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The existence of optimal bang-bang boundary controllers for a free boundary control
problem of parabolic type is studied. The problem is of one-phase Stefan type.

1. Introduction

Consider the controlled one-phase Stefan problem in n dimensions which
physically models the melting of a body of ice Q =R® maintained in
contact with a region of water. The boundary I' of Q is composed of
two disjoint sets [’y and [I',. The temperature on the boundary I',
is 1 (x,t) while the temperature on [I', is zero. Initially the water (liquid)
occupies the domain @, (see Figure 1 below). If 0=0(x,t) is the
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temperature at point x and at time t and if t=o(x) is the equation
of the water-ice interface then the temperature dlstrlbutlon 0 satisfies
the classical Stefan problem

6,—40 =0 in {(x,)eRx(0,T); ox)<t<T}

0=0 in {(x,)e@x(0,T); o(x)=t}

V.0-Vo(x)=—¢ in {[(x,1); t=0(x)} (1.1)
0=n in I'i'x(0,7); 8=0 in I';x(0,7)

0 (x,0)=10,(x) if xeQy 0(x,00=0 if xeQ-Q,.

where ¢ is a positive constant.
We will assume that the temperature # on I'y x (0, T) is controlled by
the system

1= Y g0 xely, teO,) (12)

du; ()/dt+1; (u; (1) = v; (1) ae te[0,T]; i=1,2,..,m,

u; (0) = uf (1.3)

where g; =0 are given functions on I} and f;:R— R are Lipschitz
and continuously differentiable. The vector function v (t) = (v; (t), ..., v, (1)) €
e L” (0, T; R™) represents the supply of fuel provided by a- system of
heaters which control the temperatures (uy,..,u,). If the functions g¢;
have disjoint supports in I'; this corresponds to the physical situation
in which the temperature on I'; is determined by m heated regions with
densities ¢,,..,¢,. The case when g;(x) = (x—x;), where J is the Dirac
delta function, is of special physical interest since it represents point
heating. This case is approximated as the limit of C' functions g;
that we are considering here.

We assume that the control functions v =v(t) are subject to the
following constraints

0<u()<N, aein [0,T], i=1,2,..,m (1.4)

T

a; [ v;()dt=M (1.5)
0

it

m
where N;, a; are nonnegative constants such that ) a;>0and T ) a; N;=>
i=1 =1

> M. The class of all control functions veL™ (0, T; R™) satisfying the
constraints (1.4){1.5) will be denoted by U.
Our goal here is to consider several optimization problems associated
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with (1.1)41.5) which are approaches to the following controllability problem.
Given a surface S Q x (0, T) we seek a veU such that S is “as close
as possible” to the free surface S, = {(x,1); t=0 (x)} which is the solution
of gystem (1.1)«1.5) corresponding to the control v.

The first step in solving this problem involves transforming the Stefan
problem (1.1) into a parabolic variational inequality using the well-known
device of Baiocchi and Duvaut. We may then apply the necessary conditions
for optimal control of variational inequalities to characterize the optimal
control.

The main emphasis of this paper is to explicitly determine the optimal
control. We will characterize the optimal control as a bang-bang control.

Optimal control of free boundary problems have been studied elsewhere
by a variety of methods. Some examples include Saguez [6], Barbu [1, 2],
Friedman [4] and Bermudez and Saguez [3]. There is a growing literature
on optimal control of variational inequalities. We refer to [1, 2, 5, 6].

2. Optimal control for parabolic variational inequalities

Let @ be the solution of the system (1.1). Define the function

£

Hx, )= j 0(x,8) x(x,8)ds Y(x,)ed=Qx(0,T)
0

where y(x,t)=1 if o(x)=t and y(x,t)=0 if ¢ (x)>1t. Then, H is the
solution of the variational inequality

H,—AH=f on the set {(x,t); H (x,t)>0}
Hz0, H—-AHZf on &

H=i§lg,-ju,-(s)ds in Z=Iyx0,7) (2.1)
H=0 i Zy,=T;%{0,T)
H(x,0)=0 in Q
where
fx)=0,(x) if xeQ
——0 if xeQ—8,
Furthermore, we have that

((x,0)e®; o(x)>t}=1{(x,t)e®; H(x,t)>0}.
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In the general case, the controls v are chosen so as to minimize
the payoff

(P) [ g (H (x., 1), 1) dxdt + [ go (H (x, T)) dx
@ Q

subject to the constraints (2.1), (1.3)~(1.5).
We assume that

0oeL” (Q), gieW? Yo'y, with ¢>max ( a2 ,2). 22)

Then problem (2.1) has a unique solution He W}'! (#)NC (&), where, as
usual, W2 (®)= {yeL? (®)|dy"**/or" dx*eL? (P) for 2r+s=2}. See, for
example, Barbu [1, p. 162]. More precisely, we have that

