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In this paper we consider discounted, unbounded rewards, denumerable state Markov 
decision processes which depend on unknown parameters. Following the approach of Her
mindez-Lerma and Marcus [6], we combine the n·onstationary value iteration scheme of 
Federgruen and Schweitzer [4] with a finite-state ·procedure introduced in [1], to obtain 
a finite-state iterative method, which in the presence of a strongly consistent method 
of estimation, is used to find the optimal total expected discounted reward corresponding 
to the true parameter value. Also, an adaptive policy with asymptotic optimality properties 
is proposed. 

1. Introduction and summary 

In this paper we deal with denumerable state, discounted, unbounded 
rewards Markov decision processes which depend on unknown parameters. 
We consider the problems of determining: (i) a finite-state iterative method 
to find the optimal total expected discounted reward corresponding to the 
true parameter value, and (ii) adaptive policies with asymptotic optimality 
properties. We follow the approach in [6] where these problems were solved 
for the finite-state, bounded rewards case. 

Let (S, A, p, r, [3) be the usual discounted Markov decision process (MDP) 
where S is the state space, assumed to be an arbitrary non-empty denu
merable set endowed with the discrete topology, A is the action (or control) 

* This research was supported in part by the Consejo del Sistema Nacional de Educaci6n 
Tecnol6gica (COSNET) under Grant 178/84 and in part by the Universidad Aut6noma 
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set, assumed to be a metric space endowed with the Borel O"-field; for x E S, 
A (x) c A is the measurable (non-empty) set of admissible actions at state x. 
Now, let K be defined by K: = {(x, a) laEA (x), xES}. r:K ~ R is the 
(measurable) reward function and p is the transition law; that is, if the 
present state is x and an action a EA (x) is selected, an immedia~e (expected) 
reward r (x, a) is obtained and the next state will be y with probability 
p (x, y, a). f3 is the discount factor and we suppose that 0 < f3 < 1. 

Let e be a metric space and suppose that, for each e E e' we have 
a MDP (S,A,p(e),r(e),/3) with transition probabilities p(x,y,a,e) and 
rewards r (x, a, e) depending on e. For n = 0, 1, 2, ... , Xn and An denote 
(respectively) the state and the action at stage n, while In = (X 0 , A 0 , .. . 

... , X n- 1 , An- 1 , X n) stands for the history of the process -or information 
vector- up to stage n. In is a random vector taking values in Hn, where 
H 0 := S and for n~1, Hn: = KxHn_ 1 . Let (xn,an,n = 0,1,2, ... )EH00 be 
a given realization of the state and action sequences. In this case, we write 
in = (x 0 ,a0 , ... ,Xn- 1 ,an_ 1 ,xn) for the corresponding history up to time n. 

A (randomized) policy D = {Dn ln = 0, 1, 2, ... } is a sequence such that, 
for each n, D" is a function defined on Hn and taking values in the set 
of probability measures defined on the Borel O"-field of A, in such a way 
that, for each in EH n• Dn (·I in) is concentrated on A (xn)· A policy D is said 
to be deterministic if, for every n and inEHn, Dn ( · lin) is concentrated on 
a single point of A (xn). The class of all deterministic policies will be 
denoted by£&. A policy DE£& is said to be a Markov - or memoryless-policy 
if, for every n and in EH"' Dn ( · lin) depends only on the present state x"; 
that is, for a Markov policy there exists a sequence {f~:S~A i fn(x)EA(x), 
x ES, n = 0, 1, 2, ... } such that Dn (- lin) is concentrated on fn (xn) and, if we 
have that fo = / 1 = f 2 = ... , the Markov policy is said to be a stationary 
policy. It is clear that the class of stationary policies can be naturally 
identified with the Cartesian product n A (x). 

xES 

For every policy D, x ES and eEe, let 
00 

V (D, e) (x): = I [3" E~·e r (Xn, An, e) (1.1) 
n=o 

be the total expected discounted reward when policy D is employed, x JS 

the initial state and e is the parameter value, and let 

v* (e) (x): = sup v (D, e) (x) (1.2) 
D 

be the optimal expected discounted reward when e is the parameter value 
and the initial state is x. (The supremum in (1.2) is taken over all policies). 
If r (·,·,e) is bounded, there is no difficulty to see that the series defining 
v (D, e) is well defined and, in this case, v (D, e) is uniformly bounded on S 
and so is v* (e); moreover, v* (e) (x) is the supremum of v (D, e) (x) over all 
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stationary policies and v* (e) can be obtained by the well known method 
of succesive approximations ([11], chapter 6). On the other hand, if r ( ·, ·, (}) 
is not bounded, conditions must be imposed in order to have v (D, (}) (x) 
well defined. Several sets of sufficient conditions have been proposed; see, 
for instance, [1], [5], [8] and [14]. The conditions in [1] and some results 
obtained there are briefly sketched in section 2. 

DEFINITION 1.1. (i) A policy D is discount optimal (when (} is the parameter 
value) if 

v (D, (}) (x) = v* ((}) (x) for every x E S. 

(ii) A policy D is asymptotically discount optimal in the sense of Schal 
(ADOS) (when (} is the parameter value) if, for each x E S, 

where, for xES, N = 0 , 1, 2 , ... , 

00 

VN (D, (}) (x):= L f3n- N E~·8 r (Xn, An,(}) 
n=N 

is the total expected reward from stage N onwards discounted from stage N. 
Now, we can pose our problems as follows: Given that the true parameter 

value, say (}* E EJ, is fixed but unknown, determine 
(A) a finite-state iterative scheme to find v* ((}*), and 
(B) adaptive policies with asymptotic optimality properties, for instance, 

ADOS. 

Our approach parallels the work of Hermindez-Lerma and Marcus in [6] , 
where these problems were solved for the bounded rewards, finite state case. 
Their solution is a straightforward application of the Non-stationary Value 
Iteration (NVI) scheme of Federgruen and Schweitzer. [ 4], which is a variant , 
of the method of succesive approximations ([11], chapter 6). In the sa~e i 
way, under Assumptions 4.1--4.3 , we obtain a solution to problems (A) and 
(B) as a by-product of the Truncated Non-stationary Value Iteration (TNVI) 
scheme introduced in section 3. 

The TNVI scheme is a combination of the finite-state approximation 
method proposed in [1] and the NVI scheme. In order to have that the 
TNVI scheme is useful to solve our problems, we need a sequence converging 
to the true parameter value. So, we suppose that, as the system is in 
progress, the controller can use the registered history to obtain such a sequence 
(cf. Assumption 4.1). Finally, under conditions regarding continuous depen
dence on () of r (-, ·, (}) and p (-, ·, ·, (}) (cf. Assumptions 4.2 and 4.3), we 
obtain a solution to our problems using the results on the TNVI scheme 
obtained in section 3. 
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2. Preliminaries 

Because we deal with discounted MDP's with unbounded rewards, we need 
to impose conditions to warrant that v (D, e) (x) is well defined. In this 
section we sketch briefly the conditions proposed in [1] and some results 
obtained there which will be useful later. 

DEFINITION 2.1. Let eE6J. 
(i) For each nonnegative extended function u: S ~ R +, define H 9 u: S ~ R + 

as follows: 

Ho u (x):= sup L p (x, y, a, e) u (y), XES, 
aeA(x) 

where the summation is over all yES; see Remark 2.1 below. We write 
H~ u: = u and for n = 1 , 2, ... 

H0u: = H 9 (H0-
1 u) 

(ii) R~: S ~ R + is defined by 

Ro(x): = sup ir(x,a,e)l, xES. 
aeA(x) 

(iii) ~9 : S ~ R + is defined as follows: 
00 

~o(x): = L f3nHnR 9 (x), XES. 
n=o 

REMARK 2.1. A convention about the symbol L will be used consistently 
throughout the following: For (x,a)EK, eEe and V:S~R 

L p (x, y, a, e) V(y): = L p (x, y, a, e) V(y) 
yeS 

whenever the right-hand side is well defined, that is, whenever the series 
in the right-hand side is absolutely convergent or V has constant sign. 

The condition imposed in [1] to have that V (D' e)(.~) is well defined 
is that dll9 (x) < oo for every x E S. 

