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A practical stochastic approximation algorithm for finding unconstrained minima of
nonsmooth and nonconvex functions is described. It uses an auxiliary filter which averages
stochastic subgradient estimates observed, thus producing directions for subsequent iterations.
Stepsize coefficients and filter gains are controlled on-line on the basis of information gathered
in the course of computations according to the rules derived from the concept of the
regularized improvement function. Convergence of the method with probability 1 is proved,
asymptotic properties are studied and a numerical example is described.

1. Introduction

The purpose of this paper is to analyse properies of a certain stochastic
subgradient algorithm for solving the problem

‘minimize F (x) over xeR", (1)

where F:R"— R' is a lower —C? function (see Remark 3 in the next section
and [10]). We assume that neither the values of F nor its subgradients are
available. Instead of those, at any point x* one can only obtain a random
vector & = g*+r*, where: g*€dF (x*) (OF (x*) denotes the subdifferential of F
at x¥, cf. [10]) and r* is a random noise of zero expectation. We shall call
£¥ a stochastic subgradient of F at x*. Such a situation is typical in stochastic
programming problems with objectives of the form F (x)= Ef (x, 0), where
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0 is a random parameter and E denotes the expected value. Then it is
hard to evaluate F or its subgradients, but stochastic subgradients can be
calculated with less effort (cf. [1], [7]).

In [1] a stochastic subgradient method for solving problem (1) in the
convex case was suggested, which consists in the following iterations

P gt B k=041, (2)

where 7, is a nonnegative stepsize coefficient. Since then the method has
been extended to nonconvex problems (cf. [1], [3], [5], [7]) and various
improvements consisting in the application of the averaging of directions
have been suggested (cf. [1], [3], [4], [11]). But still one of the crucial
questions connected with applications of method (2) and other recursive
stochastic algorithms is the choice of the sequence of stepsizes {7,}. The

general theoretical rules: 7, measurable with respect to (x° x',..,x*},

oo o0

Y 7y =00 w.p:l, Y. Et} < oo, are insufficient in practice. Obviously, the
k=0 k=0
sequence 1, = To/(k+1), k=0, 1, ..., satisfies these conditions, but with these
stepsizes practical convergence of method (2) is very slow (see the example
in Section 6). Therefore, in order to enhance convergence far from the
solution of problem (1), some on-line rules are needed to determine stepsizes
depending on the behavior of method (2).

In [2] and [11] a constant stepsize was applied and using some heuristic
tests after a series of iterations it was checked whether the stepsize was
too large or too small. Another approach (cf. [6], [12], [13], [14], [15])
is based on the ideas borrowed from the deterministic concept of directional
minimization. We discuss it in more detail in Section 2 (see Remark 1),
where we also describe our algorithm. In Section 3 properties of the stepsizes
are analysed. In Section 4 we establish convergence of the method. Section 5
concerns its asymptotic properties. Finally, in Section 6 some modifications
of our algorithm are proposed and a numerical example is studied.

We use {-,-» and || to denote the usual inner product and norm in
n-dimensional Enclidean space. For a set X we denote by diam X its
diameter, ie. diam X = sup |x—y|. Abbreviation w.p.1 is used for “with pro-

x,yeX
bability 1"

2. The algorithm and assumptions

The algorithm generates sequences of random directions {d*} and points
{x} in R", k=0,1, .., according to the following recursive formulae

d* = (E+ I, 3, d 7 1)/(14+7), . (3)
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Koo f R 1.7k ko k
xﬂ.:{x min {t; (1+7,), t/ld']} &, if x*e X, @

x°, if x*¢X,

where X is a certain compact set such that arg min F (x) = X, and &* is

xeR"

a stochastic subgradient of F at x* ie. & = g"+r* where ¢*€dF (x*) and
is a random noise. In (3) and (4) 7, is a positive stepsize coefficient,
7, is a nonnegative aggregation coefficient, I, e (0, 1} is a reset coefficient
and t > 0. At the starting point x°e X, we set d ! =0 and thus it follows
from (3) that the direction d* is a convex combination of the null vector
and the previous stochastic subgradients &', i =0, 1, ..., k. We shall call it the
aggregate stochastic subgradient. From (4) we deduce that each time the
algorithm exceeds set X, we return to the starting point. This concept allow
us to stabilize the whole method.

The stepsizes |t} are computed recursively as follows:

7o > 0,
T, = min {7, 1, [expmin (n, — Ny o u—J; 314~ 1)1}, . ©)
k=1,2, s
where
wy = (E*, AXY + A |4x¥?, (6)
Ax¥ = x¥—x*"! and 7>0, >0, «a>0, >0, A are fixed parameters.

The coefficients N, J; in (5) are binary multipliers satysfying the relations:

N, =1, if x*leX,

. e (7
N, =0, if X" TEX,
Jief0,1}, i A=A e

Ty =1 | ¥ o (0. 0

where A is a small positive constant.