H,—~H weakly in W>'(®) as -0, (2.3)
where H,e W2'! (9) is the solution to the approximating problem
OH Jot— AH,+f (H)=f in @
HoeBa 0 Ti Ho=0- 3 I 2.4)
H,(x,00=0 if xeQ

m I
where Bu= ) g¢;(x) | u;(s)ds and fB* is a smooth approximation of the
i=1 0

multivalued function g given by f(r)=0 for r >0, f(0)=(—o0,0]. B(r)=0
for r < 0. '

The following estimate also holds (see [1, p. 163]):
| He | w;-‘w:‘l“ | B° (H) e i) = C[1+/|Bul w*"*-""’*qz,;] (2.5)

For the functions g:R x [0, T]—= R and g,: R— R we will make the
assumption
(A) g (y,1) and g, (y) are continuously differentiable in y, g is measurable
in ¢t and

|0g (v, t)/0y| < ox(t) ae te[0,T], |y|=£R, azel?(0,T), (2.6
gy, )= —Cy (1+]y)), go (= —-C(1+|y]) VyeR, 0=t=T. (27)-

By standard arguments it follows that problem (P) admits at least one
solution. Accordingly, let (H*, u*, v*) denote an optimal triple for problem
(P). Note that H* and u* are state variables and v* is the optimal control.

Consider now the approximating problem for each &> 0:

(P,) Minimize the payoff
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T

g v (t)—v* (£)]|2 dt

| —

[ g (H, (x, 1), 1) dxdt + [ go (H, (x, T)) dx+
o 2

over all (H,,u, v) subject to (2.4), (1.3)HL.5).
Let (H,,u,,v,) denote an optimal triple for problem (P,,.} Then by
arguments similar to those in [1, p. 240] we obtain.

LemmA 1. As e — 0 we have
v,— v*  strongly in  (L*(0, T)", (2.8)
H,— H* strongly in  W>r'(®), wu,—~u* strongly in C(0,T). (29)

We may now determine the necessary conditions which (H,, u,, v,) must
satisfy. Using equations (2.4), (1.3)}«1.5) we obtain the following.

For each &> 0 there exist functions p, and g, with p,eL?(0, T; Hg ()N
Nc ([0, T1; L* (Q)), dp/oteL* (0, T; H™' (Q)) which together with H,, u,,
and v, satisfy the system

OH,0t—AH +f* (H)=f in &
H.=Bu, in X;; H,=0 in ZX, (2.10)
H,(x,0)=0, xeQ
op/ot+Ap,— B (H,) p,= 09 (H,,1)/0y in &
p.=0 in X, UZ, - (2.11)
p.(x, T)= —gp (H, (x, T)), VxeQ.
d (w)/dt+f; (u)) = (v, ae in [0,T], i=1,2,..,m
(u); (0) = uf (2.12)

d (gi)dt—f ((w.)) ¢t = _f ds jg; (x) (Op. (x,8)/ev)dx O0=t<T

G (T)=0, i=1,2,.,m, (2.13)
f‘ [ &p./év Bodxdt + It (v,, w)+ jT W), v(@O)—v*@©)dt=0 (214)
0y 0

for all we(L? (0, T))", where k' is the directional derivative of the indicator
function h given by

h(v)=0 f veU, h(@=+o0 if v¢U (2.15)
and where

dvijdt+f;((w)) v;=w;, ae in (0,T]; v;(0)=0. (2.16)
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By (2.13), (2.14) and (2.16) we get after some manipulation that
T T
— j (g (), w (1) dt+ j (w (1), v, (0)—v* (1) de + 1 (v, w) Z 0
0 o
for every we(L? (0, T))". Therefore,
q° (t)+v* (t)—v, (t)edh (v) () ae te[0, T], (2.17)

where 8h: L* (0, T; R")—L? (0, T; R™ is the subdifferential of h (see, for
example [1, p. 101]).
We see that

oh (v) = 0hy (v)+0hy (v)  Yee(L? (0, T))”
where
Ohy W)= {w=(W;, ., wp); w;=0 in {t; 0<v;(t) <Ny,
w; =0 in  {£; v (0)=0},
w; =20 in  {t; v; ()= Ni}}. (2.18)
oh; (v)= {w=(Aay, .., Ja,); A€R}, Vve(L*(, T)". (2.19)
Then, by (2.17) we infer that there is A4, R such that

0 lf f}f (r]"i_(v:k —(Ua)i) (f} < ’le a;

N; il g O+ =) (> 4 4 (2.20)

(ve); (1) = {

Now, by multiplying (2.1) by p, and sgn(p,), and integrating over @
we obtain the estimate