THEOREM 2.1. Let e E 6J and suppose that ~ (x) < 00 for every X E S. Then, 
for every policy D and x E S, 

(i) E~·9 ir (Xn, An, e)i ~ H0 R9 (x) for n = 0, 1, 2, ... 
(ii) lv (D' e) (x )I ~ ~9 (x ), where V (D' e) (x) is defined by ( 1.1) and the series 

appearinq there is absolutely convergent. 
(iii) lv* (e) (x)l ~ ~9 (x), where v* (e) (x) is defined by (1.2). Define f4J as follows: 

!4J: = {u:S~RIIu(x)l ~~9 (x),xES}. 
;; · 

(iv) For every uE!4J and (x, a)EK, 
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(a) I P (x, y, a, e) u (y) converges absolutely 
(b) ir (x, a, e)+ pIP (x, y, a, e) u (y)l ~ ~o (x) 

Define T0 : 28 ~ 28 as follows: for every u E 28 and x E S, 

35 

Tou(x):= sup [r(x , a,e)+fJip(x,y,a,8)u(y)] (2.1) 
aeA(x) 

(v) T0 v* (e) = v* (e). (2.2) 

Moreover, v* (8) is the unique fixed point of T0 and it can be obtained 
by succesive approximations, that is, for every u E 28 and every x E S, 

T0n u (x) ~ v* (e) (x) as n ~ oo. 

In short, Theorem 2.1 asserts that ~e (x) < oo for every x E S, implies 
that v (D, 8) is well defined, v* (e) is the unique fixed point of the operator 
To defined by (2.1), and v* (8) can be obtained by succesive approximations. 
Equation (2.2) is known as the optimality equation. A proof of this theorem 
can be found in [ 1 ], section 2; indeed, part (i)-{iii) are Theorem 2.1, 
(iv) is part (b) in Corollary 2.1 and (v) is Theorem 2.2 in [1]. Observe 
that To is monotone, that . is, u, v E 28 and u ~ v together imply Te u ~ Te v. 
Finally, although this will be not used later, we note that under the 
assumption in Theorem 2.1, the supremum in the definition of v* (e) can be 
taken only over all stationary policies (cf. [1], Theorem 2.3). 

We are going to deal with several operators To simultaneously. To handle 
this situation we introduce the following definition: 

DEFINITION 2_1. Let M be a non-empty subset of e. 
(i) RM : S ~ R + is defined by 

RM (x):= sup Re (x), xES. 
eeM 

(ii) For each u:s~R:+, HMu:s~R:+ is defined 

HM u (x):= sup He u (x), xES . 
OeM 

HIJ.t 14: = u and for n = 1, 2, ... , 

H'M u:= HM (H'M 1 u) 

(iii) ~M: S ~ R + is defil)ed by 
CO 

~M(x): = I pnH'MRM(x), xES. 
n=o 

(iv) if' M is defined as follOWS: 

.ff'M:= {u:S~Riiu(x)i ~~M(x),xES}. 

We need the following properties of HM: 
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LEMMA 2.1. Let u, w: S--+ R +, M a non-empty subset of e, and c > 0. 
Then . the following hold: 
(i) HM (cu) = cHM (u) (Homogeneity) 

(ii) HM u ~ H M w if u ~ w (M onotonicity ). 
(iii) If HM u (x) < oo for every xES and v: S--+ R satisfies that lv (x)l ~ u (x) 

for every x E S, then 
a) For every OEM and (x.a)EK 

I p (x, y, a, tl) v (y) is absolutely converyent. 
b) For every x ES 

sup II p (x, y, a, 0) v (y)l ~ HM u (x). 
aEA(x),IIEM 

(iv) Let un:S-+R +, n = O, 1,2, ... . Then, for k=O, 1,2, ... , 
00 00 

H~ ( L Un} ~ L H~ Un (Subadditivity). 
n= O n= o 

(v) For k = O, 1,2, .. . , 
00 00 

d' H~ ( L c" H'M u} ~ L q" H'M u. 
n= O n= k 

For the case in which M is a singleton, Lemma 2.1 is proposition 2.1 
in [1]. The proof given there still applies in our present case if every time 
sup appears, we substitute it by sup . It is clear that !:7l0 (x) ~ !:7tM (x) 

aE A(x) a E A(x), liE M 

for every x E S and e EM and then, if !:7tM (x) is always finite, the conclusions 
of Theorem 2.1 are valid for every e EM and, in this case, the next theorem 
shows that To can be extended to £'M and v* (0) is still the unique fixed 
point of T0 . 

THEOREM 2.2. Suppose that M is a non-empty subset of e and !:7tM (x) < oo 
for every x E S. Then, for each e EM, 

(i) Using (2.1), To u can be defined for every u E£'M and, in this case, 

for 

(ii) For every x E S, 

[Jk H~ !:7tM (x)--+ 0 as 

(iii) v* (0) is the unique fixed point of T8 in £'M . Moreover, v* (0) can be 
obtained by successive approximations, that is, for every u E £'M and x E S, 

To" u (x)--+ v* (0) (x) as n-+ oo. 

(iv) To is monotone on £'M; that is, u, v E £'M. and u ~ v imply 

Tou~Tov . 

Proof. (i) By part (v) of Lemma 2.1 with c = [3, u = RM and k = 1, we 
have that, for every x E S, 
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f3HM fYlM (x) ::S; fYlM (x)-RM (x) < 00 

Then, by part (iii) of the same Lemma, the sum in the right hand side 
of (2.1) is well defined as soon as we have /u (x )/ :::;; fYtM (x) for every x E S, 
that is, as soon as u E st'M and, in this situation, we obtain the following 
inequalities where x E S and sup is taken over a EA (x): 

/sup [r (x, a, 8)+ f3L:p (x, y, a, 8) u (y)]/:::;; sup /r (x, a, 8)/ + 

+ f3 sup L:p (x, y, a, 8) /u (y)/ :::;; 

:::;; R6 (x)+ f3H6 /u/ (x):::;; 

:::;; RM (x)+ f3HM fYtM (x):::;; 

:::;; RM (x)+fYlM (x)-RM (x) = fYtM (x). 

So, To u (x) can be defined by (2.1) for u E st'M and in this case, we have . 
that T6 uESfM. 
(ii) By part (v) of Lemma 2.1 with c = f3 and u = RM, we have that, for 
every x E S and k = 0, 1 , 2, ... , 

00 

f3k H'M fYtM (x) ::S; L pn H'M RM (x) 
n=k 

Now, the result follows from the convergence of the series defining fYtM (x). 
(iii) We will use the following fact: 

If w and z are real valued functions bounded from above on a set A, 
then, 

/sup w (a)-sup z (a)/:::;; sup /w (a)-z (a)/ (2.3) 
aEA aEA aEA 

Let u, vESfM and xES. Using (2.3) we obtain the following inequalities, 
where sup is taken over a EA (x): 

/16 u (x)- T6 v (x)/:::;; sup j{3L:p (x, y, a, 8) (u (y)-v (y))j:::;; 

:::;; f3 sup L:p (x, y, a, 8) /u (y)-v (y) / = f3H6 /u-v/ (x). 

Then, because x E S is arbitrary, we have 

/Te u-16 v/:::;; f3H6 /u-v/, 

and an introduction argument gives 

/Ten U- Ten v/ ::S; :f3n Ho /u- v/ for 

Now, using the fact that /u- v/ :::;; 2!7t M we obtain 

n = 1, 2, .... 

/Ton u -Ton/ :::;; 2f3n H'O fYtM :::;; 2f3n H'M fYtM for n = 1' 2, ... ' 

and then, by part (ii) of this Theorem, 

(2.4) 

Iim/Tenu(x)-Tenv(x)/=0, XES. (2.5) 
n-->oo 
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· Take v = v* (tJ). Because T0n v* (tl) = v* (tJ), n = 1, 2, ... , we get from (2.5) that, 

lim T0"u (x) = v* (tJ) (x), xES. (2.6) 
n-+ oo 

Then, v* (tl) can be obtained by succesive approximations and is the unique 
fixed point of To in !i'M· Indeed, if u E !i'M and T0 u = u, we have that 
T0nu = u for n = 1, 2, .. . , in which case (2.6) implies that u = v* (tl). This 
completes the proof, since (iv) is clear. • 

We need to estimate the difference between two operators T0 and Yr 
for parameter values e, <:E8. To handle this situation, we introduce the 
-following definition. 

