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The existence of optimal bang-bang boundary controllers for a free boundary control 
problem of parabolic type is studied. The problem is of one-phase Stefan type. 

1. Introduction 

Consider the controlled one-phase Stefan problem in n dimensions which 
physically models the melting of a body of ice Q <:::; R 3 maintained in 
contact with a region of water. The boundary r of Q is composed of 
two disjoint sets r 1 and r 2 . The temperature on the boundary r 1 

is lJ (x, t) while the temperature on r 2 is zero. Initially the water (liquid) 
occupies the domain Q0 (see Figure 1 below). If e = e (x, t) is the 

Fig. 1 

r, 
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temperature at point x and at time t and if t = CJ (x) is the equation 
of the water-ice interface then the temperature distribution e satisfies 
the classical Stefan problem 

e~-LJe = o m {(x, t)EQ x (0, T); CJ (x) < t < T} 

e=o m {(x, t)EQ x (0, T); CJ(x)~t} 

V X e. V (J (x) = - Q m {(x, t); t = CJ (x)} (1.1) 

e= IJ m rl x (O, T); e=o m rz x (O, T) 

e(x,O)=e0 (x) if xEQ0 ; e(x,O)=O if XEQ-Q0 . 

where Q is a positive constant. 
We will assume that the temperature 11 on r 1 x (0, T) is controlled by 

the system 

m 

11 (x, t) = L g;(x) u;(t) xEF 1 , tE(O, T) (1.2) 
i=l 

du; (t)/dt+/; (u; (t)) = V; (t) a.e. tE[O, T]; i = 1, 2, ... ,m , 

(1.3) 

where g; ~ 0 are given functions on F1 and /;: R--+ R are Lipschitz 
and continuously differentiable. The vector Junction v (t) = (v; (t), ... , vrn (t))E 
EL ro (0, T; Rrn) represents the supply of fuel provided by a· system of 
heaters which control the temperatures {u 1 , ... , urn) . If the functions g; 
have disjoint supports in F; this corresponds to the physical situation 
in which the temperature on F; is determined by m heated regions with 
densities g 1 , ... , gm . The case when g i (x) = b (x - x;), where () is the Dirac 
delta function, is of special physical interest since it represents point 
heating. This case is approximated as the limit of C 1 functions g; 
that we are considering here. 

We assume that the control functions v = v (t) are subject to the 
following constraints 

o;::;.v;(t);::;.N;, a.e. in [O,T], i = 1,2, ... ,m (1.4) 

m r 
L a; S V; (t) dt = M (1.5) 

i = I 0 

m m 

where N;, a; are nonnegative constants such that L a;> 0 and T L a; N; ~ 
i= I i = I 

~M. The class of all control functions vEL ro (0, T; Rm) satisfying the 
constraints (1.4H1.5) will be denoted by U . 

Our goal here is to consider several optimization problems associated 
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with (1.1)--(1.5) which are approaches to the following controllability problem. 
Given a surface S <;::: Q x (0, T) we seek a VE U such that S is "as close 
as possible" to the free surface Sv = ((x, t); t = a (x)} which is the solution 
of system (1.1)--(1.5) corresponding to the control v. 

The first step in solving this problem involves transforming the Stefan 
problem (1.1) into a parabolic variational inequality using the well-known 
device of Baiocchi and Duvaut . We may then apply the necessary conditions 
for optimal control of variational inequalities to characterize the optimal 
control. 

The main emphasis of this paper is to explicitly determine the optimal 
control. We will characterize the optimal control as a bang-bang control. 

Optimal control of free boundary problems have been studied elsewhere 
by a variety of methods. Some examples include Saguez [6], Barbu [1, 2], 
Friedman [4] and Bermudez and Saguez [3]. There is a growing literature 
on optimal control of variational inequalities. We refer to [1, 2, 5, 6]. 