(8)

Similar rules are used for determining the aggregation coefficients {y,}:

Yo=71 20, ©)
Yo =min {7, 91 exp (= Ny foo— Ly ooy %71} k=2,3,., :
with
vp = I—y (€&, AXF 1) 4+ 4 {dxk, AxX*71)) (10)

and some parameters 7 >0, f>0, x> 0.
Finally the reset coefficients {I,} are defined as follows:
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LelO,N,}, if &Y<,
I,=0, it E >
where >0 is a fixed threshold.
In further considerations we denote by .% the o-subfield generated by
(x% x', ., x5 &% &' ., &'} and by E, the conditional expectation with
respect to Z.

(11)

Remark 1. To motivate the rules (5) and (9) suppose that the algorithm
operates in the interior of X (N, =1) and t = oo. For given x*~! and d*~%
consider the regularized improvement function

o (t, 7, )= E [F (@, 9, L, ¢ ) -F (M +

+%A|x*(r,y,I,c*-‘)—x*-‘ﬁ], (12)

where x* (z,y, 1,8 ") is defined by (3) and (4) ie.

X, 7, L =" =g (I + Iyd* ).
A natural and the most convenient solution would be to choose 7,_,
and y,_, so as to minimize (12). This is however exteremely difficult to

realize. Therefore let us use some values of 7,_, and 7y, ,. After simple
calculations one obtains

E i t*—l >
i “hm"k €06, P (Th—15 Yi—1> Li—1), (13)

provided that E,r* =0. Thus the vector (u,,r,) may be interpreted as
a stochastic subgradient of ¢, (-,-, I;—¢) at (74—, yx-1) It is used in (5)
and (9) to correct the coefficients 7, , and y,_, for the next iteration.
The additional terms J, dt,_, and I,_, J;_, »#y,—, in (5) and (9) are
to force a slow decrease of {r,} and [y,} in the case of u, and v, being
close to zero.

Remark 2. From (4) we deduce that the sequence {x*} is bounded and {x*} =
< X, = {yeR":ly—x| <t for some xe X}. Moreover [Ax*| < T= t+diam X.

Similar rules for determining sequences {z;}, '&,‘} and {I,} but applied
to other algorithms were considered in [12], [13], [14]. The main difference
is that in our method after each escape from the set X the rules stop
for one iteration and the direction d* is refreshed. In [13], [14] an aggregate
subgradient method with projection was analysed. The method consists in
the following iterations

¥ = gy [x*—min {7, (1+7), t/ld"} d*],  k=0,1,., (14)
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(in [14] t = oo) where 7y is the orthogonal projection onto a certain compact
set X. In [12] an unconstrained version of [14] was considered

X1 = x*—min {z, (1+7y,), t/|d"|} &, k=0;1,.. (15)

(in both (14) and (15) the directions [d*} are computed according to
formula (3)). As proved in [13] for a convex objective F all accumulation
points of the sequence {x*} generated by method (14) belong to the set
arg min F (x) w.p.1. In [12] it was shown that for algorithm (15)

xeX

lim inf [VF (<[ =0 w.p.1,

lim sup F (x)=limsup F (x*)  w.p.l,
e k=0

VFix")—0

provided that F is differentiable, and there exist constants: L>0, u >0,
m>0 and M > 0 such, that

I[VF (y)—VF (x)] < L|y—x| for all x, yeR", (16)

F(x)=m|VF (x)I'—M for all xeR" (17) .

In this paper our aim is to weaken those rather strong assumptions
imposed on the objective F. To this end we apply another technique
of proving convergence properties of algorithm (3){11).

Let us formulate the following assumptions.

(H1) The set X is compact.

(H2) There exist a constant v and a convex, open set 4,2 X, = {yeR":'
ly—x| <t for some xe X} such that the function G (x)=F (x)—v |x|*
is convex on 4.

(H3) Ai+v>0.

(H4) igglf (x)> F (x°).

(H5) The set F (X*), where X* = {x*e X:0€dF (x*)} does not contain any
segment of nonzero length.

(H6) & = g*+r*, where g*€dF (x*) and E,r* =0 w.p.1 for all k >0.

(H7) There exist constants z>0 and § > 0 such that for any zeR" with
|z| <z, one has E, exp (¢z,*>) < S w.p.1 for all k >0.

RemMARk 3. Repeating the argumentation from [10, Theorem 6] we get that
condition (H2) is equivalent to the following: for each xeZ, there exists
some open neighbourhood .# of x such that the objective F has a represen-
tation '

F (x) = max g (x, y),
ye¥

where Y is a compact set, g:Z'x Y— R' is a function which has partial
derivatives up to the second order with respect to x and which are jointly
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continuous on the set 4 x Y (in this case F is lower — C? on the set ;).
(H2) is also equivalent to the following condition: there exists a constant
v such that for all x, ye#,, gedF (x):

F(y)—F (x) 2{g, y—=x>+v |y—x*. (18)
Hence (18) implies that F belongs to the class of weakly convex functions
on 4; (see [7], [8]).