DEFINITION 2.3. Let M be a non-empty subset of e and suppose that 
~~ (x) < oo for every x E S. 
(i) For xES, <:, tlEM, 

E(x,M,<:,tl):= sup [lr(x,a,<:)-r(x,a,e)l+ 
aeA(x) 

+ f3L: lP (x, y, a,<:)- p (x, y, a, tl) l ~M (y)], 

where the summation is over yES. 
(ii) For FcS, <:,tJEM, 

E (F, M,<:, tl): = sup E (x, M,<:, tl) . 
xEF 

THEOREM 2.3. Let M be a non-empty subset of e and suppose that ~M (x) < oo 
for every X E S. Then, for every u E rxM, 1: , e EM and X E S, 
(i) II'ru(x)-78u(x)l ~E(x,M,<:,tl). 

(ii) sup1Yru(x) - 78u(x)l ~E(F,M,<:,9). 
XEF 

Proof. Part (ii) follows immediately from (i). To prove (i), we use (2.3) 
to obtain the following inequalities, where the summation is over yES and 
sup is taken over a EA (x): 

II'r u (x)- T0 u (x)l ~sup lr (x, a, <:)-r (x, a, tl)+ f3L: (p (x, y, a,<:)

- p (x, y, a, tl)} u (y)! ~sup [ lr (x, a, <:)-r (x, a, 9)1 + 

+ f3L: lP (x, y, a,<:)- p (x, y, a, tl)l ~M (y)] = E (x, M,<:, tJ) . • 

3. The truncated non-stationary value iteration scheme 

Throughout this section F0 , F 1 , F2 , .. . , is a (fixed) sequence of subsets 
of S. We suppose that 
(i) FncFn+l• n=O, 1,2, ... 

00 

(ii) U Fn=S. 
n=o 
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DEFINITION 3.1. (The Truncated Non-stationary Value Iteration scheme). 
Let {8nl n = 0, 1, 2, .. . } be a convergent sequence in e. Define M by 

M: = {8, 80 , 81 , 82 , ... } where 0 = limOn 
n-+ a:> 

Suppose that .!11.\1 (x) < oo for every x E S. Finally, let u E 2 M · The sequence 
{ v" : S ~ Rln = -1, 0 , 1, 2, .. . } is defined as follows: 

v_ 1 := u, and for n ~0, 

Vn (x): = sup [r (x , a, On) + f3Ep (x, y, a, On) Vn-1 (y)] if 
aeA(x) 

Vn (x): = u (x) if 

REMARK 3.1. The iterative scheme in Definition 3.1 will be called the TNVI 
scheme. In the case when M is a singleton, the TNVI scheme is nothing 
but White's extended scheme introduced in [1]. On the other hand, if S 
is a finite set, u = 0 and F" = S for every n, we obtain the NVI scheme 
of Federgruen and Schweitzer introduced in [ 4], which for the case of bounded 
rewards was used by Hermindez-Lerma and Marcus in [6] to solve problems 
(A) and (B) posed in section 1. Now, using the fact that uEii'M, a simple 
induction argument gives that vnE it'M for n = 0, 1, 2 , ... and then, the sums 
appearing in Definition 3.1 are well defined. The function u will be referred 
to as the seed of the scheme and will always belong to ii'M· On the other 
hand, from a computational viewpoint, it seems desirable to take u = 0 but, 
although this will be done in section 4, we prefer to maintain u arbitrary 
at this moment and study the relevance of u in relation to the convergence 
of { vn} to v* (0). Finally, note that once we have selected the sets Fno 
n = 0, 1, 2, .. . and the seed u that are going to be used in the TNVI scheme, 
vn (x) depends only on (00 , . .. ,On). To emphasize this dependence, we some
times write v" (0~) (x) instead of v" (x) where 0~: = (80 , .. . ,On) (cf. section 4). 
However, in this section we consider a fixed convergent sequence {On} . 
and then we simply write v" (x). 

The idea in the TNVI scheme is to produce approximations to v* (0). 
Our first result concerning the limit points of { vn} is the following. 

THEOREM 3.1. Suppose that 

E(x,M , 8" , 8)~o as 

Then, for every seed u, and every x E S, 

for every 

lim inf Vn (x) ~ v* (8) (x) . 

XES . (3.1) 

(3.2) 

Proof. Let l(x): = liminfvn(x), x ES. We note that lvn(x)l ~~M(x) for every 
x ES, implies that ll(x)l ~~M(x) for every xES and then, I Eii'M. Now, 
let x E S and select m such that x E Fm· Then, for n ~m and a EA (x), 
we have, from the definition of vm that 
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Vn (x) ;?: r (x, a, en) + f3Ep (x, y, a, en-1) vn-1 (y) = 

= [r (x, a, en)- r (x, a, e) + f3E (p (x, y, a, en)

- p (x, y, a, e)) ~n - 1 (y)] +r (x, a, e) + f3Ep (x, y, a, e) vn- 1 (y). 

Using the fact that lvn - 11 ~ !YlM and the definition of E (x, M, en, e), we see 
that, for n ;?: m, 

Vn (x);?: -E (x, M, en, e) + r (x, a, e) + f3Ep (x, y, a, e) Vn-1 (y) . 

Taking lim inf as n--+ oo in both sides of the above inequality we have, 
using (3.1) that, 

I (x);?: r (x, a, e) + f3lim inf Ep (x ; y , a, e) Vn-1 (y). (3.3) 

Next, we note that Ep (x, y, a, e) !YlM (y) ~ He !YlM (x) ~ HM !YlM (x) < oo and 
lvn- 11 ~ !YlM. These facts allow us to use Fatou's Lemma, in which case we 
conclude that 

lim inf Ep (x, y, a, e) Vn-1 (y);?: Ep (x, y , a, e) I (y), 

and this inequality, in combination with (3.3), gives 

I (x);::;: r (x, a, e) + Ep (x, y, a, e) I (y). 

Now, taking the supremum over a EA (x), we obtain 

I (x);?: T8 I (x). 

Using the arbitraryness of x and the monotonicity property of T8 , it is 
easily seen that 

I;?:T8nl n=0,1,2 , ... 

and the result follows from Theorem 2.2 (iii). • 
REMARK 3.2. In our approach, a continuity requirement like (3.1) seems 
unavoidable if we are going to have vn (x)--+ v* (e) (x) for every x E S. When 
(3.1) as well as some restrictions on the tails of the transition probabilities 
hold, we can show that, for every seed u, { vn} converges pointwise to v* (8) 
(cf. Theorem 3.3). On the other hand, suppose that M is a singleton. 
In this case, it was shown in [1] that if the seed u satisfies u ~ T8 u, 
then { vn} converges pointwise to v* (8) and then it might be thought that 
the same occurs if (3.1) holds and the seed u is appropriately chosen. 
The example below shows that is not the case. 

ExAMPLE 3.1. Suppose the following : 
(i) e = [O , 1] 

(ii) S = N := {1, 2, ... } 
(iii) A (x) = [0 , 1], x EN 
(iv) r(x,a,e) = e11x, x EN, a E[O,l] 
(v) p (x, y, a , 8) = p (x, y, a) satisfies that, 
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given xEN and n = 0,1,2, ... , there exists a*EA(x) such that 

I p(x,y,a*)= 1 
n/ 2~y~n+ I 
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(3.4) 

Now, take Fn = {1, ... , n+ 1}, n = 0, 1, 2, ... and let u be an arbitrary seed 
(of course, in this case u is bounded). 
Finally, let { 11,.} be a sequence in (0 , 1] tending to 0. 

In this situation we are going to show that, if {en} goes to 0 slowly 
enough, we have strict inequality in (3.2) for every seed u. A simple induction 
argument, using the fact that r ~ 0 and condition (v) with n = 0, shows that 

vn(x)~f3"+ 1 u(1) for n=0,1,2,... and xEFn. 

