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A practical stochastic approximation algorithm for finding unconstrained m1mma of 
nonsmooth and nonconvex functions is described. It uses an auxiliary filter which averages 
stochastic subgradient estimates observed, thus producing directions for subsequent iterations. 
Stepsize coefficients and filter gains are controlled on-line on the basis of information· gat hered 
in the course of computations according to the rules derived from the concept of the 
regularized improvement function. Convergence of the method with probability 1 is proved, · 

asymptotic properties are studied and a numerical example is described. 

1. Introduction 

The purpose of this paper is to analyse properies of a certain stochastic 
subgradient algorithm for solving the problem 

·minimize F (x) over x ER", (1) 

where F : R"--... R 1 is a lower- C2 function (see Remark 3 in the next section 
and [10]). We assume that neither the values of F nor its subgradients are 
available. Instead of those, at any point xk one can only obtain a random 
vector ~k = gk + rk, where: gk E oF (xk) (oF (xk) denotes the subdifferential of F 
at x\ cf. [10]) and rk is a random noise of zero expectation. We shall call 
~k a stochastic subgradient ofF at xk. Such a situation is typical in stochastic 
programming problems with objectives of the form F (x) = Ef (x, 8), where 

*1 This work was supported by the Research Program CPBP 02-15. 
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e is a random parameter and E denotes the expected value. Then it is 
hard to evaluate F or its subgradients, but stochastic subgradients can be 
calculated with less effort (cf. [1], [7]). 

In [1] a stochastic subgradient method for solving problem (1) in the 
convex case was suggested, which consists in the following iterations 

k=0 , 1, .... (2) 

where Tk is a nonnegative stepsize coefficient. Since then the method has 
been extended to nonconvex problems (cf. [1], [3], [5], [7]) and various 
improvements consisting in the application of the averaging of directions 
have been suggested (cf. [1], [3], [4], [11]). But still one of the crucial 
questions connected with applications of method (2) and other recursive 
stochastic algorithms is the choice of the sequence of stepsizes [ cd. The 
general theoretical rules: Tk measurable with respect to {x0,x1, ... ,xk} , 

00 00 

L Tk = oo w.p.1, L ET~< oo, are insufficient in practice. Obviously, the 
k=O k=O 

sequence Tk = T0/(k+1), k = 0, 1, ... , satisfies these conditions, but with these 
stepsizes practical convergence of method (2) is very slow (see the example 
in Section 6). Therefore, in order to enhance convergence far from the 
solution of problem (1), some on-line rules are needed to determine stepsizes 
depending on the behavior of method (2). 

In [2] and [11] a constant stepsize was applied and using some heuristic 
tests after a series of iterations it was checked whether the stepsize was 
too large or too small. Another approach (cf. [6], [12], [13], [14], [15]) 
is based on the ideas borrowed from the deterministic concept of directional 
minimization. We discuss it in more detail in Section 2 (see Remark 1), 
where we also describe our algorithm. In Section 3 properties of the stepsizes 
are analysed. In Section 4 we establish convergence of the method. Section 5 
concerns its asymptotic properties. Finally, in Section 6 some modifications 
of our algorithm are proposed and a numerical example is studied. 

We use < ·, ·) and /· / to denote the usual inner product and norm in 
n-dimensional Enclidean space. For a set X we denote by diam X its 
diameter, i.e. diam X = sup /x - y/. Abbreviation w.p.1 is used for "with pro-

x .yex 

bability 1". 

2. The algorithm and assumptions 

The algorithm generates sequences of random directions { dk} and points 
{ xk} in R", k = 0 , 1, ... , according to the following recursive formulae 

(3) 
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xk+ 1 = {xk-min [rk (1+y"), t/ldkl} d\ if xkEX, 
x0, if xk ~X, 

(4) 

where X is a certain compact set such that arg min F (x) c X, and ~k is 
xeR 11 

a stochastic subgradient of F at xk i.e. ~k = qk + r", where r/ E oF (xk) and rk 
is a random noise. In (3) and (4) rk is a positive stepsize coefficient, 
Yk is a nonnegative aggregation coefficient, hE ~0, 1} is a reset coefficient 
and t > 0. At the starting point x 0 EX, we set r 1 = 0 and thus it follows '; 
from (3) that the direction dk is a convex combination of the null vector 
and the previous stochastic subgradients ~;' i = 0, 1, ... , k. We shall call it the 
aggregate stochastic subgradient. From (4) we deduce that each time the 
algorithm exceeds set X, we return to the starting point. This concept allow 
us to stabilize the whole method. 

The stepsizes {rd are computed recursively as follows: 

r 0 > 0, 

rk = min {r, rk- 1 [exp min (IJ, -Nk rx uk-Jk chk- dJ}, 
k = 1, 2, ... , 

where 

(5) 

(6) 

Llxk = xk - xk- 1
, and f > 0, IJ > 0, rx > 0, () > 0, A. are fixed parameters. 

The coefficients N"' J k in ( 5) are binary multipliers satysfying the relations: 

Nk = 1, if xk-l EX, 

Nk = 0, if xk-1 $X, 
(7) 

JkE{0,1}, if !Li xkl ?A~, 

IAxki<A~, 
(8) 

Jk = 1, if 

where A is a small positive constant. 

Similar rules are used for determining the aggregation coefficients { Yk}: 

Yo = Y1 ? 0, 

Yk = min {y, Yk- 1 exp (- Nk fJvk- Ik- 1 Jk- 1 XYk- 1)}, 

with 

and some parameters y > 0, f3 > 0, x > 0. 

k = 2, 3, ... , 

Finally the reset coefficients {h} are defined as follows: 

(9) 

(10) 
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IkE{O, Nd, 
Ik = 0, 

where ~ > 0 is a fixed threshold. 

if 

if 

R"- 11 ~ ~. 
l~k-11 > ~. 