ReEMArRK 4. Assumption (HS) is purely technical; one can hardly imagine
a function F for which (H5) doesn’t hold.

Remark 5. (H7) is closely related to the stepsize rules (5) and (9). This
assumption is similar in a sense to the Cramer’s condition for scalar variables.
It holds for each uniformly bounded distributions of [r"}. as well as for
many unbounded distributions.

From (H7) we obtain that there exists a sequence of constants (R;}
such that

E " <R; wplforall k>0, j>1. (19)

3. Properties of stepsizes

In this section we prove that the sequences {7,} and [y,], although
determined on-line in a sophisticated way, possess some of the properties
usually required from the coefficients in stochastic approximations algorithms.
Our argumentation extends and modifies the results obtained in [13].

We start from a property of the noises {r*}.

LemMma 1. For each zy >0, ¢>0 one can find sy >0 such that for any
|z| < z4, 0 <5 <55 and every k =1 one has

Eiexp[—s (& 2> +elz?)] <1 wpl. (20)

Proof: From (H6) follows that the left-hand side of (20) exists for all
0 < s <Z/zo. Let us assume that z# 0 (for z=0 (20) is obvious) and use
the inequality

exp (—ay)+exp (ay) < 2+_az [exp (—y)+exp y],

which holds for every |a] <1 and each yeR'. Setting a=s5lz/z and
y =z <r*, z)/|z| we obtain the relation

exp (—s <r*, z))+exp(s <, 2)) < 2+ (s |21/2)? [exp (—z <, 2> /lz)) +
+exp (2 <, 2> /)2))].

Let us apply the operator E, to both sides of the above inequality.
By (H7) the conditional expectation of the right-hand side does not
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exceed 2+ Cs?|z|% where C = 25/z%. From Jensen’s inequality it follows that
E, exp (s <r*, z)) = L. Therefore

E; exp (—s (", 2)) < 14+Cs? |z < exp (Cs*|21?). (21)

If 0 < s <50 =min [Z/z,, &/C}, then Cs?|z|* < s¢ |z|* and from (21) we obtain

(20) as reqmred ’ -
Let us define an auxiliary sequence of random variables

pi=7i%exp [F (¥")], k=0,1,.. (22)

LemMMA 2. There exists ¢ >0 such that for all k =1
Pk <Py exp [ =< Ny Ax*> —e (14X 2+ 14— 1)] wop.l (23)
Proof: From (5) and (22) we deduce that for k > 1
P < py—1 €xp [F (xX")—F (x* 1= N, w— J;, 0t5— 1 /a].
By (6) and (18) one has
F (x)—F (x* Y)Y —u,—J; 61— /o <
— kK, AXR = (A4v) |[AX52 =T, 014 /a. (24)

If N,=J,=1, then (23) is satisfied with & = min [A+4v, d/a}. If N, =1

and J, =0 from {8] follows that |4x*|> > A%t,_,. Then we get inequality
(23) with 92 = min x+v}f2 A%*(A+v)/2}. In the case of N, =0 we have
Ty S Tpoys X L EX and x¥ = x% (see (7), (5) and (4)). By definitions (5) and (4)
we obtain 0 < Tp_y <7,|4x" < T (see Remark 2) and p, < p,_, exp [F(x°)—

X <pey exp[ &3 (|4x**+ 1.~ ,)], where &; = lnf [F (x)—F (x°))/

_flTZ-I-T}. Choosing & = min {&,, &;, &3} (6> 0 by (H3) and [H4)) we get the

required result. =
We are now ready to derive the first important property of step-
sizes [1,}.

Lemma 3. For any s >0 one has

FTI“ < 0.

M‘i

k=0

Proof: We havé |[Ax*| < T. By Lemmas 1 (with z= N, 4x") and 2 for all
sufficiently small s >0 we obtain

E,pi <pi_;exp(—set,_1), T e

Since 0 < 1,—; <7 one has exp (—sety_;) < 1—-Cr_y, where C=[1-
—exp (—set)]/t. Thus E; p; <pi-1—Cpj-, 1-,. Taking the expectation
of both sides of this inequality and noting that p, >0, for all k >0, we

Control and Cyb. —4*
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conclude that 2 Ep; 1 < 0. Recalling the definition of {p;} (22) we get
k=0

E Etj "Sexp [sF (x")] < o for all sufficiently small s > 0. Since {x*} c X,,
where X, is compact, the sequence 1exp [sF (x")]} is bounded from below

by some positive constant. Thus Z Et}™* < oo for all sufficiently small
k=0
§>0. But 0 <1, <7 and hence s may be an arbitrary positive number,

which completes the proof. i

REMARK 6. It is clear from the proof of the above Lemma why the additional

term J, dt,_, has been inserted into the exponent in (5). Without it (with

8 =0) one can only show that ) E (tj_, |4x"*) < oo, for s> 0, but this '
k=1

is insufficient for convergence w.p.1. But as proved in [14] in the convex

case this condition ensures that for the algorithm with projection (16)

(with y, =0, t = c0) the sequence of weighted averages:

k k
=)y ux/Y n, k=01,.,
i=0 i=0

converges to a solution of the problem mi’r(lF{x) w.p.1.