Then, for n = 0, 1 , 2, ... and x E F,. + 1 , 

Vn+ 1 (x) ~ r (X, a*, en+ t)+ {31:p (X, y, a*) Vn (y) ~ e;~;l + {3"+ 2 
U (1) 

where a* satisfies (3.4), and then, for n = 1, 2, ... and x E Fn+ 1 

v,.+ 1 (x) ~ f3I:p (x, y, a*) (e~ /x + /3"+ 1 u (1)) ~ f3 (en)21"+/3"+ 2u (1). 

where a* is like above. We conclude that 

lim inf v,. (x) ~ f3lim inf (enf1", x E S. 

Thus, if (-),. -4 0 slowly enough, we have: 

lim inf v,. (x) > 0. 

(For instance, if en n<X -4 c #- 0 for some (j, > 0, we have lim inf Vn (x) ~ /3). 
Now, since r ( ·, ·, 0) = 0, we have v* (0) = 0 and therefore, the strict inequality 
holds in (3.2), whatever the seed u is. Observe that in this example, we have, 
for every xES: 

E(x , M,e,.O) = r(x,e,.)=e~Jx-40 as n-400, but 

E (S, M, en, 0) = 1 for n=0,1,2, .. .. 

The next theorem shows that a strengthened version of (3.1) and an 
appropriate selection of the seed u, are enough to have pointwise convergence 
of {v,.} to v* (e). 

THEOREM 3.2. Suppose that 

E (S, M, en, e)-40 as (3.6) 

and 

u~v*(e) . (3.7) 

Then, for every x E S, 

Vn (x) -4 v* (e) (x) as 

C n111 rol ;,111d Cyb. 
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Proof. Let e > 0 and let n be a positive integer. Let xEFn and select 
a EA (x) such that 

Vn (x) ~ r (x, a, en)+ f3Ep (x, y, a, en) Vn-l (y)+e. 

Now, by the optimality equation, 

v* (x) )!: r (x, a, e)+ f3Ep (x, y, a, e) v* (y), 

where we write v* instead of v* (e). Then, 

Vn (x) - v* (x) ~ [r (x, a, en) - r (x, a, e)+ f3E (p (x, y, a, en)-

- p (x, y, a, e)) vn-l (y)]+f3Ep (x, y, a, e) (vn'-l (y)-v*(y))+e. (3.8) 

In the right-hand side of (3.8), the term in brackets is less than or equal 
to E (x, M, en, e) (because lvn- 11 ~~M)· On the other hand, 

L;p(x,y,a,e)(vn- 1 (y)-v*(y))= L p(x,y,a,e)x 
yeFn - 1 

x(vn-l (y)-v*(y))+ L p(x,y,a,e)(u(y) - v*(y)) 

Using (3.7) we see that the second term in the right-hand side of the above 
equality is ~ 0. Then, from (3.8) we obtain 

vn(x) - v*(x)~E(x,M,en,e)+/3 L p(x,y,a,en)x 
yeFn- 1 

x (vn-! (y)-v* (y))+e (3.9) 

Now, for k=O, 1,2, ... , define d::S---+R as follows: 

d:(x):=vdx)-v*(x) if vdx))!;v*(x) and xEFk 

d: (x):= 0 

It is clear that 

if vk (x) < v* (x) or 

L p (x, y, a, e) (vn-t (y) - v* (y)) ~ L p (x, y, a, e) d;:-_ 1 (y) ~ H0 d;:-_ 1 (x). 
yEFn- 1 

From this and (3.9) we conclude the following. 

d;; (x) ~ E (x, M, en, e)+ f3H0 d;:-_ 1 (x)+e 

and, from the arbitraryness of e > 0, we obtain 

d;; (x) ~ E (x, M, en, 8)+ f3H0 d;;_ 1 (x). 

Finally, because x is an arbitrary element of Fn, we get, since E (Fm ·, ·, ·) ~ 

~E(S,·,·,·): 

d;; ~E(S,M,en,8)+f3H0 d;;_ 1 . 

Let [) > 0 and select mEN such that n )!: m implies E (S, M, en, 8) ~ 6. 
Then, for n )!: m we have 
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and an induction argument gives that, for k = 0 , 1, 2, ... 

d;:;+k ~ b (1 - f3k+1)/ (1-f3)+f3k+1 H~+1d;:;_1 

Now, observe that d;:; _ 1 ~ 2~M and then, for every x E S, 

as k---'> 00 . 
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(3.10) 

This result and (3.10) imply, since b > 0 is arbitrary, that, for x E S, 

d:(x)---'>0 as n--'> OO . (3.11) 

Let xES and observe that 

vn (x) = v* (x) + Vn (x)- v* (x) ~ v* (x)+d: (x), and then, 

lim sup vn (x) ~ v* (x)+ lim sup d: (x) = v* (x), x E S. (3.12) 

where we have used (3.11) in the last equality. Now, (3.12) and Theorem 3.1 
show that, for every x E S 

vn (x)---" v* (e) (x) as n---" oo. • 
REMARK 3.3. In the case when M is a singleton, we have already mentioned 
that the TNVI scheme becomes White's extended scheme ([1]}. In this 
circumstance, if the seed satisfies u ~ v* (e) (and ~0 (x) < oo for x E S}, we 
obtain, from Theorem 3.2, that { vn} converges pointwise to v* (e). This is 
a slight improvement with respect to Corollary 3.1 in [1] where it was 
proved that, if the seed u satisfies u ~ To u, then, { vn} converges pointwise 
to v* (e). 

Concerning the estimation of lvn (x) - v* (e) (x)j, our main result is 
Lemma 3.1 below. Before establishing it, we introduce some notation. 

DEFINITIONS and CoMMENTS 3.2. Let the sequence {en ln = 0, 1, 2, .. . }, eEe, 
the set M and the sequence { vn In = - 1, 0, 1, ... } be as in Definition 3.1. 
For X E s and e > 0 (e can be oo), we define 

c (x, e): = {F c s i L p (x, y, a, e) ~M (y) ~ e for every a EA (x)}. 
yf;F . 

Observe that, for every F EC (x, e) and n = 0 , 1, 2, .. . , 

L P (x, y, a, e) lvn-1 (y) - v* (e) (y)l ~ 2e for every aEA(x). (3.12) 
yf;F 

This is so, because both vn- 1 and v* (e) belong to SfM. Also, we always 
have SEC (x , e). Now, let f (·,e) be a choice function, that is, 

f ( · ,e): S---" U [C (x, e) jxES] 

satisfies 

f(x, e)EC (x, e) for every XES. (3.13) 

For n = 0, 1, 2, ... , e > 0 and xES, we define 
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f 0 (x, e):= {x}, and for n ~ 1 

f (x, e):= U [f(y, e)lyEj" ~ 1 (x, e)]. 

We write v* instead of v* (e) and from now on, dn stands for lvn- v* (e)l, 
that is, 

v*:=v*(e) 

dn:= lvn-v*(e)l == lvn-v*l. 

For each V: s -dl, IIVII stands for the supremum norm of V; 

IIVII: =sup IV (x)l, 
xeS 

and, for F c S, VIF: S --+ R is defined by 

VIF (x):= {~(x) 
We write IIVIIn instead of IIVIFnll. 

XEF 
xf/:F. 

LEMMA 3.1. Let e > 0, x E S, and let k be a positive integer. If 

s = 0' 1' .. . ' k-- 1' then, 
k-1 

(i) dn(x)~ L p•E(j•(x,e),M,en_.,e)+f3kHk(dn-klfk(x,e))(x)+ 
s=O 

+ 2ef3 (1- f3k) /(1- {3) 
k- 1 

(ii) dn (x) ~ L p• E (J•(x, e), M, en-s> e)+2f3k Hk(~Mifk(x, e)) (x)+ 
s=O 

+ 2ef3/(1- {3). 

Proof. Observing that dn-k ~ 2~M' (ii) follows immediately from (i). We 
prove (i) by induction. 
Let x E Fn· Then, 

dn (x) = lvn (x)-v* (x)l =I To" Vn-1 (x)- To v* (x)l ~ 

~!To. Vn-1 (x)- To Vn-1 (x)l + 110 Vn-1 (x)- To v* (x)l . 