W. SYSKI 

(11) 

In further considerations we denote by ~ the a-subfield generated by 
{x0 ,x1

, .. . ,xk,~o,~ 1 , ... ,~k-l} and by Ek the conditional expectation with 
respect to ~. 

-' REMARK 1. To motivate the rules (5) and (9) suppose that the algorithm 
operates in the interior of X (Nk = 1) and t = oo. For given xk- 1 and dk- 2 

consider the regularized improvement function 

cpdr, Y, I) = Ek- 1 [F (xk (r, y, I, ~k- 1 
)) - F (~) + 

++A. lx"(r, y, 1, ~k-t)-xk-1121 (12) 

where x" ( r, y, I, ~"- 1
) is defined by (3) and (4) i.e. 

x" (r, y, I, ~k-1) = x"- 1 _ r(~"- 1 + Iyd"- z). 

A natural and the most convenient solution would be to choose rk _ 1 

and y,_ 1 so as to minimize (12). This is however exteremely difficult to 
realize. Therefore let us use some values of r" _ 1 and Yk _ 1 • After simple 
calculations one obtains 

(13) 

provided that E" r" = 0. Thus the vector (u,, v") may be interpreted as 
a stochastic subgradient of cp,( ·, · , J,_ tl at (r"_ ~> y" _ 1). It is used in (5) 
and (9) to correct the coefficients r,_ 1 and y,_ 1 for the next iteration. 

The additional terms J, brk - l and J, _ 1 1"_ 1 xyk ...: 1 in (5) and (9) are 
to force a slow decrease of {r,} and {y,} in the case of uk and vk being 
close to zero. 

REMARK 2. From (4) we deduce that the sequence {x"} is bounded and [x"} c 
c X, = {yER": !y - xl ~ t for some xEX}. Moreover !Lixkl ~ T = t+diam X. 

Similar rules for determining sequences {r1 }, tYd and {I"} but applied 
to other algorithms were considered in [12], [13], [14]. The main difference 
is that in our method after each escape from the set X the rules stop 
for one iteration and the direction d" is refreshed. In [13], [14] an aggregate 
subgradient method with projection was analysed. The method consists in 
the following iterations 

x" +1 = nx [x" - min {r" (1 +y,), t/ld"l} d"], · k = 0, 1, ... , (14) 
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(in [14] t = oo) where nx is the orthogonal projection onto a certain compact 
set X. In [12] an unconstrained version of [14] was considered 

k = 0, 1, ... (15) 

(in both (14) and (15) the directions {dk} are computed according to 
formula (3 )). As proved in [B] for a convex objective F-all accumulation 
points of the sequence {xk} generated by method (14) belong to the set 
arg min F (x) w.p.l. In [12] it was shown that for algorithm (15) 

XEX 

lim inf IVF Cxk)l = 0 
k-> 00 

w.p.1, 

lim sup F (x~ = lim sup F (xk) 
k-+co k-+oo 

w.p.1, 

VFix')-.0 

provided that F is differentiable, and there exist constants: L > 0, f1. > 0, 
m > 0 and M > 0 such, that 

IVF (y)- VF (x)l· ~ L ly-xi 

F (x);:?: m IVF (x)II' -M 

for all 

for all 

X, yER", 

XER". 

(16) 

(17) ' 

In this paper our aim is to weaken those rather strong assumptions 
imposed on the objective F. To this end we apply another technique 
of proving convergence properties of algorithm (3Hll). 

Let us formulate the following assumptions. 

(HI) The set X is compact. 
(H2) There exist a constant v and a convex, open set !'I; => X1 = {yER": · 

ly-xl ~ t for some xEX} such that the function G (x) = F (x)-v lxl 2 
·· 

is convex on .0£1• 

(H3) A. + V> 0. 
(H4) inf F (x) > F (x0

). 
xrf'X 

(H5) The set F (X*), where X* = { x* EX : 0 E oF (x*)} does not contain any 
segment of nonzero length. 

(H6) ~k = qk + r\ where gk E oF (xk) and Ek rk = 0 w.p.1 for all k ?: 0. 
(H7) There exist constants z > 0 and S > 0 such that for any z ER" with 

lzl ~ z, one has Ek exp ((z, rk)) ~ S w.p.1 for all k ;:?: 0. 

REMARK 3. Repeating the argumentation from [10, Theorem 6] we get that 
condition (H2) is equivalent to the following: for each x E f:l'1 there exists 
some open neighbourhood :f of x such that the objective F has a represen-
tation 

F (x) = max g (x, y), 
• yeY 

where Y is a compact set, g: f:l' x Y- R 1 is a function which has partial 
derivatives up to the second order with respect to x and which are jointly 
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continuous on the set ;'{X y (in this case F is lower- C2 on the set ~). 
(H2) is also equivalent to the following condition: there exists a constant 
v such that for all ;:<:, ye :i;, qEoF (x): 

F (y)-F (x) ~ (q, y-x)+v ly-xl 2 (18) 

Hence (18) implies that F belongs to the class of weakly convex functions 
on :1; (see [7], [8]). 

REMAR K 4. Assumption (H5) is purely technical; one can hardly imagine 
a function F for which (H5) doesn't hold. 