Let us pass to the analysis of the directions [d*}.

LemMA 4. For all k =0 one has
(M+y)d =& <Ly & wpl (25)
Proof: By (3) for k =1 we have

Iy I. v -
141 dk__" s =gl o] 4 o1 -'i—l 4 k 7'k k=1
(14+7y4) BT [( Yi-1) ] 714‘?&—1 5

From (11) we obtain that I;, =1 and I, |&" ! < & Hence from the above
inequality follows the relation

L, v, N _ Ly ¢

14y d =& < —H— 1+ ) d 1 =8+ —F &

I(1474) * T+7, I(1+74-1) il | T+9 4
Since (147,)d°—£° =0 we get by induction assertion (25). i

From Lemmas 3 and 4 we deduce the following useful results:

LemMma 5. For any integer j =0 one has:

i (2 |1E%9) < oo, Z E (t21d"¥) < «o and Z E (N, 221 |4x") <
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Proof: We have |/ < 27|g*/ + 27 |r*|/. The series ) E (i7|g")) is convergent
k=0

by Lemma 3 (s= 1) and by the boundedness of subgradients {¢*} in the
compact set X,. Next it follows from (5) that 1, < t,_, exp 7 and E (7} [*})) <
<exp (2n) E (t7-, E, Ir*P) < Rjexp (2n) Et?_, since t,_, is #, — measurable
dnd E, ' <R; (see inequality (19)). Using again Lemma 3 we obtain

Z E (i} /) < oo and Z E (1 |&%) < co. Next from Lemma 4 we deduce

that |d*)} < 27 |d*— 6":’(1+}’,()!J'+2"ié"|J <2 EI4 20|, This proves our second
assertion. The third assertion is a simple corollary of the second one and
“of definitions (4) and (7). |

In the following two lemmas we prove that the rule (5) does not reduce
the stepsizes too rapidly.

LEMMA 6. kliﬁrﬁrﬁ:ﬁ Te- 1/t =1 w.p.l and }Lnﬂg(l—tk Jud =0 wp.l.

Proof: Consider the exponent in (5). From Lemmas 3 and 5 (j=2)
we see that 1, -0 w.p.l and N, |4x*| -0 w.p.l. We shall prove that

N, (&, Ax*> -0 w.p.l. We have N, (&, Ax*> = N, {g", Ax*> + N, (¥, 4x*>.

The sequence {g*} is bounded, hence N, {g*, 4x*> -0 w.p.l. Next, by (19),
(H6) and Lemma 5 (j=2) the series ) N, <", 4x*) is a convergent
k=1

martingale and thus N, (¥, Ax*> -0 w.p.1. Consequently, the exponent in
(5) tends to 0 w.p.l and 7, /7, » 0 w.p.l, as required. Moreover, we also
see that there exists a random index m(m < oo w.p.l) such that for all
k = m one has both 7, _, /7, = exp (N, cuy+J; 81— ) and N, ou,+J, 01— < 1.
Since exp (-) is convex and increasing, the two preceding relations imply
that for kK > m we have

=1 y/1l < e(Ny o |uy| +07, )
and thus
1=y /ul '] < e (N o |E¥] 14X [r¥)+
+ Ny o |2 |AXKP? [P+ 6ty ). (26)
We have N, [€"] |4x*| [F"] < Ny |4x*| [F*1>+ N, |g*| |4x"| [r*]. By (19) E; |r|* <Ry,
for all k > 0. Therefore E (N, |4x*|%|r*|*) < R, E (N, |4x*|?). From Lemma 5
(j = 2) we deduce that ki E (N, |4x*> |r*|*) < o0, which implies that N, |4x*| x

x |12 -0 w.p.l and N, |4x* || -0 w.p.l. Hence N, | |4x*| |r*| =0 w.p.1.
In a similar fashion we treat the other components of the right-hand
side of (26) and obtain the second assertion of the lemma. The proof
is complete. [ |
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Lemma 7. ) 7= wpl.
k=0 . ;

Proof: From Lemma 3 we deduce that t,—0 w.p.l. By Lemma 6 7,/t,_; =
=exp (— N, auy+J, 07, ,) for large indices k. Therefore one must have

o a0

Y, (Nyu+1,_)=c0 w.p.l. Consider the series ) N,u,= Y (N,<g"4x*)+
k=1 k=0 k=1

+ N, (*,4x") + N, 4 14x4?). Since ) N, |4x')* < oo w.p.l by Lemma 5
k=1
(j =2), these components may be left out of account. Next, by (H6),