In the right-hand side of the last inequality, the first term is bounded 
above by E (x, M, en, e) (Theorem 2.3 (i)) and the second one is less than 
or equal to f3H0 dn- 1 (x) (see (2.4)). Then, 

dn(x)~E(x,M,en,e)+f3Hodn-dx) for xEFn. (3.14) 

Now, observe that 

H 0 dn- 1 (x) =sup L p (x, y, a, e) dn- 1 (y) ~ 

~sup L p(x,y,a , e)dn-dY)+sup .L p(x,y,a , e)dn-dy), 
yef(x,e) y<ff(x ,e) 

where sup is taken over a EA (x). 
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In the last inequality, the first term in the right-hand side is H 0 (dn_ 1Jf (x, e)) 
and the second one is ~ 2e (see (3.12) and (3.13)). Then, (3.14) implies, 
for xEFm 

dn (x) ~ E (x, M, en, e)+ {3H0 (dn- 1 1 f (x, e)) (x) + 2ef3 . 

T}:lis proves (i) for k = 1. 
Suppose that (i) holds for k = r and that 

f•(x, e) c Fn-., s = 0, 1, .. . , r. 

Now, take yEj'(x, e) c Fn-r· Using the case k = 1 that we have just proved, 
we get 

dn-r (y) ~ E (y, M, en-ne) + f3Ho (dn-r- tlf (y, e)) (y) + 2ef3 ~ 

~ E (f' (x, e), M, en-ne)+ f3Ho (dn- r-tlf'+ 1 (x, e)) (y) + 2ef3. 

Observing that yEf'(x, e) is arbitrary, we conclude that 

dn-rlf'(x, e) ~ E (f' (x, e), M, en - n e) + f3Ho (dn-r-11!'+ 1 (x, e)) + 2ef3. 

From this inequality and inequality (i) with k = r, the corresponding ine
quality with k = r + 1 follows easily. · • 

Now, we study some consequences of Lemma 3.1. 

THEOREM 3.3. Suppose that 
(i) E (x, M' en, 0) __.. 0 as n __.. OC! for every X E s. 

(ii) Given x E S and e > 0, there exists a finite set F such that for every 
aEA (x), 

L p (x, y, a, 0) ~M (y) ~e. 
y!f;F 

Then, for every x E S and every seed u, 

as n __.. oo, that is, 

{ vn} converges pointwise to v*. 

Proof. Assumption (ii) asserts that C (x, e) contains finite sets for every 
x E S and e > 0. Then, we can assume that f (x, e) is always a finite set 
and then, so is f'(x, e), s = 0, 1, 2, .... Let () > 0 and take e = () (1 - {3)/6{3. 

Now, let xES. Select k? 1 such that f3k HZ~M (x)·< b/6 (Theorem 2.2 (ii)). 
Finally, select m such that 

k-1 

(a) U f'(x, e) c Fm - k+ 1 and, 
s=O 

(b) for n ;?: m 

E (!• (x, e), M, On-s• e) < () (1- /3)/3, s = 0,1, ... ,k-1. 

The selection of m is possible by assumption (i) and because fs (x, e) IS 

always a finite set. Then, for n ;?: m, Lemma 3.1 (ii) implies that 
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k-1 

dn (x) ~ L {3s b (1 - /3)/3 + b/3 + b/3 <b. • 
s=O 

The following Theorem will play an important role in the study of the 
adaptive policies constructed in section 4. To establish it, we need a sub
sequent definition. 

DEFINITION 3.3. Let B a non-empty subset of e. For each () E e and 
r = 0, 1, 2, .. . , we define s (r, B, ()) as follows: 

e(r,B,()):= sup L p(x,y,a,())&fB(y). 
(x,a)eK y~Fr 

THEOREM 3.4. Let n, k, r be nonnegative integers, k ~ 1 and let u E 2M be 
an arbitrary seed. Then 

(i) xEFn and n ~ r+ k-1 together imply that, 
k- 1 

(a) dn (x) ~ L E (F" M, ()n-s> ()) f3'+E (x, M, en,())+ 
s= 1 

+2f3k H~ (&fMIF,) (x) + 2e (r, M,()) /3 / (1 - /3). 
k-1 

(b) lldn ll n ~ L E (S, M, ()n-s. ()) f3s + 2 ll/3k HZ (&fM IF,) II n+ 
s=O 

(ii) If 
(a) e (r, M, ())--+ 0 as r--+ oo, 
(b) E(S,M,()n,())--+0 as n-+oo, and 
(c) &fM is bounded on ·every set F, 

Then 

+ 2e (r, M,()) /3/(1- /3). 

as n-+ oo. 

Proof. (i) Let r be a nonnegative integer and take e = e (r, M, ()). Then, 
it follows that f (x, e) = F, for x E S, determines a choice function (cf. Defini
tions and Comments 3.2) and, for s = 1, 2, .. . , we always have f'(x, e) = F,. 
Then, (a) follows from Lemma 3.1 (ii) and (b) follows immediately from (a) 
by taking sup over x E Fn. 
(ii) Let [> > 0. Select r such that 

2e (r, M, ()) f3 /(1 - {3) < b/3 (assumption (a)) 

Now, select k ~ 1 such that 

2f3k IIH~ (&fM IF,)Ii ~ 2f3k ll&fMII, < b/3 (assumption (c)). 

Finally, let m be a positive integer such that, for n ~ m 
k-1 

L E (S, M, ()n-s. ()) ps < b/3 (assumption (b)). 
s=O 
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Then, for n > max [m, k+r - 1], inequality (b) in part (i) implies lldnlln < 1> 

and we conclude that 

as (3.15) 

To finish the proof, observe that 

IIHodnll ~ lldnlln +2e(n,M,e), (3.16) 

and the result follows from (3.15) and assumption (a). • 
4. Solution to problems (A) and (B) 

In this section we solve problems (A) and (B) posed in section 1. The 
solution we give is a straightforward application of the results on the TNVI 
scheme introduced in section 3. Suppose that e is the true parameter value 
and that the controller wants to find v* (e). The difficulty is that he does 
not have a priori knowledge about e. However the TNVI scheme allows 
him to find v* (e) (x), x E S, as soon as he has a sequence {en} converging 
to e and some restrictions are satisfied by the model. To obtain such a 
sequence, the controller must observe the system while it is in progress and 
then he can use the registered history to obtain the approximating sequence. 
Specifically, we suppose that the controller has at his disposal, a strongly 
consistent sequence of estimators of e. 
As.suMPTION 4.1. For any eEe, any xES and any policy D, there exists 
a sequence {en: H n ~ S} of measurable functions, such that 

en~ e ~D,(J- almOSt SUrely aS n ~ 00. 

The sequence {en} is said to be a sequence of strongly consistent (SC) 
estimators of e. (cf. [3], [7], [9] and [13]). 

REMARK 4.1. Throughout the following, {en} stands for a sequence of se 
estimators. 

Now, the controller can decide to employ an arbitrary policy D and, 
at the stage n, once he has observed in (the information vector up to 
time n), he can evaluate en: = en (in) and then obtain vn in the TNVI 
scheme. Because of Assumption 4.1, the controller can be sure that the 
sequence {en} he is obtaining is going toward the true parameter value. 
Since we are interested in finite-state methods, we suppose from now on 
that the TNVI scheme has been defined in such a way that 
(i) The seed u is identically zero · 

(ii) Fn is a finite set for n = 0, 1, 2, ... 
It is time to introduce some continuity requirements on the ,structure 

of the decision model. 
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AssuMPTION 4.2. (i) e and A are metric spaces, A (x) is compact for every 
x E S. I·, ·I stands for the metric on e. 
(ii) For each xES and each yES, the maps 

(a,e)---+r(x,a,e) and (a,e)---+p(x,y,a,e) 

are continuous on A (x) x e. 
As an iiJlmediate consequence, we obtain the following result. 

LEMMA 4.1. Suppose that assumption 4.2 hold. Then, 
(i) For each eEe, XES, yES 

(a) sup lr(x,a,r) - r(x,a,e)l---+0 as r---+e 
aeA(x) 

(b) sup lP (x, y, a, r) - p (x, y, a, e)l---+ 0 as 
aeA(x) 

(ii) For each xES, n = 0, 1, 2, ... , 

r---+e. 