REMARK 5. (H7) is closely related to the stepsize rules (5) and (9). This 
assumption is similar in a sense to the Cramer's condition for scalar variables. 
It holds for each uniformly bounded distributions of [rk} , as well as for 
many unbounded distributions. 

From (H7) we obtain that there exists a sequence of constants [Rj} 
such that 

w.p.l for all k ~ 0 , j ~ 1. (19) 

3. Properties of stepsizes 

In this section we prove that the sequences { rk} and [yk } , although 
determined on-line in a sophisticated way, possess some of the properties 
usually required from the coefficients in stochastic approximations algorithms. 
Our argumentation extends and modifies the results obtained in [13]. 

We start from a property of the noises {rk}. 

LEMMA 1. For each z0 > 0, 13 > 0 one can find s0 > 0 such that for any 
izl :( z0 , 0 :( s :( s0 and every k ~ 1 one has 

Ek exp [ -s (<rk, z)+alzl 2
)]::::; 1 w.p.l. (20) 

Proof: From (H6) follows that the left-hand side of (20) exists for all 
0 ::::; s ::::; z /z0 . Let us assume that z i= 0 (for z = 0 (20) is obvious) an<;i use 
the inequality 

exp ( -ay)+exp (ay)::::; 2+a2 [exp (- y)+exp y] , 

which holds for every la I ::::; 1 and each yE R 1 . Setting a = s izi /z and 
y = z (r\ z) / lzl we obtain the relation 

exp (- s (r\ z)) + exp (s (rk, z)) :( 2 + (s lzi / z) 2 
[ exp (- z (r\ z) / izl) + 

+ exp (z ( r\ z) / lzi)J. 

Let us apply the operator Ek to both sides of the above inequality. 
By (H7) the conditional expectation of the right-hand side does not 
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exceed 2 + Cs2 lzl2, where C = 2S/z 2 From Jensen's inequality it follows that 
Ek exp (s (rk , z) ) ~ 1. Therefore 

Ek exp ( -s (r\ z)) :( 1 + Cs2 lzl 2 
:( exp (Cs2 lzl 2

). (21) 

If 0 :( s :( s0 = min {z/ z0 , e/C} , then Cs2 lzl 2 :(se lzl2 and from (21) we obtain 
(20) as required. 

Let us define an auxiliary sequence of random variables • 
k = 0, 1, .. . (22) 

LEMMA 2. There exists e > 0 such that for all k ~ 1 

Pk :( Pk - 1 exp [- (r\ Nk Llxk)- e (1Llxkl 2 + 'k - d] w.p.1 (23) 

Proof: From (5) and (22) we deduce that for k ~ 1 

Pk :( Pk- 1 exp [F (xk )- F (xk - 1
) - Nk uk - J k chk - 1/a]. 

By (6) and (18) one has 

F (xk)- F (xk- 1
)- uk- Jk ()Tk - t /a :( 

:( - (rk , Llxk) - (A.+ v) 1Llxkl 2 - Jk (hk - 1/ a. (24) 

If Nk = Jk = I , then (23) is satisfied with e 1 = min {A.+ v, b/a}. If Nk = 1 · 
and Jk = 0 from (8) follows that 1Llxkl 2 ~ A 2 'k - 1 . Then we get inequality 
(23) with e2 = min [(},+v)/ 2, A2 (A.+v)/2}. In the case of Nk = 0 we have 
'k :( 'k - 1 , xk- 1 ~ X and xk = x 0 (see (7), (5) and (4)). By definitions (5) and (4) 
we obtain: 0 < 'k - t :( r, ILlxkl :( T (see Remark 2) and Pk :( Pk - t exp [F(x0

)- , 

- F (xk- 1 
)] :( Pk _ 1 exp [- e3 (!Llxkl2 + ' k _ 1)], where e3 = !~1 [F (x)- F (x0

)]/ . 

/(T 2 +f). Choosing e = min {e1 , e2 , e3 } (e > 0 by (H3) and (H4)) we get the · 
required result. • 

We are now ready to derive the first important property of step-
. ( } SIZeS l Tk . 

LEMMA 3. For any s > 0 one has 
00 

L Eel +s < Cl). 

k =O 

Proof: We have ILlxkl :( T. By Lemmas 1 (with z = Nk Llxk) and 2 for all 
sufficiently small s > 0 we obtain 

k = 1, 2, .... 

Since 0 < 'k - 1 :( r one has exp (-se'k - 1) :( 1- C'k-l• where C = [1 -
- exp ( - ser)] / r. Thus Ek pfc :( pfc _ 1 - Cpfc _ 1 'k _ 1 . Taking the expectation 
of both sides of this inequality and noting that Pk > 0, for all k ~ 0, we 

Control and Cyb. - 4* 
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00 

conclude that L Epi Tk < oo. Recalling the definition of {pk} (22) we get 
k=O 

00 

L Ecl+sexp [sF (xk)] < oo for all sufficiently small s > 0. Since {xk} c X1 , 

k=O • 

where X1 is compact, the sequence {exp [sF (xk)]} is bounded from below 
00 

by some positive constant. Thus L Eel +s < oo for all sufficiently small 
k=o 

s > 0. But 0 < Tk :::;; f and hence s may be an arbitrary 
which completes the proof. 

positive number, 

• 
REMARK 6. It is clear from the proof of the above Lemma why the additional 
term Jk b'k- 1 has been inserted into the exponent in (5). Without it (with 

00 

b = 0) one can only show that L E (T~- 1 IL1xkl 2
) < oo, for s > 0, but this 

k=1 

is insufficient for convergence w. p.l. But as proved in [ 14] in the convex 
case this condition ensures that for the algorithm with projection (16) 
(with y0 = 0, t = oo) the sequence of weighted averages: 

k k 

-k " il " X = ~ T; X ~ T;, k = 0, 1, ... , 
i=O i=O 

converges to a solution of the problem min F (x) w.p.l. 
XEX 

Let us pass to the analysis of the directions {dk}. 