(19) and Lemma 5 (j=2) the series ) N, (", 4x*) is a convergent
k=1

[+ &)

martingale and hence does not matter for Y (N, u,+1,_,) being infinite.
k=1
Therefore

i (N, <g" Ax*y +1,_ )= 0 w.p.l. 27
K=

By the compactness of X,, there exists § such that {g*, Ax*) < g |4xY|
for all k = 1. Therefore in view of (7), (4), (5) and Lemma 4

N, {g¥, Ax*) < Ny g 1AxH < gy [I(1 4y ) d* ' =871+
+IE ] < gexp nti—z (= Yu—1 EH 1"+ IF ) <
<Cy T2 (Cz‘f‘h'hlf),
with some constants C, >0 and C, > 0. By (19) we have E, , [r*"!'| <R,.

Thus we obtain the inequality N, {g*, 4x*> < C, 1,2 (C3+|F* Y —E,_, |Ir'* '),
where C3 = C,+R,. Since 7;-, is %.,—measurable and E,_, (Ir*=1| =

o0

—E,_ ") <R,, the series ) 7, , (" '|—E,_ [*"']) is a convergent
k=2

martingale. Therefore (27) implies that
Z {Cl C_'! Tk_2+1.',‘ 1)=CC Wpl,
k=2

which yields the required. result. &
Let us now pass to the analysis of the aggregation coefficients {y,].

LeEmMma 8. kllm Iy =0 wp.l

Proof: Obviously, it is enough to consider the case when I, = 1 infinitely
often. From Lemma 5 (j=4) we deduce that N, IAx"[s’\/q_, -0 wp.L
Hence by (8) one can choose a random index m (m < oo w.p.1) such, that
Jy, =N, for all k>m. Define .# ='k:I, ;J, ,=1}. By (11) this set is
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infinite and I, _, J,_, = I;_, for k > m. Hence, from (9) and (10) we obtain
lim sup y, = lim sup ;.
k= oo k=
ke
Suppose that lim sup y, = ¢ > 0. Proceeding as in the proof of Lemma 6

k= oo
we obtain N, v, —0 w.p.l. Let # < .# be such that y,—>¢ for k— o0,
ke #. From (9) we then get &= gl_’l'l; T S lirP_.suklp Ye—1 EXP(—xyi-1) <
ke % ket
< lim sup y, exp (—xy,) < &. We have arrived at a contradiction, which

k= o0

completes the proof. , H

4. Convergence

Having established useful properties of stepsizes and aggregation coef-
ficients we shall prove that our method is convergent to a stationary point
of problem (1) w.p.1. Define

X* = {x*eX:0edF (x*)}.

We start from the following lemma.

LemMA 9. There exist sequences of random vectors [s*} and {w*} such that
for all k =0 one has: :

1= (31 (g + s%)+wk, if eX,

1x°, if  x"¢X, (25)
where: g*edF (x¥), Jim 5| =0 w.p.1 and |} wH < oo wp.l.
i k=0
Proof: Let x*€ X. Denote t, = min {t, (1+7,), t/|d*}.
Then
xktl = xk—¢ d* (29)
We have:

tid =1 (1+y) d+[t—t (1+y)] d =
=g +n rr+(1+p) d =1+ i—nu (1+p)] d =
=T @+ P Pl Hy) B = E (=1 [T ]+
+ [t — 1 (147 d (30)
Using this identity in (29) we get
= (14p)d =+ =1 /1) 1,
wh =1 P+ (= (1 + 7] d*.
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Directly from Lemmas 8, 4 and 6 we see that sl = 0 w.p.l. By (H6),

(19) and Lemma 3 the series ) 7,_,r* is a convergent martingale. Finally,
k=1

the series Z [ty~1i (1+7,)] d* is convergent w.p.1 since t;, = 7, (1+7,) for all
k=1

sufficiently large k. The proof is complete. 4]
We are now ready to prove our main result. In [7] for solving problem (1),
the following algorithm with deterministic stepsizes {t,] was proposed

1 fx’;—r‘. €k=xkﬂfk q"+w", %f x:EX, (31)
12, if  x¢X,
where: g*edF (x"), |Z w"| <o wpl,
k=0
%20,y =00, limt=0 and lim—L =1 (32
k=0 koo ) k— o Tk

By Lemma 9 our algorithm differs from (31) only by the existence of the
sequence {s*}. One can. easily verify that this sequence does not affect its
convergence properties (see [7, Theorem 1, pp. 94-100]). Next, from Lemmas 3,
6 and 7 we deduce that conditions (32) are satisfied w.p.1. Hence following
the argumentation from [7, Theorem 1, pp. 94-100] or [8, Theorem I,
pp. 109-116] (for a deterministic algorithm, slightly different form (31)) we
get our convergence theorem (since we work on paths it doesn’t matter
that in (28) the sequence [7;} is random).

