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In the paper a non-Bellman approach is given to impulsive control with long run
average gain of a nonincreasing stochastic process, being a model of quality of an abstract
object. A theorem describing optimal policies is formulated and two examples are given.
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1. Introduction

Consider a stochastic process x,, describing quality of an abstract object Q.
Assume its state to belong to the interval [0, I] from “completely efficient™ -
(x,= 1) to “completely inefficient” (x, =0). Quality of a working object is
nonincreasing. Therefore the process x, () is nonincreasing for any e.
Consider its right-continuous version. For any @ Lebesgue decomposition
implies:

X, (w) = xq (@)+ f a, (@) ds+ f by (w) AN, (@)+C, (@) (1)
o o

where a, and b, are nonpositive and paths of C, are continuous functions
and N, is a counting process.

Assume C, =0 as having no physical interpretation and initial state to be
“completely efficient™ i.e. xo = I. Moreover assume that there exists a filtra-
tion % with respect to which:

a. a, is well measurable,
b. b, is predictable,
¢ N, has a predictable intensity g, > 0, ie
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N,— | g, ds is a %-martingale, see [2].
0

Denote Z, = o (x,, s <t). Consider an information o-field Z, satisfying
usual conditions and %4, = % < %. Controller’s intervention will be described
as follows: In Z-stopping times the process x, is renewed and starts afresh
with the same law and independent realization. The gain function to be
maximized is long run average gain per unit of time. Formal description
will be the following: Let x' be defined on the probability space (@, .#, Q).
Let (2, #, P) be an infinite tensor product

R, F, P)= (%, .4, oM, (2)
Let
xi (@, 03,.)=x (@), Q. 3)

Therefore x} are independent copies of x,. Assume the control policy to be
stationary and denote renewal times by t;. Thus
;=1 ()= Z o, where ¢; (0, w,,..) =1 (;). (4)
ji=1

If Et >0 the renewal process y, can be constructed by:

Ye= Ve (T)'—_‘Zo x:t:],-f{fi{fgfwl}- (5)
The long run average gain function is defined by:
i t
S(1)= lirg_}nft“ {gf(ys) ds=Y c(y,) I {t, <t}}. (6)
Define
7, = inf {t:f (x,) < ¢} (7)

Assume some regularity conditions for the functions f and ¢:

1. f:[0,1]—R is nondecreasing, f(0)=0, f(1)>0 and Er,< oo for any
£>0.

2. ¢c:[0,1]— R, is bounded and differentiable and ¢ (1) > 0.

The function f is interpreted as continuous gain per unit of time of working

object and ¢ as cost of renewals.

2. Auxiliary results

The formula for gain function (6) can be essentially simplified. Denote

T

J,@=[(f(x)—p)dt—c(x) for 0<p<f(1) ®)

0
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and
Ji (t (@, 03, ..)) = J, (t (@) for m;eQ. 9)

Lemma 1. Let t© be any Z-stopping time. If 0 <Et< oo then S(1)=
=.EJy (t)/Et and if Et= + oo then S (1) =0.

Proof. Notice that (g,) and (J(r) are both sequences of independent
and identically distributed random variables. Assume 0 < Et < oco. Thus

.. [ S
E |J} (7)) < oo and by definitions (6) and (9) s Y Jh ()= S (7).
ni=l1

On the other hand

L i Ji (r)=(s§1 a") _(igl JB{TJ)_, EJo ()
" n n Et =

Tn i=1

Combining we get S (1) = EJ, (t)/Er. Now let Et = +00. Denote f*(x)=
=f(x)az and f.(x)=0 if x<z and f.(x)=f(x) if z> x. Notice that

t
[S (7)) < + limtsup gl {g f*(y,) ds+ Z{ c )} < Iistup ™Y (e )+

TnSt St

+ [ fi(y)ds}+e=¢ by theorem 2.1 p. 51 from [1].
n-1

Therefore S (1) = 0. [
Denote q = sup S (7). (10)

-7,

Notice that g exists and satisfies 0 < g < f(1). The following proposition
holds:

Prorosition 1. For any Z-stopping time t* with 0 < Et* < o0 and any
number pe(0, f(1)) the following conditions are equivalent:
(i) S(t*)=supS(t)=p

t

(ii) EJ, (t*) = supEJ, (1) and p = q.
- F

(iii) EJ, (t*) = supEJ, (1) = 0.
s

Proof. (i)=(ii) and (iii)=> (i) directly by computation following [3].
(i1) = (iii)
EJ,(t)= EJ, (t1)—pEt = Et (S (1)—p) <0.

It suffices to show that sup EJ, (t) = 0.
—F,

There is
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0<E f f(x,)at <eEr+f (1) Ex,
0

for any t and ¢ > 0.
For N (g) large enough holds
fO)Er/N () <e (11)

Let 36 <p, 6=¢/N(¢) and T; be a (é A ¢)-optimal stopping time for the

gain S (r). Notice that 0 < ET; < oo and therefore 2z < p—e <S§(Ty) =

= EJo (T;)/ET; < e+f (1) Et,/ET; and by (11) ET; < N (¢). Hence EJ, (T =

=ET;(S(Ty)—p) > —ET; 6 > —¢ and supEJ, ()= 0. &
&

3. Solution of the problem
Differentiating by parts we get for every path of the process:
t t
e (x,) = e (xo)+ | ¢'(x) a, dt+ | De (x,) dN, (12)
0 ]

where Dc (x,) = ¢ (x,_ +b,)—c (x,_). Since D¢ (x,) is a predictable process for
any %-stopping time with Et < oo there holds:

Ec (x)=¢{xo)+E f c(x)a dt+E _fr De (x,) g, dt. (13)
0 ] .