LEMMA 4. For all k ?: 0 one has 

1(1 +yk) dk -~kl:::;; lk 'Yk ~ w.p.l. (25) 

Proof: By (3) for k ?: 1 we have 

(l+yk)dk-~k= h'Yk [(l+yk _ 1 )dk-t_~k-1]+ lk'Yk ~k - 1. 
1+Yk-1 l+Yk - 1 

From (11) we obtain that h=lt and hl~k - 1 1 :::;; ~.Hence from the above 
inequality follows the relation 

l(l+ yk)dk-~kl:::; h'Yk 10+ Yk-ddk-1_~k-11+ lk'Yk [. 
. · l+Yk-1 l+Yk - 1 

Since (1 + y0 ) d0
- ~ 0 = 0 we get by induction assertion (25). • 

From Lemmas 3 and 4 we deduce the following useful results: 
' 

LEMMA 5. For any integer j ?: 0 pne has: 
00 CO 00 

L E(Ttl~klj)< oo , L E(c;ldklj)< oo and L E(Nk ,;~ { IL1xklj)< oo . 
k=O k=O k = 1 
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Cl) 

Proof: We have l(kli '(2illii+2ilrkli. The series I E(rlli/li) is convergent 
k=O 

by Lemma 3 (s = 1) and by the boundedness of subgradients {qk} in the 
compact set X 1• Next it follows from (5) that rk :( rk-t exp 1J and E (rlirkii) :( 
:( exp (21]) E (rl_ 1 Ek lrkii) :( Ri exp (21]) Erl- 1 , since rk - 1 is ffk- measurable 
and Ek Jrkli :( Ri (see inequality (19)). Using again Lemma 3 we obtain 

Cl) Cl) 

I E (rlilii) < oo and I E (rll(kli) < oo. Next from Lemma 4 we deduce 
k=O k=O 

that Wli :( 2i ldk- (k /(1 + 'YkW + 2i J(kJi :( 2i ~ i + 2i J(kJi. This proves our second 
assertion. The third assertion is a simple corollary of the second one and 

·of definitions (4) and (7). • 
In the following two lemmas we prove that the rule (5) does not reduce 

the stepsizes too rapidly. 

Proof: Consider the exponent ih (5). From Lemmas 3 and 5 U = 2) 
we see that rk __. 0 w.p.1 and Nk JLlxkl __. 0 w.p.l. We shall prove that 
Nk ((\ Llxk) __. 0 w.p.l. We have Nk <e\ Llxk) = Nk (qk, Llxk) + Ndrk, Llxk). 
The sequence {qk} is bounded, hence Nk (q\ Llxk) __. 0 w.p.l. Next, by (19), 

Cl) 

(H6) and Lemma 5 U = 2) the series I Nk (r\ Llxk) is a convergent · 
k= I 

martingale and thus Nk (rk, Llxk) __. 0 w.p.l. Consequently, the exponent in 
(5) tends to 0 w.p.1 and rk_ 1/rk __. 0 w.p.l, as required. Moreover, we also 
see that there exists a random index m (m< oo w.p.l) such that for all 
k ~m one has both rk- 1/rk = exp (Nk auk+Jk Drk_ 1) and Nk auk+Jk brk-l :( 1. 
Since exp ( ·) is convex and increasing, the two preceding relations imply 
that for k ~ m we have 

11- rk - 1/rk l :( e (Nk a Jud + brk - 1) 

and thus 

11-rk- t/rkl lrk l :( e (Nk a l(kJJLlxkllrkl + 
+ Nk a JA.JJLl xk l2 101 + brk _ 1 Irk!). (26) 

We have Nk JekiiLlxkl lrkl :( Nk JLlxk ll rkJ 2 + Nk JqkJI Llxk llrkl. By (19) Ek lrkl 4 
:( R 4 , 

for all k ~ 0. Therefore E (Nk JLlxkl 2 lrkl4
) :( R4 E (Nk JLlxkJ 2

). From Lemma 5 
Cl) 

U = 2) we deduce that I E (Nk JLl xk l2 lrkl4
) < oo, which implies that Nk JLlxkl x 

k = l 

x lrkl 2 
__. 0 w.p.l and Nk JLlxkllrkl __. 0 w.p.l. Hence Nk JekiiLlxk llrkl __. 0 w.p.l. 

In a similar fashion we treat the other components of the right-hand 
side of (26) and obtain the second assertion of the lemma. The proof 
is complete. • 
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00 

LEMMA 7. L 'k = oo w.p.l. 
k=O 

Proof: From Lemma 3 we deduce that 'k~o w.p.l. By Lemma 6 Tk /'k- 1 = 
=exp(-Nkauk+Jk(j'k - d for large indices k. Therefore one must have 

00 00 00 

L (Nkuk+'k - d = oo w.p.I. Consider the series L Nkuk = L (Nk(q\Llxk)+ 
k= l k=O k=l 