2. Optimal control for parabolic variational inequalities 

Let 8 be the solution of the system (1.1). Define the function 

I 

H (x, t) = J 8 (x, s) X (x, s) ds V (x, t)E1> = Q x (0, T) 
0 

where X (x, t) = 1 if a (x) ~ t and X (x, t) = 0 if a (x) > t. Then, H IS the 
solution of the variational inequality 

H1 -LJH=f on the set {(x, t); H(x,t)>O} 

H ~ 0, H1 -LJH ~f on 1> 

m 1 

H =l: giJuds)ds m l' 1 = T 1 x(O,T) (2.1) 
i= 1 0 

H = 0 m L 2 = r 2 X (0' T) 

H(x,O) =O m Q 

where 

f(x)=8 0 (x) if xEQ0 

= - (] if X E Q- Q0 . 

Furthermore, we have that 

{(x, t)E 1>; a (x) > t} = {(x, t)E1>; H (x, t) > 0}. 
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In the general case, the controls v are chosen so as to minimize 
the payoff 

(P) J g (H (x, t) , t) dxdt+ J g0 (E (x, T)) dx 
<1> Q 

subject to the constraints (2.1), (1.3)--(1.5). 
We assume that 

00 EL 00 (Q), g;EW2
- 11q(F 1), with q>max(n~ 2 

,2} (2.2) 

Then problem (2.1) has a unique solution HEW~· 1 (<P) n C (<1>), where, as 
usual, W~ · 1 (<P) = {yEL 2 (<P)I ayr+sjat' axsE Lq (<P) for 2r + s ~ 2}. See, for 
example, Barbu [1, p. 162]. More precisely, we have that 

H,-+H weakly in W~· 1 (<P) as e-+0, 

where H,E W~· 1 (<P) is the solution to the approximating problem 

aH,/at-JJH,+f3'(H,)=f in <P 

H, (x,O)=O if xEQ 

m t 

(2.3) 

(2.4) 

where Bu = L g; (x) J u; (s) ds and {3' is a smooth approximation of the · 
i= I 0 

multi valued function f3 given by f3 (r) = 0 for r > 0 , f3 (0) = (- w, 0]. f3 (r) = ~ 
for r < 0. 

The following estimate also holds (see [1, p. 163]): 

11 H, 11 w~·' (<P) + 11 /3' (H,) IlL' (<P) ~ C [1 + 11 Bu 11 w'-"''·' - '''' (Ed] (2.5) 

For the functions g : R x [0, T]-+ R and g0 : R-+ R we will make the 
assumption 

(A) g (y, t) and g0 (y) are continuously differentiable in y, g is measurable 
in t and 

jag (y, t) jayj ~ (XR (t) a.e. tE [0, T], IYI ~ R, (XREI! (0, T), (2.6) 

g(y,t)~ - Cd1+1yl), g 0 (y)~ -C(1+1yl) Vy ER, O~t~T. (2.7) 

By standard arguments it follows that problem (P) admits at least one 
solution. Accordingly, let (H*, u*, v*) denote an optimal triple for problem 
(P). Note that H* and u* are state variables and v* is the optimal controL 

Consider now the approximating problem for each e > 0: 
(P,) Minimize the payoff 
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J g (H, (x, t), t) dxdt+ J g0 (H, (x, T)) dx+ ~ { 11 v (t) - v* (t) 11! dt 
$ Q 0 

over all (H" u, v) subject to (2.4), (1.3)--{1.5). 
Let (Hp u., v,) denote an optimal triple for problem (1>_.). Then· by 

arguments similar to those in [1, p. 240] we obtain. 

LEMMA 1. As £ ---+ 0 we have 

v, ---+ v* strongly in (L 2 (0, T))m, (2.8) 

H,---+H* strongly in w;·' (<P), u,---+u* strongly in C (0, T). (2.9) 

We may now determine the necessary conditions which (Hp u., vJ must 
satisfy. Using equations (2.4), (1.3)--{1.5) we obtain the following. 