Let h, be a progressively measurable version of
E (C’ () @, + De (x,) g>:¥*£)

Denote:
F,=f(x)—h, (14)
t(p)=inf {t:F, <p} for p>0 (15)
K (p) = EJ, (z (p)) (16)

The main result of the paper is formulated as follows:

TueorREM 1. Assume F, to be nonincreasing.

A. If K(0)<0 then optimal control rule is “do not interfere with the run
of the process” (1,5 = + o0) and hence q = 0.

B. If K(0)> 0 then q> 0 and t (q) is the optimal stopping rule for the gain S.
Moreover q is the only solution of the equation K (p)= 0, with the function
K nonincreasing, convex and continuous on (0, +oc) and if K (0) < oo,
on [0, + c0).
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Proof Notice that EJ,(1)=E j (F,—p)dt—c(1). Since F, is nonincreasing

Tip)eo)
j' (F, (w)—p) dt > j(F (w)—p)dt for any weQ, p>0 and t >0 by (7).

Therefore for any .#,-stoppmg time EJ,(t) <EJ,(t(p) = K (p). Since ¢ >0
then EJ, (z(0)) >0 implies 7 (0) 0 and hence E(T(O] AN)>0 for N>1
Thus for N large enough g > S (z(0) A N) = EJy(z(0) A N)/E(z(0) A N)>0.
If K(0) <0 then EJ,(r) <0 and S (1) = EJy(1)/ET <0 for any Z-stopping
time with 0 < Er<oco and hence ¢ =0 and t,, = +o0. Since c¢(1)>0
then lim sup K (p) < 0. Notice that by Tonelli theorem

pTo

I{F p)dt = g

"-T.ll.-—,s

[ [IE >ty didr=[t@)dr (17)
ro P

Since 7(r) =1 (p) if r <p holds
Ex(r) = Ez(p) fgr p=r. (18)

Prove that Et (p) < oo for any p > 0. Suppose that for some p > 0 there holds
Ez(2p) = +c0. By assumption 1 Etr, < o0. Hence —h, > p for 1, A 7(2p) <
<1t <1(2p). The statements above imply that

7(2p)

E | hdi=-o

T, A T{2P)

Therefore for any k and N large enough there is:

T(2p) A N

EC (x'r{Zp}AN)_EC (xI,ATt.'.‘.p}AN)=E I hidt ""‘<"- S

T, A T(2p) A N

a contradiction since ¢ is bounded. We have proved that Ez(p)< oo for
any p>0. Thus K (p) < oo, p > 0. Therefore

r) 0 o0
K[p)=ET (F,—p)dt-c(l)=Ef t{r)dr~c(l)=j Et(r)dr—ec(1) (19)
0 P P

By (18) the function K is nonincreasing, convex and continuous on (0, +oo).
Since K (0) >0 and liTm K (r) < 0 there exists the only solution of the equa-

tion K {(p)=0, namely q. Since EJ,(0)= —c(1)<0 and EJ,(t(g)) =0 there is
7(g)# 0 and 0 < Et (g) < + 0. By proposition 1 condition (iii) g = sup S(7)=

T—F

= 5 (z (g)). =
The following examples describe practical significance of the theorem:

ExampLE 1.
The filtration process.

Let N, be a point process with the intensity pu,+1I,. 1 (1o— ), where
T is an exponentially distributed random variable with parameter 1 and
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Mo > My. Let x,= P(T>t|N,,s <t) be the process of sequential estimation
of T, which satisfies a stochastic equation: dx, = a(x,) dt+b (x,_)dN, for
some determined functions a and b. Let f and ¢ be linear functions:
fx)=/fx, and c(x)=co(l—x)+c; with f, ¢, ¢, >0. If po—p, <1<
< fllco+c,) the assumption B of Theorem 1 is satisfied by (3). Such
a problem is strictly connected with partially observed quality control
problem described in [3].

ExAMPLE 2.
Constant renewal costs. If ¢ (x)= const >0 application of Theorem 1 is
immediate.
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Sterowanie impulsowe procesu monotonicznego
ze Srednim zyskiem na jednostke czasu

W artykule podano bezposrednie podejécie do sterowania impulsowego nierosngcym
procesem ze $rednim zyskiem na jednostke czasu. Proces taki jest modelem jakosci abstrakeyj-
nego obiektu technicznego. W pracy sformulowane jest twierdzenie opisujace optymalng
strategig sterowania i podane sa dwa przyklady.

UmnybcHoe ynpaB/jieHHe MOHOTOHHBIM NPOLECCOM CO CPeJHHM BhIHIPbilieM
332 eJMHMOY BpeMeHH

B crarbe NMpPHBOAWTCS HEMOCPEACTBEHHbIH MOAX0] K HMIYJIbCHOMY YIPaBIEHHIO HE BO3-
pacTalonldM TPOHEcCOM €O CpPe/IHUM BBHIMIPHIIEM 34 eAWHMIY BpeMeHH. Takoif npolecc
SBTISETCs MOJeNbI0 KadecTsa abcTpakHOTO TexHHuecKoro mponecca. B pabore dopmynupyercs
TeopeMa, ONUCHIBAIOMIAS ONTHMANLHYIO CTPATEIHIO YNPAaBJIEHHA W JAIOTCH [ABA NpHMepa.




