4.2) with g (-,-)=r(x,-,-) we obtain that, for xeF,,
v (B6) (x) = sup r (x, a, f)
as A{x)
is a continuous function of 0,e'@. Now, suppose that, for each xeF,,
v, (03) (x) is a continuous function of 02€@®"*! and let xeF,,,. Then,
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) (x! a, 90! seey Hn-!— l):= r(x, a, 8n+1}+ﬁzp (x: ¥y, a, 8ﬂ+1) Uy (80! '--.9 Gn) {.v.)

is a continuous function on A (x)x@®"*% (by the induction hypothesis,
Assumption 4.2 and by the finiteness of F,). Then, from (4.2) we have that
Uns1 (0571) (x):= sup g (x,a, 65"
ae A(x)

is a continuous function on 6""2 The result follows, since v, (0%)(x) =0
for x¢F, and n=0,1, 2, ... [
In order to apply the estimations obtained in section 3. we need
Assumption 4.3 below. For te® and 6 >0, let B(d,1) be defined by
B(d,t):= (00| 0.t <6} and

define 4 (6,t) and (8, t) as follows:

A4(0,1):= sup [r(x,a,0)—r(x,a,t) (4.3)
(x,a)e K,0e Bld.t)
£(d,t):= sup  2Zp(x.y,a,0)R,(y) (4.4)

(x,a)e K,0e B(d,1)

Assumption 4.3 below. For te® and é >0, let B(d, ) be defined by
(i) 4(d, 1) < o0,

(i) £ (3, 1t) < oo,

(ii)) R, (x) is finite for every xeS; see Remark 4.2 below.

REmMARK 4.2. From now on, t denotes an element of @ such that Assump-
tion 4.3 is satisfied.

The main consequence of Assumption 4.3 that we are going to use is the
following result.

LEmMMA 4.2, Let © be as in Assumption 4.3. Then, for every 6 >0, Hyg. o (X)
is finite for every xeS. More precisely, for every ¢ > 0,

(i) Auisey < Ro+4 (6, 1)/(1— B)+Be (8, 1)/(1= ).

(ii) There exists a finite positive number ¢ (8) such that Ry, <c(8)(R,+1).

Proof It is clear that (ii) follows immediately from (i) To prove (i)
observe that:

[Hg R, | =& (6, 1) where B:= B (4. 1).
Then, it follows easily that, for n=1, 2, ...,
IHE R <& (9, 1),

and then, we obtain
Y. B"H% R, < R+ e (8, 1)/(1—p). (4.5)
n=0

Finally, observe that Ry < R, +4 (d, t). Using this inequality, the monotoni-
city property of Hy and (4.5), we obtain (i).

Control and Cyb. — 3*
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CoroLLARY 4.1. Let [0,/n=0,1,2,..} be a convergent sequence in @,

ﬂzzgim 0,

and take
M:=10,0,,8,,..}

Then, under Assumption 4.3, Ay (x) < oo for every xeS. Moreover,
Ay < ¢ (8) (R, +1),

where 6 >0 is selected in such a way that M < B(d,1) and ¢ (8) is the
number appearing in Lemma 4.2 (ii).

Proof. The result follows immediately from Lemma 4.3 observing that
Ry < Hg whenever M < B.
Now, Theorems 4.1 and 4.2 below, represent a solution to Problem (A).

THEOREM 4.1. Suppose that

(i) Assumptions 4.1-4.3 hold;

(i) Given ¢ >0 and 6 >0, 0€® and yeS, there exists a nonnegative integer
r such that

sup Y p(y.z,a,t) (R, (2)+1) <e (4.6)
aerﬂyo) z¢F,
tsBld,8)
Then, for every 6€®, yeS and every policy D,
0, (08) () > v*(0) (y)  P2°—almost surely,
where 03:= (0, ..., 0,).

Proof Observe that Lemma 4.1 (i) and the measurability of the 8s,
imply that v,,{é(’,') (y) is measurable for every yeS and n=20,1,2,... Now,
let [0,Jn=0,1,2,..} be an arbitrary sequence in @& converging to 0@
and take M:= [0, 0,,0,,..]. We are going to show that the conditions
in Theorem 3.1 are satisfied.