00 

+Nk(r\Llxk)+Nk),IL1xkl 2). Since L Nk1Llxkl 2 < oo w.p.l by Lemma 5 
k= 1 

(j = 2), these components may be left out of account. Next, by (H6), 
00 

(19) and Lemma 5 (j = 2) the series L Nk (r\ Llxk) is a convergent 
k=l 

00 

martingale and hence does not matter for L (Nk uk + 'k - d being infinite. 
k= 1 

Therefore 
00 

L (Nk (q\ LJxk) + 'k - t) = oo w.p.I. (27) 
k=l 

By the compactness of X 1, there exists q such that (q\ LJxk) ~ q ILlxkl 
for all k ~ 1. Therefore in view of (7), (4), (5) and Lemma 4 

Nk (q\Llxk) ~NkqiLlxkl ~q'k - t [IO + Yk - ddk - t_~k- 1 1 + 

+ l~k- 1 1 ] ~gexp1'JTk-2(Ik-1 Yk-1 ~+ ll- 1 1 +1rk-tl)~ 

~ Ct 'k-z (C2 +1rk- 1l), 

with some constants C 1 > 0 and C2 > 0. By (19) we have Ek - t lrk- t l ~ R 1. 

Thus we obtain the inequality Nk (qk, Llxk) ~ C 1 'k - 2 (C 3 +Irk - 11- Ek _ 1 lrk- 11), 
where C3 = C2+ R 1 . Since 'k- 2 is §,;_ 1 -measurable and Ek_ 1(lrk- 11-:-

oo 

-Ek - tlrk- 11)2 ~Rz, the series L 'k - 2(irk-ti - Ek - tlrk-tl) is a convergent 
k=2 

martingale. Therefore (27) implies that 
ro 

L (Cl c3 'k - 2+'k - l) = Cl) w.p.1, 
k=2 

which yields the required . result. • 
Let us now pass to the analysis of the aggregation coefficients {yd. 

LEMMA 8. lim Ik Yk = 0 w.p.l. 
k~ ro 

Proof: Obviously, it is enough to consider the case when h = 1 infinit~ly 
often. From Lemma 5 (j = 4) we deduce that Nk ILfxkl /~ ~ 0 w.p.l. 
Hence by (8) one can choose a random index m (m< oo w.p.l) such, that 
Jk ~N, for all k ~m. Define . // = [k:h 1 Jk - t = 1}. By (11) this set is 
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infinite and Jk- 1 Jk - 1 = Ik_ 1 , for k >m. Hence, from (9) and (10) we obtain 

lim sup Yk = lim sup Yk· 
k-+ oo k-+ oo 

kE .ff 

Suppose that lim sup yk = e > 0. Proceeding as in the proof of Lemma 6 
k --"oo 

we obtain Nk vk ~ 0 w.p.l. Let ~· c vtt be such that Yk ~ e for k ~ oo, 
k E ~·. From (9) we then get e = lim 'Yk ~ lim sup Yk - 1 exp ( - xyk_ 1) ~ 

k-+ oo k-+ oo 
k E li k e.f( 

~ lim sup Yk exp ( -xyd <e. We have arrived at a contradiction, which 
k-+ 00 

completes the proof. • 
4. Convergence 

Having established useful properties of stepsizes and aggregation coef­
ficients we shall prove that our method is convergent to a stationary point 
of problem (1) w.p.l. Define 

X* = {x*EX:OEoF(x*)}. 

We start from the following lemma. 

LEMMA 9. There exist sequences of random vectors [ sk} and { wk} such that 
for all k ?: 0 one has : 

00 

where: qkEoF(xk), limlsk i=O w.p.1 and II wk l <oo w.p.l. 
k-+ oo k=O 

Proof: Let xkEX. Denote tk = min{rd1+ yk) , ti WI}. 
Then 

We have : 

tk dk = '[k (1 + yk) dk+[tk-'[k (1 + ydJ dk = 

= rk gk + rk rk + rk [(1 + Yk) dk - ~k] + [tk- rk (1 + Yk)] dk = 

= T k qk + Tk- t l + T k b I + Yk) dk- ~k + (1- rk- 1 IT d rk] + 

(28) 

(29) 

+[tk - rd1+ yk)]dk. (30) 

Using this identity in (29) we get 

sk = ( 1 + y k) dk - ~ k + ( 1 - r k - 1 I r d rk, 

wk = 'k- 1 rk + [tk-rk (1 + yd] dk. 
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Directly from Lemmas 8, 4 and 6 we see that lsk l --+ 0 w.p.l. By (H6), 
00 

(19) and Lemma 3 the series L 'k - 1 rk is a convergent martingale. Finally, 
k=l 

00 

the series L [tk .... rk (1 + Yk)] dk is convergent w.p.1 since tk = rk (1 + yd for all 
k=l 

sufficiently large k. The proof is complete. • 
We are now ready to prove our main result. In [7] for solving problem (1), 

the following algorithm with deterministic stepsizes { rk} was proposed 

{ 

k ;:k k k k 
k+t x - rk.., = x - rkg +w , 

X = 0 
X, 

00 

where: gkE8F(xk), I L wk l < oo w.p. 1, 
k =O 

00 

rk~O , L -rk = OO, limrk=O 
k=O k-+ oo 

and 

if 
if 

1. 
0 k - 1 1 Im-- =. 

k-+ oo T . k 

(31) 

(32) 

By Lemma 9 our algorithm differs from (31) only by the existence of the 
sequence {sk} . One can, easily verify that this sequence does not affect its 
convergence properties (see [7, Theorem 1, pp. 94-100]). Next, from Lemmas 3, 

· .6 and 7 we deduce that conditions (32) are satisfied w:p.l. Hence following 
the argumentation from [7, Theorem 1, pp. 94-100] or [8, Theorem 1, 
pp. 109- 116] (for a deterministic algorithm, slightly different form (31)) we 
get our convergence theorem (since we work on paths it doesn't matter 
that in (28) the sequence { -rk} is random). 