V11 (eo) (x) is a COntinuous function of eo:= (eo, ... , e11 ) E gn+ 1 

(cf. Remark 3.1 and remember that the seed u is identically zero and the 
sets Fn are finite). 

Proof. The proof is a straightforward application of the well known 
Tube Lemma ([10], Lemma 5.8) which, for our present purpose, can be 
stated as follows: 

Let X and Y be topological spaces, X compact and, let g: X x Y---+ R 
be a continuous function. 

Then, for every yE Y and e > 0, there exists a neighborhood V of y, 
such that 

sup lg (x, w)-g (x, y)l ~ e for wE V. (4.1) 
XEX 

Thus, using (2.3) and (4.1) we obtain 

lsup g (x, w) - sup g (x, y)l ~ e for WEV, 
XEX XEX 

that is, 

sup g (x, ·) is continuous (4.2) 
XEX 

(i) Taking X = A (x), Y = e in the Tube Lemma, we obtain (a) and (b) 
using (4.1) with g (-, ·) = r (x, ·, ·) and g (-, ·) = p (x, y, ·, ·) respectively. 

(ii) The proof is by induction. 
Using (4.2) with g(-,·) = r(x, · ,·) we obtain that, for XEFo, 

-vo (eo) (x) = sup r (x, a, ea) 
aeA(x) 

is a continuous function of ea E 'B. Now, suppose that, for each X E Fm 
VII ~8o) (x) is a continuous function of eo E ell+ 1 and let X E Fn + 1. Then, 
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g (x, a, eo, ... , en +,): = r (x, a, en+ d+ f3Ep (x , y, a, en+,) Vn (eo, .. :, en) (y) 

is·. a continuous function on A (x) x gn+ 2 (by the induction hypothesis, 
Assumption 4.2 and by the finiteness of Fn). Then, from (4.2) we have that 

Vn+ 1 (eo+ 1) (x): = SUp g (X , a, eo+ 1) 
aeA(x) 

is a continuous function on en + 2. The result follows, smce v" (e0) (x) = 0 
for x~F" and n = 0, 1, 2, .... • 

Tn order to apply th e estimations obtained in section 3, we need 
Assumption 4.3 below. For tEEJ and b > 0, let B (6, t) be defined by 

B(b , t): = [eFEJ/ 1e , t/ ~ b} and 

define Ll (b , t) and e (b , t) a s follows: 

L1 (b, t): = sup /r (x, a, e) - r (x, a, t) / 
(x,a)e K,Oe B(o ,t) 

e (b,t):= sup Ep(x , y , a,e)Rt(Y) 
(x,a)e K,ee B(o ,t) 

Assumption 4.3 below. For tE8 and b > 0, let B (b , t) be defined by 
(i) Ll (b, r) < oo , 

(ii) e (b , t) < oo, 

(iii) Rr (x) is finite for every x E S; see Remark 4.2 below. 

(4.3) 

(4.4) 

REMARK 4.2. From now on, r denotes an element of e such that Assump
tion 4.3 is satisfied. 

The main consequence of Assumption 4.3 that we are going to use is the 
following result. 

LEMMA 4.2. Let r be as in Assumption 4.3. Then, for every b > 0, & 8 (o,r) (x) 
is finite for every x E S. M ore precisely, for every b > 0, 

(i) .-flB(o,r) ~ Rr+ Ll (b , r)/ (1- /3)+ [3e (b , r)/ (1 -'- [3). 
(ii) There exists a finite positive number c (b) such that 31t8 co . rl ~ c (b) (Rr + 1 ). 

Proof. It is clear that (ii) follows immediately from (i). To prove (i) 
observe that: 

where 

Then, it follows easily that, for n = 1, 2, ... , 

1/ H~ Rr/1 ~ e (6 , r), 

and then, we obtain 
00 

B : = B (6 , r). 

L f3"H~Rr~Rr + f3e(b,r)/(1-[3). 
n=O 

(4.5) 

Finally, observe that R 8 ~ Rr + LI (b, r). Using this inequality, the monotoni
city property of H 8 and (4.5), we obtain · (i). 

C1H1 trol and Cyb. - 3* 
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CoROLLARY 4.1. Let {Gnln = 0, 1, 2 , ... } be a converqent sequence in e, 
e: = lim en, 

n- rx; 

and take 

M:= {G, 80 , et, ... } 
Then, under Assumption 4.3, [ltM (x) < oo for every xES. Moreover, 

[jtM ~ c (b) (Rr+ 1), 

where b > 0 is selected in such a way that M c B (b, r) and c (b) is the 
number appearinq in Lemma 4.2 (ii). 

Proof. The result follows immediately from Lemma 4.3 observing that 
[ltM ~ [ltB when ever M c B. 

Now, Theorems 41 and 4.2 below, represent a solution to Problem (A). 

THEOREM 4.1. Suppose that 
(i) Assumptions 4.1-4.3 hold; 

(ii) Given e > 0 and b > 0, e E e and yES, there exists a nonneqative inteqer 
r such that 

sup I p(y,z,a,t)(Rr(z)+1) ~e 
aeA(y) zr$F, 

teB(o,O) 

Then, for every GEB, yES and every policy D, 

Vn (0~) (y) ~ v* (G) (y) 

where 80:= (00 , ... , en)· 

P~·8 - almost surely, 

(4.6) 

Proof. Observe that Lemma 4.1 (ii) and the measurability of the 8~ s, 
imply that vn(00)(y) is measurable for every yES and n=O, 1,2, .... Now, 
let [0 11 jn = 0, 1, 2, ... } be an arbitrary sequence in e converging to GEB 
and take M: = { e, 80 , G 1 , ... } . We are going to show that the conditions 
in Theorem 3.1 are satisfied. 

Let yES. e > 0 and b > 0. Using assumption (ii), we see that there 
exists a nonnegative integer r such that 

sup I jp (y , z, a, t) - p (y, z, a, G)J (Rr (z)+ 1) ~ 2e, (4.7) 
ZrfF, 

where sup is taken over a EA (y) and tEB (b, G). 
Now, Lemma 4.1 (i) implies, since F, is a finite set , that we can find 

b1 ~ b such that 

sup [jr (y, a, t)-r (y, a, G)l + f3 I jp (y, z, a, t) -
zeFr 

- p (y, z, a, G)J (Rr (z)+ 1)] ~ e, (4.8) 

where sup is taken over a EA (y) and tEB (b 1 , G). 



Finite-state approximations 

From (4.7), (4.8) and Corollary 4.1, we obtain that 

E(y,M,en,e)~o as n~oo. 
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I 
(4.9) 

Finally, it is clear that assumption (ii) implies that condition (ii) in 
Theorem 3.3 holds and (4.9) is precisely condition (i). Thus, we conclude 
that, for every yES, 

v (eo) (y) ~ v* (e) (y) as n~ oo, 

Now, the result follows since {Jn ~ ff P,;v,o - almost surely. • 
Under additional assumptions a result stronger than that of Theorem 4.1 

can be obtained as follows. 

THEOREM 4.2. Suppose that Assumptions 4.1-4.3 hold, and that for each e E E) 

the followinq is satisfied: 
(i) Ll (6, &) ~ 0 as 6 ~ 0 (cf. (4.3)}. 
(ii) sup I lp(x,y,a,t) -p(x,y,a ,e)I(R,(y)+l)~o as 6~0. 

(x,a)eK yeS 
reB(o,8) 

(iii) sup L p (x, y, a, e) (R, (y)+ 1) ~ 0 as r ~ oo. 
(x,a)eK y<$F, 

Then. for everv 8 E e, x E S and every policy D, 

11 r" {!J(;)-r* (O) II n+ IIHolrn ({}0)- v* (e)! II ~ 0 P,D.II_ almost surely. 