Let yeS. ¢>0 and 6> 0. Using assumption (i), we see that there
exists a nonnegative integer r such that

sup Y Ip(y,z,a,t)—p (¥, z,a, 0) (R, (z)+1) < 2, 4.7)
z¢F,

where sup is taken over ae A (y) and teB (4, 0).

Now, Lemma 4.1 (i) implies, since F, is a finite set, that we can find
8, <& such that

Sup |:|l (y.‘ d, I)—P‘ (.V’ a, 9)I+ﬁ Z IP (y's z,a, r]""

zeF,

—p(y,z,a,0)| (R (2)+1)] <e, (4.8)
where sup is taken over ae A (y) and teB (5, 0).
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From (4.7), (4.8) and Corollary 4.1, we obtain that
E(y,M,8,,0)0—=0 as n— 00, (4.9)
Finally, it is clear that assumption (ii) implies that condition (ii) in
Theorem 3.3 holds and (4.9) is precisely condition (i). Thus, we conclude
that, for every yeS, '

v (65) (v) = v*(0) (») as n— oo,

Now, the result follows since 0,— 0 P”® — almost surely. [ |
Under additional assumptions a result stronger than that of Theorem 4.1
can be obtained as follows.

THeEOREM 4.2. Suppose that Assumptions 4.1-4.3 hold, and that for each 0e®
the following is satisfied: .
(i) 4(0,0)»0 as -0 (cf (4.3)).

(i) sup ) Ip(x,y,a,t)—p(x,y,a,0)(R;(y)+1)=0 as 5—0.

(x,@)eK ye§
Ehe

(i) sup Y p(x,y,a,0) (R, (y»)+1)—0 as r— 0.

(x,a)e K y¢F,
Then, for every 0e®, xe8 and every policy D,

L (00— (O)] 4 || Ho le, (08— v* 0)] || 50 BP* — almost surely.

Proof. Let {0,Jn=0,1,2,..} be a convergent sequence in & We are going
to show that the conditions in Theorem 3.4 (ii) are satisfied. Let 6 = lim 8,
and M:= {0, 0,, 0, ..}. Then, assumptions (i) and (ii), together with Corol-
lary 4.1 imply that

E(S,M,0,,0)-0 as n— o0, (4.10)

Now, Corollary 4.1 and assumption (iii) imply that

e(r,M,0)—0 as r— o0, (4.11)
and since F, is finite for r=0,1, 2, .., we have that

Ry 1s bounded on the sets F,. 4.12)

From (4.10)+4.12) and Theorem 3.4 (ii) we conclude that, for each 0e@,
10 (08)—v* O+ [|Ho o, (0)—v* O) || -0 as  n—co. (413
The result follows observing that 0, — 0 P”°— almost surely. ic]
In Theorems (4.1) and 4.2, the policy D is an arbitrary policy and can
make no use of the registered history of the process. At the n-th stage,
the observed information vector i, is used to obtain the estimation 0, (i,)
and, as n increases, the controller is gaining knowledge about the true
parameter value (because {6,} is a sequence of SC estimators of 6) and,

it is desirable to use this knowledge to choose actions that, in some sense,
are “nearly optimal”, at least as n— oo.
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DeriniTioN 4.1. (TNVI adaptive policies; cf. [6]). Suppose that Assump-
tions 4.1 and 4.2 hold and let {6,,0,,..} be any sequence in @. Let d be
an arbitrary stationary policy. For each n=0,1,2,.., define a function
Jo(05,:):S > A as follows:

Ja 05, x):= arg max [r (x, a, 0,)+BZp (x, y, a, 6,) v,— 1 (05" ) )] if x€F,,

ae A(x)
Jalp, x):=d (x) if x¢F,,
where v (05) stands for the k-th function produced by the TNVI scheme
in Qeﬁnition 3.1, with v_, =0. Now, define a (deterministic) policy D =
={D,Jn=0,1,2,..} as follows:
Do (L):=1, 05 1), X,), n=0,1,2,..

for I,=(Xo, Ags s Xp—1> Au_1, X,)€H,. The policy D thus constructed is
called a TNVI adaptive policy.

ReEMARK 4.3. We suppose that f, (05, x) can be selected in such a way that
fn (-. x) becomes a measurable mapping from @"*! in A (x) for each xeS§.
This is possible if Assumption 4.2 holds (see, for instance, [12], Theorem 12. 1).
Observe that Theorems 4.1 and 4.2 hold when D is substituted by D.
Finally, note that D depends on what stationary policy d is employed to
define D (I,) if X,¢F, However, we do not indicate explicitly this depen-
dence.