.
I pe () 72 ‘m+§ | pe (0) 1 @ dt+ § | B¢ (H,) p,| dxdt < C.
@

Then arguing as in [1, p. 242] we conclude that there exists a function
peBV ([0, T]; H™*(RQ)), s> n/2, such that for a subsequence, still indexed
by ¢, as £—0

p.—p strongly in L2(®), weakly in L*(0,T;Hj(Q)

and weak star in  L* (0, T; L?(Q)), (2.21)
p.(t)—p(t) strongly in H *(Q) for every 1[0, T7], (2.22)
pr(H)p.—u weak star in (L™ (9))*. (2.23)

Now let y be any function in W2 Y4!~12 (3 ) and let peW2' (®)
be the solution of the problem

dp/ot—Ap=0 in @
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¢g=y% in X;; =0 in Z,
@(x,0=0.
Multiply (2.11) by ¢ and integrate by parts using Green’s formula. We obtain
. :
[(J)’r_! dpofovydxdt| S M || @ ey S C |12 wevar-vae iz,
Hence, {dp,/dv}, is bounded in the dual of W7~ V41-124 (3 ) Consequently
we may assume that as e—0
dp,/ov—Op/dv  weakly in (W27 Ha 17124 (5 )
Then, letting ¢—0 in equations (2.10)42.13) and (2.20) we see that
OH*/t—AH*=f in [H* >0}
H¥=Bu* in Z;H*=0 'in I (224)
H*(x,00=0 in Q,
opldt+Ap—u=3dg/éy in P
p=0 in X (2.25)
px,T)=—go (H*(x,T)) ae x in Q.
duf/dt+f; (uf)=vF ae te0,T], uf0)=ul. (2.26)

Since | | dp,/dvg; dx}, is bounded in W) '24(0, T) we get that as ¢—0
I

., ,
| ds [giopJovdx—{ ds [ g;dp/ovdx=y; weakly in L*(0, T)
i t

T I.

i

The functions ; (1) satisfy
1 S
a[ Wi (t) @ (1) dt = <dp/iv, g; (! ¢ (s)ds), YeeL?(0,T),

where { , ) is the pairing between W2~ '4:!~124 (3 ) and its dual.
Letting ¢ >0 in (2.13) and (2.20) we get

-
da¥/dt—f; (u¥) g¥ ={ ds | g:(x) dp/ovdx ae. te[0,T)
.- j‘s

g (T)=0. (2.27)

{0 if ¥ (1)< Ag;

N, i g*@®)>ia ) [ (2.28)
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Finally, arguing as in [1] we see that u=0 in the set [H* >0}
and p=0 in the set {H*=0}. Therefore, p satisfies the system

Oplot+Ap = 0g (H*,1)/dy in  [H*>0) (2.30)
p=0 in {H*=0} (2.31)
px,T)= —go (H*(x,T)) ae xeQ. (2.32)

Summarizing, we have proved

THeorem 1. Let (H*,u*,v*) be any optimal triple for problem (P).
Then there are functions p, q* and a constant AeR with
peL?*(0, T; Ho (Q)NBV ([0, T]: H*(Q)NL* (0, T; L*(Q)., s>n/2,
dplove(W; Ve t=1Ra(Z )* g*eL?(0, T; R™),
such that equations (2.24), (2.31), (2.32), (2.27), and (2.28) are satisfied.
Next. we will assume that

HEO, 20, i=1,2,.,m (2.33)
dg (y,0)/dy>0 if y>0: go(»20 if p=0 (2.34)
0,eC(Q,) and 0O,(x)>0 VxeV (I, (2.35)

where V (I") is a neighborhood of I';.

THEOREM 2. Under the assumptions (2.33)H2.35) every optimal control
v* = (v¥, .., v¥) is a bang-bang control. That is, there are 0=1, =T,
i=1,2,..,m, such that

i A e
u;“(t)z{o if 0=st=y

i=1,2, ., m. 236
N, if t<tsT R (259)

In particular, if m=1 then problem (P) has a unique optimal control
given by ’

i <tst,=T—-
o () = 0 1.f 0<t=<t,=T—M/@aN) (237)
N if ,<t=T

where N= N, and a=a,.

Proof Let peCJ (R") with 0=¢p =1 in R", ¢ =1 in a neighborhood
VieV(y)of I' and ¢ =0 in Q,—V (I';). Set p=pe and note that by
(2.30) we have

opjot+Ap= @dg/dy—pAde—VpVe 1n  Q, x(0,7T)
p=0 on @9, (2.38)
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P, Ty=—go (H* (x, 7)) ¢ (x) VxeQ,
where Q, = V (I'}) (see Figure 2).

Fig. 2

To see that (2.38) is true we note that H*>0 in Q,. Indeed,
by (2.1) we have that

OH*/ot—AH*2 0, in (H*=0}.