Proof. Let {&nln = 0, 1, 2, ... } be a convergent sequen~:e in e. We are going 
to show that the conditions in Theorem 3.4 (ii) are satisfied. Let e = lim en 
and M:= {e, e0 , e1 , ... }. Then, assumptions (i) and (ii), together with Corol-
lary 4.1 imply that · 

E(S,M,en,e)~o as n~oo. (4.10) 

Now, Corollary 4.1 and assumption (iii) imply that 

e (r, M, e) ~ 0 as r ~ oo, 

and since F, is finite for r = 0, 1, 2, ... , we have that 

[}it M is bounded on the sets F,. 

(4.11) 

(4.12) 

From (4.10H4.12) and Theorem 3.4 (ii) we conclude that, for each eEe, 
llvn(e())-v*(e)lln+IJHolvn(e())-v*(e)IJJ~o as n~oo. (4.13) 

The result follows observing that {jn ~ e P,;v,o- almost surely. • 
In Theorems (4.1) and 4.2, the policy D is an arbitrary policy and can 

make no use of the registered history of the process. At the n-th stage, 
the observed information vector in is used to obtain the estimation {Jn (in) 
and, as n increases, the controller is gaining knowledge about the true 
parameter value (because {en} is a sequence of se estimators of e) and, 
it is desirable to use this knowledge to choose actions that, in some sense, 
are "nearly optimal", at least as n ~ oo. 
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DEFINITION 4.1. (TNVI adaptive policies; cf. [6]). Suppose that Assump
tions 4.1 and 4.2 hold and let {e 0 , e1 , ... } be any sequence in e. Let d be 
an arbitrary stationary policy. For each n = 0, 1, 2, .. . , define a function 
fn (e0, · ): S ~A as follows: 

fn (eo, x): = arg max [r (x, a, en) + f3Ep (x, y, a, en) Vn - 1 (eo- 1
) (y)] if XEFn, 

aeA(x) 

fn (eo, x): = d (x) if xf#Fn, 

where vk (e~) stands for the k-th function produced by the TNVI scheme 
in Definition 3.1, with v_ 1 = 0. Now, define a (deterministic) policy fj = 
= {Dn ln = 0, 1, 2, ... } as follows: 

Dn Un): = fn (Oo Un), Xn), n = 0, 1, 2, ... 

for ln = (X 0 ,A0 , ... ,Xn_ 1,An- I>Xn)EHn. The policy D thus constructed IS 

called a TNVI adaptive policy. 

REMARK 4.3. We suppose that fn (e0, x) can be selected in such a way that 
fn ( ·. x) becomes a measurable mapping from en+ I in A (x) for each xES. 
This is possible if Assumption 4.2 holds (see, for instance, [12], Theorem 12.1} 
Observe that Theorems 4.1 and 4.2 hold when D is substituted by D. 
Finally, note that b depends on what stationary policy d is employed to 
define b (/ 11 ) if X n f# Fn- However, we do not indicate explicitly this depen
dence. 

To study the asymptotic optimality properties of D, we introduce the 
following definition. 

DEFINITION 4.2. Under Assumption 4.3, define cp: K X e ~ R by 

cp (x, a, e): = r (x, a, e) + f3Ep (x, y, a, e) v* (e) (x). 

REMARK 4.4. cp (x, a, 8) has been used as a measure of "goodness" of taking 
action a when the present State is X and (J is the true parameter Value; 
see, for instance [1], [6] or [13]. As a consequence of the optimality 
equation, we have that cp ~ 0. The relation of cp to asymptotic optimality 
is given by the following relation, whose proof can be found, for instance 
m [6] or [13]. 

For every policy D, eEe and xES, 
00 

I [3" - N E~·0 cp (Xn, An, e) = VN (x, e) - E~·0 v*(e) (XN) (4.14) 
n=N 

(cf. Definition 1.1 (ii)). 
Using (4.14) and the fact that cp ~ 0, we obtain the following result. 

LEMMA 4.4. A policy D is ADOS (when e is the true parameter value), if 
and only if, for every x E S, 
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E~·8 cp (Xn, An, e)~O as n~ oo. 

The next Lemma will play an important role m the answer to 
problem (B). 

LEMMA 4.5. Let {en In = 0' 1' 2' ... } be a sequence in e converging to e and 
let M: = {e, e0 , e1 , .. . } . Then 

(i) cp(x,a,e) ~2~9 (x) for every (x,a) EK 
(ii) cp(x,fn(e(i,x),e) ~E(x,M,en,e)+ H9 dn-I (x) + dn(x), xEFn. 

(iii) ll cp ( ·, fn (e(i, · ), e) lln ~ E (S, M, en, e) + IIH9 dn-tll + lldnlln 

Proof. (i) cp (x, a, e) ~ lr (x, a, e)l + f3L'p (x, y, a, e)l v* (e)(y)l + lv* (e) (x)l 

~ R9 (x) + {3H9 ~9 (x) + ~9 (x) ~ 

~ R8 (x) + ~9 (x) - R9 (x) +~9 (x) = 2~9 (x). 

(ii) Writing a instead of fn (e0, x) we have that 

cp (x, a, e) = [r (x, a, e) - r (x, a, en) + {31:' (p (x, y, a, e) -

- p (x, y, a, en) Vn-1 {y)] + [r (x, a, en)+ 

+ {3L'p (x, y, a, en) Vn-1 (y) - V* (x)J + [L'p (x, Y, a, e) (v* (y) - Dn-1 (y))] 

where vk stand for the k-th function produced by the TNVI scheme with 
v_ 1 = 0 and v* stands for v* (e). In the right hand side of the above 
equality, the first and third terms in brackets are bounded in absolute 
value by E(x,M,en,e) and H 8 lv*-vn-t l (x) respectively, while, for xEFm 
the second one is dn (x). This proves (ii) and (iii) follows from taking 
supremum over xEFn. 

Now, Theorems 4.3 and 4.4 below refer to the asymptotic optimality 
properties of the TNVI adaptive policy f5 a{ld represent our solution to 
problem (B). 

THEOREM 4.3. Suppose that the conditions in Theorem 4.2 hold. Then, for 
every eEe and every x ES, 
(i) cp(Xn,Dn(In),e)IFJXn)~O as n~oo P.Jj·9 - almost 

X surely, where IB 
stands for the indicator function of the set B. 

(ii) cp (Xn, fjn Un), e)~ 0 in P/5·8 - measure. 

Proof. (i) We have shown that, under the conditions in Theorem 4.2, (4.10) 
and (4.13) hold. Then, from Lemma 4.5 (iii) we obtain that, for every 
sequence {enln = 0, 1, 2, ... } converging to eEe, 

llcp(·,Jn(e(i,·),e)lln~o as n~oo . 
This gives the result, since en~ e P,;D·9- almost surely. 
(ii) Let D be any policy. Then, for n ~ 1, and r ~ 0 
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E~·0 
(gfo (Xn) ls-F, (Xn)IXn- 1 = y, Dn-1 =a)= 

= L p (y, z, a, 8) gf0 (z) ~ st(r, 8) 
z~F, 

where, 

st(n, 8) := sup ·L p (y, z, a, 8) gf8 (z). 
(y,a)e K zf'F n 

Thus, 

E~·0 (gfo (Xn) Is-F, (Xn)) ~ e1 (r, 8) . 

and then, from Lemma 4.5 (i), we conclude that 

E~·0 l<p (Xn, Dn (In), 8) ls-Fn (Xn)l ~ 2el (n , 8), 

(4.15) 

(4.16) 

(4.17) 

In particular, (4.17) holds with D = fj and from assumption (ii) in Theorem 4.2 
we obtain that e1 (n, 8)-+ 0 as n-+ oo. Finally, since L1 convergence is stronger 
than convergence in measure, we conclude that 

<p (Xn, Dn (In), 8) Is-Fn (Xn)-+ 0 in P!·0 - measure. 

This fact, together with (i) proves (ii). 

REMARK 4.5. We observe that the proof of (4.16) has general character, 
that is, depends only on the definition of e1 (n, 8). 

THEOREM 4.4. Suppose that 
(i) Conditions on Theorem 4.1 hold. 

(ii) sup L p(x,y,a,8)(R,(y)+1)-+0 as n-+oo for every 8Ef9. 
(x,a)eK y~Fn . 

Then, for every 8EB, xES, 

E~·0 (<p (Xn, Dn (In), 8))-+ 0 as n-+ ~' 
that is, the TNVI adaptive policy fj is ADOS. 