To study the asymptotic optimality properties of D, we introduce the
following definition.

DerFmNiTION 4.2. Under Assumption 4.3, define ¢: K x® — R by
@ (x,a,0):=r(x,a,0)+pZp(x,y,a,0)v*0)(x).

REMARK 4.4. ¢ (x, a, ) has been used as a measure of “goodness” of taking
action a when the present state is x and @ is the true parameter value;
see, for instance [1], [6] or [13]. As a consequence of the optimality
equation, we have that ¢ <0. The relation of ¢ to asymptotic optimality
is given by the following relation, whose proof can be found, for instance
in [6] or [13].

For every policy D, 0e® and xeS,
ZN B NE2%¢ (X,, Ay, 0) = vy (x, 0)— E2°v* (0) (X ) (4.14)

(cf. Definition 1.1 (ii)).
Using (4.14) and the fact that ¢ <0, we obtain the following result.

Lemma 4.4. A policy D is ADOS (when 0 is the true parameter value), if
and only if, for every xeS8,
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EX¢ (X,, A,,0)—0 as n— 00.

The next Lemma will play an important role in the answer to
problem (B).

Lemma 4.5. Let {68,/Jn=0,1,2,..} be a sequence in @ converging to 0 and
let M:={0,0,,0,,..}. Then
(i) ¢ (x,a,0) <2%,(x) for every (x,a)eK
(i) @ (x, /, (03, %), 0) < E (x, M, 0, 0)+ Hy dy—, ()4 (x), xEF,.
(i) ||¢ (-, f, 0%, -), O)||» < E (S, M, 6,, 0)+ |Hg dy— ]| + |1d,

Proof (i) ¢ (x,a,0) <Ir(x,a,0)+BZp(x, y,a, 0) v*(0) W) +[v*©O) (x)| -
S Ry (x)+BHp Ry (x)+ % (x) <
< Ry (x)+ % (x)— Ry (x)+ Ay (x) = 2%, (X).
(i) Writing a instead of f, (65, x) we have that
@ (x,a,0)=[r(x,a,0)—r(x,a,0,)+BZ (p(x,y,a,0)—
B -"p(x)yaa'lgn)vn—l()})]+[r(xsaseﬂ)+
+BZp (x, y, a, 0,) vu—1 () —v* )]+ [Zp (x, y, a, 0) (v* () — Va1 (V)]
where v, stand for the k-th function produced by the TNVI scheme with
v_; =0 and v* stands for v*(f). In the right hand side of the above
equality, the first and third terms in brackets are bounded in absolute
value by E(x, M, 0,,0) and Hy [v*—v,-,|(x) respectively, while, for xeF,,
the second one is d,(x). This proves (ii) and (iii) follows from taking
supremum over xe€F,.
Now, Theorems 4.3 and 4.4 below refer to the asymptotic optimality

properties of the TNVI adaptive policy D apd represent our solution to
problem (B). d )

THeoreM 4.3. Suppose that the conditions in Theorem 4.2 hold. Then, for

every 0@ and every xe€S, ~

() ¢ (X, D, (1), 0) I (X,)>0 as n—oo PP®—almost surely, where Iy
stands for the indicator function of the set B.

(ii) @ (X,, D, (I,),0)—=0 in PP measure.

Proof (i) We have shown that, under the conditions in Theorem 4.2, (4.10)
and (4.13) hold. Then, from Lemma 4.5 (iii) we obtain that, for every
sequence {6,ln=0,1,2,..} converging to €@,

o (- fu©@3,),0)[,=0 as n—oo.

This gives the result, since 8, — 6 PP — almost surely.
(i) Let D be any policy. Then, for n > 1, and r >0
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E2 (R (X,) Is_p, (X)| Xp—1 =y, Dpy = @) =
== Z p(y5z:a’8)%(z} <& (r,B)

z¢F,

where,

&1 (n,0):= sup 'Y p(y,z,a,0) % (). 4.15)
(ma)eK z¢F,

Thus,

E2% (R (X,) Is—p, (X)) <&y (r, 0). (4.16)
and then, from Lemma 4.5 (i), we conclude that

E2|o (X, D, (1), 0) Is_p, (X,)| <26, (n,0), n>1.  (417)

In particular, (4.17) holds with D = D and from assumption (i) in Theorem 4.2
we obtain that &, (n, ) = 0 as n — oo. Finally, since [! convergence is stronger
than convergence in measure, we conclude that

@ (X, D, (1), 0) Is—p (X,)»0 in PP __ measure.
This fact, together with (i) proves (ii).