THEOREM 1. Assume (Hl) to (H7). Then almost surely the sequence {xk} 
generated by algorithm (3)-{11) only fin itely many times leaves the set X. 
Moreover the sequence lF (xk)} is convergent w.p.l and all accumulation points 
of the sequence { xk} belong to X* w.p.l. 

5. Some asymptotic properties 

Although our aim is to accelerate convergence far from the solution 
of (1), it could be interesting to verify whether our stepsize rules change 
asymptotic properties of the method when compared with the classical 
approach (cf. [5], [9]). Clearly the crucial question here is the asymptotic 
behavior of stepsizes {ck} and {yd. It follows from Theorem 1, that for 
large k equations (4) and. (15) are equivalent. Thus Nk = 1 for large k. 
Next, by Lemma 5 U = 4) I L1xkl /~--+ 0 w.p.1 and Jk = 1 for sufficiently 
large k. Hence we can follow the argumentation from [13, Theorem 2]. 
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THEOREM 2. Assume (H 1) to (H7). Additionally suppose that F is continuously 
differentiable in an open set :£* containing X* and IVF (x)- VF (y)l ~ L lx- yl 
for all x, yE :£* and some constant L. Then 

lim (k + 1) rk = 1/Ci 
k-> 00 

w.p.l. (32) 

Moreover if there exists a random index k0 (k 0 < oo w.p.I) such that I. = 1 
for all k ?: k0 , then 

lim (k+ 1) 'l'k = 1/x 
k-+ 00 

w.p.l. (33) 

By Lemma 5 (i = 4) and Theorem 1 the conditions used in the second 
part of Theorem 2 hold if the noises {rk} are uniformly bounded and the 
reset coefficients are defined as follows (compare with (8) and (11)): 

hE {0, Nk}, if ILixkl ?: A~' 

1.=1 

Using the results of Theorem 2 we estimate the convergence rate of our 
method in the smooth case. We start form the following definition. 

DEFINITION 1. We 
the expected value 
lim sup Ezk ~ c), if 
k-+oo 

say that the essential supremum in the sense of 
of a random value does not exceed c (we write 
there exists E::o > 0, a function h :"[0, E:: 0 ] ~ R \. right 

continuous at zero such that h (0) = c and for any E:: 0 ?: E:: > 0 one can choose 

random sequences [ad and {bd satysfying the following conditions: 

zk = ak+bh for all k?: 0, 

lim sup ak ~ 0 w.p.l, 
(34) 

k-+ 00 

lim sup Ebk ~ h (E::). (35) 
k-+ 00 

Similar definition was considered in [9, p. 103]. Having established the 
definition of the essential supremum we can estimate the asymptotic properties 
of our algorithm. These properties are stated in the following theorem. 

THEOREM 3. Let the conditions of Theorem 2 be satisfied. Assume .that the 
noises {rk} are uniformly bounded and () < v (see (H2)). Then 

li~-+s~p Ek [F (xk)- F*] ~ () ~~2()) , (36) 

where: F* = min F (x) and R2 ?: Ek lrkl 2 w.p.l for all k?: 0. 
xE Rn 

Proof: Let Q be the sample space on which the process {xk} is defined 
and let Q 0 be the null set excluded in Theorem 1. Let w ~ Q 0 and consider 
the path {xk (w)}. Henceforth we shall for brevity omit the argument w. 
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From (18) and the fact that v > 0 we obtain 

F(x)-F* :::;_!_IV'F(x)l 2 for all xE .i; 
V 

(37) 

Next, by Theorem 1 VF (xk)-+ 0, xk-+ x* w.p.1, as k-+ oo (from (18) follows 
that X* = {x*} in this case) and for all sufficiently large k (see (29) 
and (30)) 

Llxk+t = -rd1 + yk)dk = -rk V'F(xk)-rk-t rk-

-Tk - t (___2k_ - 1)rk -rk[(l + yk)dk - eJ. (38) 
'k- 1 

By (5) and (6) for C 1 = (exp 1] - 1)/IJ we have 

1
___2k__-11::::; Ct INk auk+Jk 6rk-t l ::::; C2 rk-t 
'k- 1 

for some constant C2 . From Lemma 4 we deduce that 
k k -

1(1+yk)d - ~I ::;;IkYk~ · 

Using (32) and (33) in (38)--{40) we get 

L1xk+ 1 = - rk V'F(xk) ~rk- l rk+o (:2 } 

where litp_.~upk 2 \o (:2)\ <.oo w.p.l. Hence we obtain 

k + 1 2 lrkl
2 

( 1 ) 
IL1x I = (52k(k+l) +o k2 w.p.l 

and }~riJ, k2 o (~2) = 0 w.p.l. By (41) and (42) 

F (xk + 1) ::::; F (xk) +(V F (xk), Llxk + 1 ) + L ILixk + 1 1
2 = 

k k 2 k k L lrkl
2 

( 1 ) 
= F(x)--rkiV'F(x)l --rk- 1 (\lF(x),r) + b2k(k + l) + o k2 · 

Introducing a new variable zk=k[F(xk)-F*] (43), (37) and (32) yield 

[ 1 
v-rk (k + 1) - 1 J L lrkl 2 

zk+t::::; - k zk+ 62 k (k+1)-rk-t (r\ VF(xk))+ 

+o (~) = [1- v~b + o (~) J zk + Lbl;i2 

(39) 

(40) 

(41) 

(42) 

(43) 

- (k + 1) 'k-t (r\ VF (xk)) + o ( ~). (44) 
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Let e > 0 be any constant such that v- o- eO > 0. Then { zk} has the 
following representation 

( 
v- 0-80) Llrkl 2 

k k 
zk+ t ~ 1- ok zk+~-(k+ l)rk - t<r,VF(x))+ 

where Pk ~ 0 and sk ~ 0, as k ~ oo w.p.l. Hence from (45) follows that 
zk = ak+bk> k = 1, 2, ... , where 

ak +l = 1- ak+--z"+--( 
v-o-eo) Pk-8 sk - 8 

ok k k ' 

and 

k k 8 
(k+ 1) '" - 1 <r, VF (x )) +T. 