TueoreM 1. Assume (H1) to (H7). Then almost surely the sequence {x*}
generated by algorithm (3)H11) only finitely many times leaves the set X.
Moreover the sequence |F (x*)} is convergent w.p.l and all accumulation points
of the sequence {x*} belong to X* w.p.1.

5. Some asymptotic properties

Although our aim is to accelerate convergence far from the solution
of (1), it could be interesting to verify whether our stepsize rules change
asymptotic properties of the method when compared with the classical
approach (cf. [5], [9]). Clearly the crucial question here is the asymptotic
behavior of stepsizes {7,} and {y,}. It follows from Theorem 1, that for
large k equations (4) and (15) are equivalent. Thus N; =1 for large k.
Next, by Lemma 5 (j=4) |4x*|/\/t,-1 =0 w.p.1 and J, = 1 for sufficiently
large k. Hence we can follow the argumentation from [13, Theorem 2].
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TueoreM 2. Assume (H1) to (H7). Additionally suppose that F is continuously
differentiable in an open set 4* containing X* and |[VF (x)—VF (y)| < L|x—y]
for all x, ye 4™ and some constant L. Then

kh}E k+1) 1, =1/0 w.p.1. (32)

Moreover if there exists a random index ko (ko < co w.p.1) such that I, =1
Jor all k = kg, then

klirg (k4 1)y, = 1/x w.p.1. (33)

By Lemma 5 (j = 4) and Theorem 1 the conditions used in the second

part of Theorem 2 hold if the noises {r*} are uniformly bounded and the
reset coefficients are defined as follows (compare with (8) and (11)):

L,e {0, N}, if |Ax* = A /t-y,

I§‘=I if |Axk|<A\.-'Tk_l,

Using the results of Theorem 2 we estimate the convergence rate of our
method in the smooth case. We start form the following definition.

DermiTion 1. We say that the essential supremum in the sense of
the expected value of a random value does not exceed c¢ (we write
Jim sup Ez, <c¢), if there exists g >0, a function h:[0,¢&,]— R!, right
s 1

continuous at zero such that h (0) = ¢ and for any g, = ¢ > 0 one can choose
random sequences [a,} and [b;} satysfying the following conditions:

z, = ay+ by, for all k=0,

. (34)
limsupa, <0 w.p.l,
k=
lim sup Eb, < h (). (35)

k—+w

Similar definition was considered in [9, p. 103]. Having established the
definition of the essential supremum we can estimate the asymptotic properties
of our algorithm. These properties are stated in the following theorem.
Tueorem 3. Let the conditions of Theorem 2 be satisfied. Assume that the
noises {r*} are uniformly bounded and & <v (see (H2)). Then

LR,

. = k%
llI:lﬂS;lp Ek[F (x")—F*] < =0 (36)

where: F* = mjg F (x) and R, = E; |r*|> w.p.1 for all k = 0.

Proof: Let Q be the sample space on which the process {x*} is defined
and let Q, be the null set excluded in Theorem 1. Let wé¢Q, and consider
the path {x*(w)}. Henceforth we shall for brevity omit the argument w.
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From (18) and the fact that v > 0 we obtain
1
F (x)—F* QT IVF (x) for all xeu, (37)

Next, by Theorem 1 VF (x*)— 0, x* - x* w.p.1, as k - oo (from (18) follows
that X* = {x*} in this case) and for all sufficiently large k (see (29)
and (30))

A = g (14y)d* = —1, VF (") — 15— ¥ —

—«cﬁ._n(f _l)rk—rk_nlw)d*—é*l (38)
K=
By (5) and (6) for C; = (exp n—1)/n we have

Ty 1

L Ci INy o +J . 01| € Cy 1y (39)

Ti—1
for some constant C,. From Lemma 4 we deduce that

I(1+74) dk__ 2 < Ly € (40)
Using (32) and (33) in (38)+40) we get

1
AxK Y = —1, VF (xk)_rk—l r+o (_k_'j)s (41)
; 4 1 ’
where hnkl sup k* o )| <® w.p.l. Hence we obtain
r*|? 1
|Axk+1|2 m-{-o( ) Wpl (42)

1
and llm ko (kz) 0 w.p.l. By (41) and (42)
xk+1) < F{’CH'{"(VF (xk)’ Axk+1>+L|Axk+1|2 sy

8%k (k+1) k)
Introducing a new variable z, = k [F (x*)— F*] (43), (37) and (32) yield