ReEMARK 4.5. We observe that the proof of (4.16) has general character,
that is, depends only on the definition of &, (n, 0).

TueOREM 4.4. Suppose that
(i) Conditions on Theorem 4.1 hold.
(i) sup Y p(x,y,a,0) (R (y)+1)—0 as n—co for every 0.

(x,a)eK y¢F,
Then, for every 0e®, xeS8,

E2(¢ (X,, D, (1,),0) >0 a5 n-o
that is, the TNVI adaptive policy D is ADOS.

Proof Let 8e@®. Observe that, from Lemma 4.2, there exists a constant
¢ such that % <c¢(R,+1). Then, assumption (ii) is equivalent to the
following:

g, (n,0)—-0 as n— 00, (4.18)

Let {0,Jn=0,1,2,..} be a sequence in @ converging to 6 and take
M:= {0, 6,,0,, ..}. Then, we note that under conditions of Theorem 4.1 we
have, for every xeS, '

E(x,M,0, 0+d,(x)=0 as n— 0. 4.19)
Now, let ¢, be a constant such that,
Ay < ¢y (R+1)
(Corollary 4.1). Then, it follows that, for k=0,1,2,.. and xeS,
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Hﬂ dﬂ (x}"-<- |idﬂ1|k+zcl sup Z p(x1 y,a, 9) (Rr(y)+1)

acA(x) x¢F,
Now, taking lim sup as n— oo, we obtain, using (4.19) and the finiteness
of the sets Fy, that
lim sup Hpd, (x) <2¢; sup Y. p(x,y,a,0) (R, (»)+1).
as Alx) xéF}
and, letting k go to oo and using assumption (ii) in Theorem 4.1 we obtain
that, for every xeS,

Hod,(x)—0 as n— 00. (4.20)

From (4.19), (4.20) and Lemma 4.5 (ii) we obtain, using the finiteness of
the sets F,., that

llo (-, £, 05,),0),-0 as n—-oo for r=0,1,2,.. (421)

Now, observe that (4.21) and Lemma 4.5 (i) allow us to conclude, using the
bounded convergence theorem, that

ED o (X,, D, (I,), 0) Ir, (X,)| >0 as n—so0, r=0,1,2,.. 4.22)
and then, for r=0,1, 2, ..
lim sup E2?|o (X,, D, (1,), 0)| = lim sup E2? |o (X,,, D, (1,), 0) Is—r, (X,)|.

Finally, using (4.16) and Lemma 4.5 (i), we obtain that the right-hand side
of the above equality is less than or equal to 2& (r,0) and using (4.18)
we obtain, since r is arbitrary, that

E??|o (X,,D,(I,),0)| =0 as n-co. =

5. Concluding remarks

We have seen in Example 3.1 that the continuity requirement (3.1) can
be too weak to ensure that the sequence {v,} produced by the TNVI scheme
converges to v*(f). On the other hand, the stronger condition (3.6) and
an appropriate selection of the seed are enough to ensure that {v,} converges
pointwise to v*(f). However, an important problem is to estimate |v, (x)—
—v¥(0) (x)] for xe8. and under the conditions of Theorem 3.2, such an
estimation is possible if we have a priori knowledge about e-optimal policies
when 0 is the true parameter value (i.e. policies D satisfying |[lv (D, 0)—
—v*(0)|| <e); since it is unrealistic to assume such a priori knowledge, we
had to look for a different approach and, in certain way, this justifies the
conditions on the tails of the transition probabilities imposed in sections 3
and 4. Now, let us analyze briefly the basic Assumptions 4.1-4.3 which
were used to solve problems (A) and (B). It is clear that the application
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‘of the TNVI scheme to solve these problems, require some estimation
method like that in Assumption 4.1 and an assumption of this type seems
to be unvoidable. On the other hand, the continuity requirements in
Assumption 4.2 seem natural and are satisfied in most practical cases.
Finally, among the conditions in the (boundedness) Assumption 4.3, the
most restrictive one is condition (ii). However, it can be weakened and our
solution to problems (A) and (B) still holds. In fact, the only consequence
of Assumption 4.3 that was used in section 4 was Lemma 4.2 (ii) and it holds
under Assumption 4.3" below.