One can easily check that since for sufficiently large k Pk - e < 0 and sk- c: < 0 
w.p.l, lim sup ak ~ 0 w.p.l. Moreover, since 'k - l is %,;-measurable Ek rk = 0 

k~ oo 

k 2 ( v-0 - 80) LR 2 c: . 
and Ek lr I ::::;Rz, Ebk + 1 ::::; 1- ok Ebk + 02 k + k. Therefore lnp}~P Ebk::::; 

LR2+8o2 
::::; and the theorem follows. • o (v-o-eo) 

Following the above argumentation one can easily prove that in the case of 
rk = 1/[ o (k + 1)], '}'I{= 0, for k = 0, 1, ... (the classical approach) the estimation 
(36) holds as well. Thus our rules for determining stepsizes and aggregation 
coefficients do not improve the rate of convergence of the stochastic approxi­
mation algorithms. It should be stressed however, that relation (36) can be 
observed after a very large number of iterations (which are often impossible 
to perform due to time limitations) and practically the most important is 
the behavior of the algorithm in the phase when its asymptotic properties 
do not manifest themselves (see the example in Section 6). 

It is worth mentioning that the estimate (36) attains its optimal value 
for o = v/2. Then lim sup Ek [F (xk)-F*] ~ 4LR 2/v2

. But this result has only 
k ~oo 

theoretical importance. Numerical experiments indicate that the value of o is 
irrelevant for practical computations (in our example o = 10 - 1 0

). 

6. Modifications of the method 

The basic model (3)--(11) may be modified in various ways so as to 
improve its practical efficiency while preserving theoretical convergence 
properties. 

Control and Cyh. 
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Although we assume for simplicity that Ek ~k = qk (see (H6)), similar 
results may by derived for biased subgradient estimates i.e. if Ek ~k = qk + bk. 
Then some additional conditions on bias terms are required. For example, 
instead of (H3) and (H6) one can demand 

(H3a) sup ' lbkl / IL1xkl < A.+ v. 
:k: jLix' l #0 } 

(H6a) ~k = qk + bk + r\ where qk E oF (xk), bk is §{-measurable and Ek rk = 0 
w.p.1 for all k? 0. 

One can easily verify that in this case all results obtained in this paper 
(except Theorem 3) are in force. 

REMARK 7. Assumptions (H3a) and (H6a) are satisfied if the objective 
F (x) = Et (x, @) is differentiable on R", its gradients satisfy condition (16) 
and we use finite difference stochastic gradient estimation formulae with 
difference intervals proportional to JL1xkl (cf. [1, pp. 107-112]). 

Crucial from the practical point of view are the values of parameters 
r:t. and f3 in (5) and (9). With constant values of these parameters, there 
is a danger of rapid changes of stepsizes and aggregation coefficients due 
to a wide range of changes of stochastic subgradients { e}. To avoid it one 
can replace a, [3, (J and x with varying coefficients {r:t.k}, {f3k}, {6k} and {xk}, 
provided that the following conditions are satisfied (see [13]) : 
(HS) For all k the coefficients r:t.h f3k> (Jk and xk are §{ + 1-measurable. 
(H9) Q: ~ r:t.k ~ ii, Q: ~ f3k ~ ii, ~ ~ (Jk ~ 5 and ~ ~ xk ~ 5 w. p.1 for all k and 
some posit ive constants e&; ii, ~ and 5. 
(HlO) There exist constants T1 ? 0 and T2 ? 0 such that 

k 1 
I - (In r;- ln T;- 1)? - T1 - T2 ln Tk w.p.1, k = 1, 2, ... . 

i = 1 r:l.; 

Under (H1)--(H10) algorithm (3)--(11) remains convergent, i.e. Theorem 1 IS 

still true. 

Table 1 

Results of computations- adaptive stepsizes and aggregation coefficients 

k Tk l'k x1 X~ F (xk) - F (x*) 

0 8.8-10- 4 1.0 -1.000 2.000 1.0. 102 

50 3.3 · 10 - 4 9.6-10 - 1 -1.316 1.739 5.4 
100 5.2-10- 4 1.3 -1.291 1.676 5.3 
200 30 · 10- 3 8.2 -0.526 0.287 2.3 
300 1.3-10-3 7.0 1.074 1150 7.3·10- 3 

400 5.5·10- 4 2.5 1.030 1.060 8.7 . 10- 4 

500 3.0·10 - 4 9.9 · 10 - 1 1.022 1.047 8.1·10- 4 

700 9.8-Jo-s 6.5·10 - 1 1.021 1.042 4.5 · 10 - 4 

1000 3.1·10 - 5 4.7·10 - 1 1.020 1.041 4.4 · 10- 4 
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Table 2 

Results of computations- the classical approach : rk = r 0 / (k+ 1), Yk = 0, 
k = 0, 1, ... 

k 'k x1 X~ F (xk)- F (x*) 

0 8.8 ·10 - 4 -1.000 2.000 1.0 ·102 
50 1.8 · 10- 5 -1.346 1.820 5.5 

100 8.8·10- 6 -1.346 1.819 5.5 
200 4.4. 10- 6 -1.346 1.818 5.5 
300 2.9 ·10- 6 -1.345 1.818 5.5 
400 2.2·10 - 6 -1.345 1.818 5.5 
500 1.8·10 - 6 -1.345 1.817 5.5 
700 1.3·10-6 -1.345 1.817 5.5 

1000 8.8 · 10- 7 -1.345 1.816 5.5 
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On the basis of these assumptions a practical algorithm using adaptively 
choosen values of {ak} and {Pd (different from that described in [13]) was 
constructed. Below we present a simple numerical example. 