(k+1)— 2
Zie x[l—w] Zn—f—ﬂ—(k%*l)rk_l V(X4 +

2
= F (x)— 7 [VF (x")> — 14—, {VF (x"), "> + = o (L) (43)

k 5%k

vo(Nolior=8 (1], IR
A & To\E /1T

—(k+1) Ty <*,VF (4> +o0 (%) (44)
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Let é>0 be any constant such that v—3—e&d > 0. Then [z} has the
following representation

—6—e8\  LIFP?
Zk+1$<l—%)zk+%—[k+l)rk_l(r VF (x> +

& P S
pobii e, )

where p;—0 and 5,—0, as k— oo w.p.l. Hence from (45) follows that
zy=ay+by, k=1,2, .., where

y—0—¢&o . —& Sp—E&
(lk+;=(1— )ﬂk+ L o+ a

ok k k-’

and

—§—ub LI
bkﬂs(l—%)bﬁ- (';\' —(k+1) 1y <* VF 5 *)>+—

One can easily check that since for sufficiently large k p,—&<0 and s,—+ <0
w.p.1, lim sup a; <0 w.p.l. Moreover, since t,-, is F-measurable E, r* =0

k—+o

d—ed LR
and E, |r|? <R, Eb, . s(l — TE) Eb,+ 52;-&-;. Therefore linkLs_up Eb, <
LR 262
Lr‘ and the theorem follows. L.
d (v—0—ed)

Following the above argumentation one can easily prove that in the case of
T, =1/[0(k+1)], ys=0, for k=0, 1, ... (the classical approach) the estimation
(36) holds as well. Thus our rules for determining stepsizes and aggregation
coefficients do not improve the rate of convergence of the stochastic approxi-
mation algorithms. It should be stressed however, that relation (36) can be
observed after a very large number of iterations (which are often impossible
to perform due to time limitations) and practically the most important is
the behavior of the algorithm in the phase when its asymptotic properties
do not manifest themselves (see the example in Section 6).

It is worth mentioning that the estimate (36) attains its optimal value
for 0 = v/2. Then ltm sup Ek [F (x*)— F*] <4LR,/v*. But this result has only

theoretical 1mportance. Numerlcal experiments indicate that the value of ¢ is
irrelevant for practical computations (in our example & = 107 19),
6. Modifications of the method

The basic model (3){11) may be modified in various ways so as to
improve its practical efficiency while preserving theoretical convergence
properties.

Control and Cyvb.
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Although we assume for simplicity that E, & =g* (see (H6)), similar
results may by derived for biased subgradient estimates ie. if E, & = g* +b".
Then some additional conditions on bias terms are required. For example,
instead of (H3) and (H6) one can demand
(H3a) sup ' |b¥|/|4x"| < A+v.

ki |Axt] = 0}
(H6a) & = g*+b"+*, where g*edF (x¥), b* is Z-measurable and E, =0
w.p.1 for all k = 0.

One can easily verify that in this case all results obtained in this paper

(except Theorem 3) are in force.

RemARK 7. Assumptions (H3a) and (H6a) are satisfied if the objective
F (x)= Ef (x, 0) is differentiable on R”", its gradients satisfy condition (16)
and we use finite difference stochastic gradient estimation formulae with
difference intervals proportional to |4x*| (cf. [1, pp. 107-112]).

Crucial from the practical point of view are the values of parameters
o and f in (5) and (9). With constant values of these parameters, there
is a danger of rapid changes of stepsizes and aggregation coefficients due
to a wide range of changes of stochastic subgradients {¢*}. To avoid it one
can replace o, f, § and x with varying coefficients {o}, {Bi}, {(0x} and {4},
provided that the following conditions are satisfied (see [13]):
(H8) For all k the coefficients a;, By, 0, and », are # . -measurable.
(H9) o <oy <, a <P <@, 6 <6, <d and § <% <6 w.p.l for all k and
some positive constants g, 0,0 and o.
(H10) There exist constants T; >0 and T, > 0 such that

k
Z L(ln —Int_)=z—-T,—Tlnt wpl, k=1,2,..

i=1 %
Under (H1)+{(H10) algorithm (3){11) remains convergent, ie. Theorem 1 is
- still true.

Table 1 s .
Results of computations — adaptive stepsizes and aggregation coefficients
k T Tk xi x5 F (xY)—F (x*)
0 88.107% 1.0 —1.000 2.000 1.0-10?
50 33.107% 96-1071 —1.316 1.739 54
100 52.107% 1.3 —1.291 1.676 53
200 3.0-1073 8.2 —0.526 0.287 23
300 1.3-1073 7.0 1.074 1.150 7.3.1073
400 55-107% 2.5 1.030 1.060 87-107%
500 30-107# 99.10°! 1.022 1.047 81-1074
700 9.8-10°° 65-107! 1.021 1.042 45.107#
1000 31-107° 47-1071 1.020 1.041 44-10°%
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’ Table 2
Results of computations — the classical approach: 7, = to/(k+1), 1, =0,
k=0,1,..
k T xh b F(x*)—F (x*)
0 88-107% —1.000 2.000 1.0-10?
50 1.8-1075 —1.346 1.820 5.5
100 88-107° —1.346 1.819 55
200 44.10°° —1.346 1.818 55
300 29.107¢ —1.345 1.818 5.5
400 22-107° —1.345 1.818 55
500 1.8.10°° —1.345 1.817 55
700 1.3-107° —1.345 1.817 55
1000 88.1077 —1.345 1.816 55

On the basis of these assumptions a practical algorithm using adaptively
choosen values of {¢} and {f,} (different from that described in [13]) was
constructed. Below we present a simple numerical example.