Assumption 4.3". There exists 1€ @ such that, for every d > 0 the following
is satisfied:
(i) 4(0,7)< 0
(ii) There exist constants o (d) =0 and ¢, (6) =0 such that, for every xe8,
sup  Xp(x,y,a,0) R, (y) <a(d) R. (x)+c; (6),
ae A(x),feB{d.1)

and o« (0) f < 1.
(iii) R, (x) is finite for every xeS.
So, Assumption 4.3’ can take the place of Assumption 4.3 and our solution
to problems (A) and (B) still holds.

On the other hand, we note two important features of the TNVI adaptive
policy D:
(i) For each n=0,1,2,.. and each i,eH,, the determination of D, (i,)
depends only on a finite number of states.
(ii) The application of the TNVI adaptive policy D does not require a priori
knowledge of a stationary optimal policy for every parameter value; such
a priori knowledge is needed for the application of the “principle of estima-
tion and control” of Schal ([13]).

Finally, we mention that active research on the application of the ideas
in [6] as well as those in the present paper to problems of priority
assignment in queueing systems is presently in progress ([2]).
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Aproksymacja i sterowanie adaptacyjne procesami decyzyjnymi
Markowa z dyskontem, nieograniczonymi nagrodami i przeliczalng
liczbg stanow

W pracy rozwaza si¢ procesy decyzyjne Markowa z dyskontem, nieograniczonymi nagro-
dami i przeliczalng liczbg stanow, ktore zaleza od nieznanych parametrow. Podobnie jak
Hernindez-Lerma i Marcus [6] stosujemy schemat iteracyjny wartodci niestacjonarnych
(Fredergruen, Schweitzer [4]) z procedurg dla proceséw ze skonczong liczbg standéw (wpro-
wadzona w [1]). Pozwala nam to, wraz z metodg uzyskiwania estymatorow zgodnych. na
znalezienie optymalnych globalnych zdyskontowanych nagréd odpowiadajacych prawdziwym
warto§ciom parametréw. Zaproponowano réowniez asymptotycznie optymalna strategie adap-
tacyjna.

AnnpoxcuManus ¥ aaNTHBHOE YNPABJEHHe MAPKOBCKHMH NPOUECCaMM NPHHSTHA
peiennii ¢ JHCKOHTHPOBAHHEM, HEOr PAHHYEHHBIM NPEeMHPOBAHHEM C IEpevHC/IH-
MBIM 4YHCJIOM COCTOSTHMI

B pabore paccMaTpHBAKOTCH MAPKOBCKHE TPONECCH NPUHATHA PEIIeHUH c JAMCKOHTHPO-
BAHHEM, HEOTPAHHYCHHBIMH MPEMUAMU U NEPEMHCTHMBIM YHCIOM COCTOSHHH, KOTOPHIE 3aBHCAT
OT HEH3IBECTHBIX mnapaMeTpoB. Takke kak Xepuaugec-Jlepma u Mapkyc [6] ucnonbayem

Control and Cyh, 4




58 R. CAVAZOS-CADENA

HTEPALMOHHYIO CXeMY HeCTAlHOHAPHEIX 3uadenuii (Pemeprpysn, lMIsaiiuep [4]) ¢ npouenypoit
JUls TIPOIIECCOB C KOHEYHBIM YMCIIOM COCTOsHUH (BBeaeHHOoi B [1]). D10, BMECTE C METOIOM
IOJIyMEHHS COTJIACOBAHHBIX OLEHOK, MO3BOJIET HAXOAMThH ONTHMAJIbHBIE IJ100ANbHBIE NHCKOH-
THPOBAHHBLIE NPEMHH, COOTBETCTBYIOLUHE ACHCTBHTENBHBIM 3HAYEHHAM napamerpos. Ilpeano-
keHa TaKXe ACHMNTOTHYECKH ONTHMANbHAS aNaNTHBHAS CTPATETHS.