ExAMPLE (Rosenbrock's "banana valley"). 
Consider the problem of minimizing over R 2 the fu1_1ction 

F (x) = Ef(x, e) = E [100 (xf - xz)2 +(xt - 1f + 8t Xt +8z Xz], 

where 8 1 and 82 are independent Gaussian variables with E8; = 0, Ee[ = 1, 
i = 1, 2. F attains its minimum at x* = (1, 1), but is hard to minimize 
numerically because of ill conditioning. For the purpose of testing the 
algorithm, at each point xk the stochastic gradient ~k was constructed as 
~k = \1 X f (x\ ek), where ek WaS drawn from a pseudorandom number generator. 
The following values of the algorithm parameters were used: t = 1010

, 

f = 1010
, y = 1010

, 1'/ = 1, A= 0, (j = 10- 10
, X= 10- 10 and ~ = 1010

. The 
results of computations are collected in Table 1. For comparison in Table 2 
the outcome of a classical approach (-rk = -r0/ (k + 1), y0 = 0, k = 0, 1, ... ) is 
presented. In all the above cases -r0 is chosen so as to mm1m1ze 
f [x0

- -r\1 x f (x 0
, £8), E8] over -r ~ 0. 

7. Conclusions 

The method described in this paper appears to be an efficient tool for 
solving stochastic, unconstrained optimization problems. Its efficiency is due 
to the well-known trick of averaging stochastic subgradients and to adaptive 
on-line rules for determining stepsizes. The computational results indicate 
that the coefficients are rapidly adjusted to proper values providing a signi­
ficant progress towards minimum. Although our algorithm has the same 
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asymptotic properties as the classical method based on the harmonica! 
choice of stepsizes its practical efficiency is much better. 

It seems that similar rules may be inserted into many other stochastic 
approximation algorithms. 
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Algorytm aproksymacji stochastycznej z filtracjll subgradientu i z wyborem 
wsp61czynnik6w kroku na bieil!CO dla zadan niegladkich, niewypuklych i bez 
ograniczen 

W niniejszej pracy przedstawiono praktyczny algorytm aproksymacji stochastycznej dla 
znajdowania minimum niegladkiej i niewypuklej funkcji celu w przypadku zadania bez 
ograniczen. Do wyznaczania kierunk6w poszukiwan algorytm wykorzystuje pomocniczy filtr, 
kt6ry usrednia stochastyczne subgradienty funkcji celu. Wsp61czynniki kroku i agregacji Si[ ' 

okreslane on-line na bazie informacji zebranej w czasie obliczen, zgodnie z regulami wynika­
j'lcymi z koncepcji zregularyzowanej funkcji poprawy. Udowodniono zbieznosc metody z 
prawdopodobienstwem l oraz zbadano asymptotyczne wlasnosci metody. Dzialanie algorytmu 
zilustrowano przykladem obliczeniowym. 

AJiropnTM cToxaCTn'lecKoii annpoKcnMaQuu c <!JuJibTpaQueii cy6rpa,ll;neuTa u 
C TeKy~HM Bbi60pOM K03<IJ<IJnQHeHTOB LJ,JIH uerJia,ll;KHX, HeBhiDYKJibiX 3aLJ,a'l 
6e3 orpauu'leuuii 

8 AaHHOH pa6oTe npeACTaBneH rrpaKTH~eCKHH anropHTM CTOXaCTH~eCKOH annpOKCHManHH 
Afl5! HaXOlKAeHH5! MHHHMyMa HernaAKOll H HeBbiTIYKflOll <j>yHKnHH nenH B cny~ae 3aAa~H 

6e3 orpaHH~eHHll. )J,m1 OnpeAeneHHSI HanpasneHH5! TIOHCKa anrOpHTM HCTIOflh3yeT BCTIOMOra­
TeflbHbiH <j>HflbTp, KOTOpblll ycpeAH5leT CTOXaCTH~eCKHe cy6rpaAHeHTbl <j>yHKnHH nenH. KoJ<jJ<jJH­
UHeHTbl rnara H arperHpOBaHH5! OnpeAen5l!OTCSI HenocpeACTBeHHO Ha OCHOBe HH<j>OpManHH 
HaKonneHHhiX no XOAY Bhi~HcneHHH , cornacHo npasnnaM, BhiTeKa!Oll(HM H3 HAeH peryn5!pn3o­
saHHoii <j>yHKnHH yny~rneHH5!. )J,oKa3aHa CXOAHMOCTb MeTOAa C Bep05!THOCTb!O J, a TaKlKe 
lfCCneAOBaHbl aCHMIITOTH~eCKHe CBOHCTBa MeTOAa. )J,eHCTBHe anropHTMa llflfl!OCTHpyeTCll Ha 
~HCneHHOM IIpHMepe. 
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