For each £ > 0 there exist functions p, and q, with p,E L 2 (0, T; H6 (Q)) n 
ne ([0, T]; L 2 (Q)), opJotEL2 (0, T; H- 1 (Q)) which together with H" u., 
and v, satisfy the system 

8Hjot - t1H, + f3"(H,) = f m <P 

H,=Bu, m 1: 1 ; H, = O m 1:2 (2.10) 

H,(x,O) = O, xEQ 

op,/ot + t1p, - P' (H,) Pe = og (H,, t)/oy m <P 

p, = O m l' 1 Ul'2 (2.11) 

p, (x, T) = -g0(H,(x, T)), Vx EQ. 

d(u,)Jdt +.[; ((u, )J=(v,); a.e. in [O,T] , i = 1,2, ... ,m 

(u,); (0) = uP (2.12) 

T 

d (qi)/dt -J; ((u,);) qf = S ds S g; (x) (op, (x, s) jov) dx 0 ~ t < T 
t rl 

qf( T)=O , i= 1,2 , ... ,m , (2.13) 

1' T 

J J opefov Bvdxdt + h' (v" w) + J (w (t) , v, (t) - v* (t)) dt ;?; 0 (2.14) 
o r 1 o 

for all w E(L 2 (0 , T))m , where h' is the d irectional derivative of the indicator 
function h given by 

h (v)= O if vEU, h (v) = + oo if v fj; U (2.15) 

and where 
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By (2.13), (2.14) and (2.16) we get after some manipulation that 

T 1. 

- J (q" (t), w (t)} dt+ J (w (t), v" (t)-v* (t)} dt+h' (v,, w) ~ 0 
0 0 

for every wE(e (0, T)}m. Therefore, 

q" (t)+v* (t)- ve (t)Eoh (v") (t) a.e. tE[O, T], (2.17) 

where oh: L 2 (0, T; Rm)-->L 2 (0, T; Rm) is the subdifferential of h (see, for 
example [1, p. 101]). 

We see that 

oh (v) = oh0 (v)+oh 1 (v) VvE(L 2 (0, T)}m 

where 

oho(v)={w=(w;, ... ,wm); W;=O m {t; O<v;(t)<NJ, 

w;~O m {t; v;(t)=O}, 

w;~O m {t; v;(t)=N;}}. (2.18) 

oh;(v) ={w=(Aal , .. . ,Aam); AER}, VvE(L 2 (0,T)}m. (2.19) 

Then, by (2.17) we infer that there is },"ER such that 

if q'f (t)+(v7 -(ve);} (t) <A" a; 

if q'f(t)+(v[-(v");}(t)>Aeai 
(2.20) 

Now, by multiplying (2.1) by Pe and sgn (p,), and integrating over 1> 
we obtain the estimate 

T 

11 Pe (t) lliz (Q) + J 11 Pe (t) 1116 (Q) dt + J I pe (He) Pe I dxdt ~ C. 
0 <1> 

Then arguing as in [1, p. 242] we conclude that there exists a function 
pEBV ([0, T]; H-s (Q)}, s > n/2, such that for a subsequence, still indexed 
by s, as s --> 0 

Pe--> p strongly in L 2 (1>), weakly in L 2 (0, T; H6 (Q)) 

and weak star in L oo (0, T; e (Q)), (2.21) 

p,(t)-->p(t) strongly in H - s(Q) for every tE[O, T], (2.22) 

(2.23) 

Now let x be any function in w~-l/q , l-l / Zq(l' 1 ) and let <pEW~· 1 (1>) 
be the solution of the problem 

o<pjot-LJ<p = 0 m 1> 

----~----------------------
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cp=x m L:1; cp=O m L:2 

cp(x,O)=O. 

Multiply (2.11) by cp and integrate by parts using Green's formula. We obtain 

T 

Is J op,/ovxdxdt I~ M 11 cp i! c r<P) ~ c 11 X 11 w; - 1" 1- 12' 12"1) 

or, 

Hence, {op,/ov}, is bounded in the dual of w;- 1
/q, 1 -I / lq (L:d. Consequently 

we may assume that as e---+ 0 

OpjOV---+ opjOV weakly in (W 2 - 1/q, 1 - 1/lq (J: 1))*, 

Then, letting e---+0 in equations (2.10)--(2.13) and (2.20) we see that 

l
oH*/ot-LJH* =f m [H*>O} 

H* = Bu* in L: 1 , H* = 0 m 

H* (x, 0) = 0 m Q, 

(2.24) 

op/ot+LJp-Jl. = og/oy in cJ> 

p = 0 m L: (2.25) 

p(x,T)=-g~(H*(x,T)) a.e. x m Q. 