ExampLE (Rosenbrock’s “banana valley”).
Consider the problem of minimizing over R? the function

F (x) = Ef (x, 0) = E [100 (x? —x)? +(x; — )2+ 0, x;+0; x,],

where 6, and ), are independent Gaussian variables with E0;, =0, E07 = 1,
i=1,2 F attains its minimum at x* = (1, 1), but is hard to minimize
numerically because of ill conditioning. For the purpose of testing the
algorithm, at each point x* the stochastic gradient & was constructed as
&k = V_ f (x*, 6%), where 0" was drawn from a pseudorandom number generator.
The following values of the algorithm parameters were used: t= 10'°,
=101, 7=10' n=1, =0, 6=10"1° % =10"1° and &= 10'". The
results of computations are collected in Table 1. For comparison in Table 2
the outcome of a classical approach (7, = 7o/(k+1), y0=0, k=0,1,..) is
presented. In all the above cases 7, is chosen so as to minimize
f [x°—1V, f(x% E@), EO] over t =0. \

7. Conclusions

The method described in this paper appears to be an efficient tool for
solving stochastic, unconstrained optimization problems. Its efficiency is due
to the well-known trick of averaging stochastic subgradients and to adaptive
on-line rules for determining stepsizes. The computational results indicate
that the coefficients are rapidly adjusted to proper values providing a signi-
ficant progress towards minimum. Although our algorithm has the same
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asymptotic properties as the classical method based on the harmonical
choice of stepsizes its practical efficiency is much better.

It seems that similar rules may be inserted into many other stochastic
approximation algorithms.
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Algorytm aproksymacji stochastycznej z filtracja subgradientu i z wyborem
wspolczynnikéw kroku na biezaco dla zadan niegladkich, niewypuklych i bez
ograniczen

W niniejszej pracy przedstawiono praktyczny algorytm aproksymacji stochastycznej dla
znajdowania minimum niegladkiej 1 niewypuklej funkcji celu w przypadku zadania bez
ograniczen. Do wyznaczania kierunkéw poszukiwan algorytm wykorzystuje pomocniczy filtr,
ktory usrednia stochastyczne subgradienty funkeji celu. Wspolezynniki kroku i agregacji sa
okreslane on-line na bazie informacji zebranej w czasie obliczen, zgodnie z regulami wynika-
jacymi z koncepcji zregularyzowanej funkcji poprawy. Udowodniono zbieznoéé¢ metody z
prawdopodobienstwem | oraz zbadano asymptotyczne wlasnoéci metody. Dzialanie algorytmu
zilustrowano przykladem obliczeniowym,

AJrOpHTM CTOXACTHYMECKOH annpoxkcuMaumd ¢ (uibTpaumedl cyOrpaamenta M
¢ TekymmM BbiGopoM KO3hQHIMEHTOR A8 HerJaJKHX, HEeBLITYKJBIX 3a71a4
0e3 orpaHu4eHHi

B jaunoii pabote npecTaBIeH NPAKTHYECKHI ajiropuT™M CTOXACTHYECKOH anmpoKcHManuun
JUIS HAXOXKACHHS MHHAMYMA HEerNaAKoH H HeBbIYKIOH (YHKUMM el B ciydae 3a[a4u
He3 orpanwvenuii. [ns onpeiencHus HANPABICHHA IOMCKA AATOPUTM HCMNONB3YET BCIIOMOra-
TenbHBI GUILTP, KOTOPEIH yepeauseT cToxacTuueckue cyorpagnentsl pynxunn uem. Koaddu-
IWHEHTBI 1IaTa M ArperupoBaHHs ONPEENAIOTCH HENOCPEJACTBEHHO HA OCHOBEe HH(OpMAauii
HAKOIUIEHHBIX [0 X0y BLIMHCICHMH, COTNACHO MPABMIAM, BRITCKAIOLIAM M3 WICH PETYIAPH3O-
panHOM GyHkumu ynyuinenus. Jlokaszawa cXOAMMOCTE METOAA € BEPOATHOCTBIO 1, a Takke
HCC/Ie/IOBAHL] ACHMMNTOTHYCCKHE cpoifcTBa meroma. [eiicTBue anropurma WILTOCTHpYETCH Ha
YHCJIEHHOM TPHMEPE.
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