Proof. Let 8EB. Observe that, from Lemma 4.2, there exists a constant 
c such that gf0 ~ c (R,+ 1). Then, assumption (ii) is equivalent to the 
following: 

as n-+ oo. (4.18) 

Let {8nln = 0, 1, 2, ... } be a sequence in e converging to 8 and take 
M:= { 8, 80 , 81 , ... } . Then, we note that under conditions of Theorem 4.1 we 
have, for every xES, 

E (x, M, 8n, 8)+dn (x)-+ 0 

Now, let c1 be a constant such that, 

gfM ~ C1 (R,+ 1) 

as n-+ oo. 

(Corollary 4.1). Then, it follows that, for k = 0, 1, 2, ... and xES, 

(4.19) 
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Hodn(x)~ lldnllk + 2c 1 sup L p(x,y,a,tl)(Rt(y) + 1). 
aeA(x) x$Fk 

Now, taking lim sup as n ---+ oo, we obtain, using (4.19) and the finiteness · 
of the sets Fk> that 

lim sup H8 dn (x) ~ 2c1 sup L p (x, y, a, tl) (Rt (y) + 1) . 
aeA(x) x$Fk 

and, letting k go to oo and using assumption (ii) in Theorem 4.1 we obtain 
that, for every x E S, 

as n---+ oo . (4.20) 

From (4.19), (4.20) and Lemma 4.5 (ii) we obtain, usmg the finiteness of 
the sets F" that 

ll <t>(-,j,,(tl~, · ),8) II, -+O as n-+oo for r = 0,1,2, ... (4.21) 

Now, observe that (4.21) and Lemma 4.5 (i) allow us to conclude, using the 
bounded convergence theorem, that 

E~·8 l <t> (Xn, Dn Un), 8)IF, (Xn)l -+ 0 as n---+ oo, r = 0, 1, 2, ... (4.22) 

and then, for r = 0, 1, 2, ... 

lim sup E~·8 l <t> (Xn, Dn Un), 8)1 = lim sup E~·8 l <t> (Xn, Dn Un), 8) ls - F, (Xn)l . 

Finally, using (4.16) and Lemma 4.5 (i), we obtain that the right-hand side 
of the above equality is less than or equal to 2e 1 (r, 8) and using (4.18) 
we obtain, since r is arbitrary, that 

E~· 8 l <t> (X n• Dn (In), 8)1---+ 0 as n---+ 00 . • 

5. Concluding remarks 

We have seen in Example 3.1 that the continuity requirement (3.1) can · 
be too weak to ensure that the sequence [vn} produced by the TNVI scheme 
converges to v* (tl). On the other hand, the stronger condition (3.6) and 
an appropriate selection of the seed are enough to ensure that { vn} converges 
pointwise to v* (8). However, an important problem is to estimate lvn (x) 
- v* (8) (x)l for x E S, and under the conditions of Theorem 3.2, such an 
estimation is possible if we have a priori knowledge about e-optimal policies. 
when 8 is the true parameter value (i.e. policies D satisfying llv (D , 8) 
- v*(8)11 ~e); since it is unrealistic to assume such a priori knowledge, we 
had to look for a different approach and, in certain way, this justifies the 
conditions on the tails of the transition probabilities imposed in sections 3 
and 4. Now, let us analyze briefly the basic Assumptions 4.1-4.3 which 
were used to solve problems (A) and (B). It is clear that the application 

·.·.:.. 



56 R. CAVAZOS-CADENA 

·of the TNVI scheme to solve these problems, require some estimation 
method like that in Assumption 4.1 and an assumption of this type seems 
to be unvoidable. On the other hand, the continuity requirements in 
Assumption 4.2 seem natural and are satisfied in most practical cases. 1 

Finally, among the conditions in the (boundedness) Assumption 4.3, the 
most restrictive one is condition (ii). However, it can be weakened and our 
solution to problems (A) and (B) still holds. In fact , the only consequence 
of Assumption 4.3 that was used in section 4 was Lemma 4.2 (ii) and it holds 
under Assumption 4.3' below. 

AssuMPTION 4.3'. There exists -rE e such that, for every 6 > 0 the following 
is satisfied: 

(i) Ll (6, -r) < 00 
(ii) There exist constants r:t. (6) ~ 0 and c1 (6) ~ 0 such that, for every xES, 

sup LP (x , y, a,()) R, (y) ~a (6) R, (x)+c 1 (6), 
aeA(x),OeB(Ii, <) 

and r:t. (6) f3 < 1. 
(iii) R, (x) is finite for every x E S. 
So, Assumption 4.3' can take the place of Assumption 4.3 and our solution 
to problems (A) and (B) still holds. 

On the other hand, we note two important features of the TNVI adaptive 
policy D: 
(i) For each n = 0, 1, 2, ... and each inEHn, the determination of Dn (in) 

depends only on a finite number of states. 

(ii) The application of the TNVI adaptive policy fj does not require a priori 
knowledge of a stationary optimal policy for every parameter value; such 
a priori knowledge is needed for the application of the "principle of estima
tion and control" of Schal ([13]). 

Finally, we mention that active research on the application of the ideas 
in [6] as well as those in the present paper to problems of priority 
assignment in queueing systems is presently in progress ([2]). 
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Aproksymacja i sterowanie adaptacyjne procesami decyzyjnymi 
Markowa z dyskontem, nieograniczonymi nagrodami i przeliczaln~ 

liczb~ stanow 

W pracy rozwa:ia site procesy decyzyjne Markowa z dyskontem, nieograniczonymi nagro
dami i przeliczalni! liczbi! stan6w, kt6re zaleii! od nieznanych parametr6w. Podobnie jak 
Hermindez-Lerma i Marcus [6] stosujemy schemat iteracyjny wartosci niestacjonarnych 
(Fredergruen, Schweitzer [4]) z procedurq dla proces6w ze skonczonq liczbi! stan6w (wpro
wadzonq w [1]). Pozwala nam to, wraz z metodi! uzyskiwania estymator6w zgodnych, na 
znalezienie optymalnych globalnych zdyskontowanych nagr6d odpowiadajqcych prawdziwym 1 

wartosciom parametr6w. Zaproponowano r6wnie:i asymptotycznie optymalni! strategi<e adap
tacyjnq. 

AnnpoKcnMaQHH u aJJ:anTuouoe ynpaoJieuue MapKOBCKHMH npoQeccaMu npunHTHH 

pemeuun c JJ:HCKOHTnpooauueM, ueorpauuqeuubiM npeMupooauueM c nepequcJiu

MbiM 'IHCJIOM COCTOHHHH 

B pa6oTe paccMaTpnBaiOTCll MapKOBCKHe rrpol.\eCChi rrpHHliTHll pernem!il. c .[(MCKOHTHpo
BaHMeM, HeorpaHM'IeHHhiMH rrpeMM5IMH If rrepeqMCJIHMhiM qlfCJIOM COCTOliHI!H, KOTOpbie 3aBMCl!T 
oT Hen3BeCTHhiX napaMeTpoB. TaKlKe KaK XepHaH.[(ec-JlepMa 11 MapKyc (6] 11CIIOJih3YeM 

Control and Cyh. ~- 4 
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RTepauwoHHYIO cxeMy HeCTaUROHapHbiX 3HaqeHRH (<l>e~eprpy:m, Illaaiiuep [4]) c npoue~ypoii 

~JHI npoueccoB C KOHeqHbiM qi{CJIOM COCT051HMH (BBe~eHHOH B [1]). 3TO, BMeCTe C MeTO~OM 

TIOJiyqeHM51 COfJiaCOBaHHbiX OUeHOK, TI03BOJISJ.eT HaXO~Il.Tb OTITMMaJibHb!e fJI06aJibHhie ~MCKOH· 

THpOBaHHbie npeMMH, COOTBeTCTBYIOIUHe ~eHCTBMTeJihHb!M 3HaqeHHSIM napaMeTpOB. IJpeMO

lKeHa TaKlKe aCil.MTITOTMqeCKM OTITil.MaJibHa51 a~aTITMBHaSI CTpaTefHSI. 