Combining this with (2.35) implies that H* > 0 in Q, as claimed.
By (2.38) we see that peL?(0,T—9; Hy(Q,)NH?*(2,)) and &p/dte
eL?(0, T—8; L*(Q,)) for every 4 > 0. Also,

p=p in  V(I')x(0,T).

In particular, we conclude that 8p/dveI* (0, T—3d; H'?(Iy)) for every &> 0.
Moreover, since i

Oplot+Ap = dg (H*, 0)/éy in V() x(0, T)
F(x,T)<0 in V()

and dg (H*, t)/0y =0, by the strong maximum principle we conclude that
p<0in V(I';)x (0, T) and ép/dv >0 in I'; x (0, T). Since ép/dv = @dp/dv+
+ple/dv = @dp/dv in I'y x (0, T), and ¢ =1 on I';, we obtain that

ép/ov>0 in I, x(0,T). (2.39)

Next, we see from (2.27) that ¢¥ =0 in [0, T] and dg}/dt = p; satisfies
the equation

duifdt = fi' (uF) g+ u¥) ;" W¥) g¥— [ g; 0p/dvdx ae in [0, T),
I;
w(M=0 i=1,2,.,m.
Then, by (2.33) we get
1 T T
i () Z exp [| —f (w¥)ds] | ds[exp | f; (u¥)dt | g; op/év dx]
t t 5 r;

for ae. te(0,T), i=1,2,..,m.
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Together with (2.39) the last inequality tells us that g (1) >0 for ae
te(0,T) and for all i=1,2,..,m. Therefore, the functions ¢* are strictly
increasing on [0, T]. By (2.28) we conclude that every v¥ has at most
one switch point ¢; and so (2.36) must be true.

Now consider the special case m=1. Then, by (2.36) we see that
(T—t;)aN =M as claimed. This completes the proof. B

Remark 1. From the proof of Theorem 2 it is clear that the conclusions
still hold if assumption (2.34) is weakened to

8g (H*, 1)/oy 20, go(H*(T)20, te0,T], (2.40)
dg (H*, 1)/6y+g, (H*) = 0 (2.41)

for every optimal H*.

3. Optimal control of the one-phase Stefan problem

To begin with we consider the following problem. Given a set E< @
find v=U such that Ec |(x,1)eQ x (0, T); a(x)=t}. The least squares
approach leads us to consider the optimal control problem:

min [ [ H? (x, ) i (x, 1) dxdt; veU| (3.1)
@

where H is the solution of (2.1) and x, is the characteristic function of E.
Under the assumptions (2.33)(2.35) we use Theorem 2 to obtain

Corottary 1. Every optimal control v* of problem (3.1) is of the form
(2.37) if H*yp=0.

Now let S = |(x,t)e®; 1 = ¢ (x)} be a given C'-surface and let He C* (P)
be such that H°(x,f)=0 for 0=t =0 (x). Consider the optimization
problem:

Minimize | (H (x, t)—H® (x, t))* dxdt (3.2)
i ]

over all (H, u, v) subject to (1.3)1.5) and (2.1).
This is a least squares approach to the controllability problem mentioned
in section 1, i.e. to the problem of finding veU such that §=
= {(x,1); t = o (x)}.
We will assume that
OH®/ot—AH°<f in @
H°(x,00=0 in Q.
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Then by (2.10) we see that
(H,—H®,—A(H,—H+p*(H)Z0 in @&
(HF*—=H®20 in X (3.4)
(H*=H% (x,00=0 in Q.

Multiplying (3.4) by (H,—H")” and integrating over @ we get that
(H,—H°)" =0 in ¢. By Lemma 1 we then infer that

H¥*=H®° in o (3.5)

for every solution H* to problem (2.1). Then, by Theorem 2, (see also
Remark 1), we have

CoroLLARY 2. Let (H*,u*,v*) be any optimal triple for problem (3.2).
Then, if H* = H° and assumptions (3.3) hold, the optimal control v* has
the form (2.37).

Consider, finally, the optimal control problem

Maximize | 0 (x, t) dxdt (3.6)
L]

over all (0, u,v) satisfying (1.1)~(1.5).
In terms of the control system (2.1), the problem (3.6) can be expressed as

Maximize | H (x, T)dx (3.7
0 ' R

over all (H, u, v) subject to (1.3)(1.5) and (2.1).
Then, we have the

CoroLLARY 3. Every optimal control v* of problem (3.7) is of the form (2.37).
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Sterowania typu ,,bang-bang’’ dla pewnej klasy
optymalnych proceséw chlodzenia

W pracy rozwazany jest problem istnienia optymalnych sterowari brzegowych typu
.bang-bang” w przypadku pewnej klasy sterowanych zagadnieri parabolicznych ze swobodng
granicg. Rozwazane zagadnienia naleza do klasy jednofazowych zadaf Stefana.
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