du'!'/dt+J; (u{) = vf a.e. tE(O, T], uf (0) = u?. (2.26) 

Since { J op,jovq; dx }, is bounded in W~- I f lq (0, T) we get that as e---+ 0 
r, 

T T 

J ds J g; op,jovdx---+ J ds J g; op/ovdx = t/1; weakly in Lq (0, T) 
r ri t ri 

The functions t/J; (t) satisfy 

T t 

J t/J; (t) cp (t) dt = ( op/ov, g; J cp (s) ds), VcpEe (0, T), 
0 0 

where ( , ) is the pairing between w;- 1tq. 1 - 1/ 2q(L:d and its duaL 
Letting e---+ 0 in (2. 13) and (2.20) we get 

T 

dqfldt-J;(u{)qf=J ds J g;(x)op/ovdx a.e. tE[O, T) 

qf(T) = 0. 

t r 1 

v* = {0 
' N; 

if qf (t) < A.a; 
if qf (t) > A.a;' 

i = 1, 2, ... , m. 

(2.27) 

(2.28) 
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Finally, arguing as in [1] we see that f.l = 0 in the set {H* > 0} 
and p = 0 in the set { H* = 0}. Therefore, p satisfies the system 

ap;at+LJp = aq (H*, t)!ay m {H* > o} 

p = 0 m { H* = 0} 

p (x, T) = -g0 (H* (x , T)) a.e. xEQ. 

Summarizing, we have proved 

(2.30) 

(2.31) 

(2.32) 

THEOREM 1. Let (H* , u* , v*) be any optimal triple for problem (P). 
Then there are functions p, q* and a constant ). ER with 

pEL 2 (0, T; Hb (Q))nBV ([0, T] ; H-s (Q))nL ro (0, T; e (Q)), s > n/2 , 

ap/avE(W~-l fq , l-I /Zq(L'd)*, q*EL 2 (0, T; Rm), 

such that equations (2.24), (2.31), (2.32), (2.27), and (2.28) are satisfied. 

Next. we will assume that 

J/ ~ 0, 1'." ~ 0 
Ji - ' i = 1, 2, ... , m (2.33) 

ag(y,t)jay>O if y>O; g 0 (y)~O if y~O (2.34) 

eo E c (Qo) and eo (x) > 0 Vx E V (r 1), (2.35) 

where V (r 1) is a neighborhood of r 1 . 

THEOREM 2. Under the assumptions (2.33)-(2.35) every optimal control 
v* = (vj, ... , v::',) is a bang-bang control. That is, there are 0 ~ t; ~ T, 
i = 1, 2, ... , m, such that 

if 0 ~ t ~ t; 

if t; < t ~ T 
i = 1, 2, ... , m. (2.36) 

In particular, if m= 1 then problem (P) has a unique optimal control 
given by 

v* (t) = {~ if 0 ~ t ~ t 1 = T - M/(aN) 

if t 1 <t~T 
(2.37) 

where N = N 1 and a = a 1 . 

Proof' Let cpEC0 (W) with 0 ~ cp ~ 1 in W, cp = 1 in a neighborhood 
V1 s; V (r 1 ) of r 1 and cp = 0 in Q0 - V (r Jl. Set p = pep and note that by · 
(2.30) we have 

a:p;at + LJff = cpag;ay - pLJcp - Vp Vcp m Q 1 x (O, T) 

(2.38) 
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p(x, T) = - g~ (H* (x, T)) cp (x) VxEQ 1 

where Q 1 = V(T 1) (see Figure 2). 

Fig. 2 

To see that (2.38) is true we note that H* > 0 m Q 1 . Indeed, 
by (2.1) we have that 

oH* jot - iJH* ~ ()0 m {H* = 0}. 

Combining this with (2.35) implies that H* > 0 in Q 1 as claimed. 
By (2.38) we see that p EL 2 (0, T - 6; H6 (QJ)nH2 (Qd) and opjotE 

EL 2 (0, T - b; L 2 (Q 1)) for every b > 0. Also, 

p = p m V(Tdx(O,T) . 

In particular, we conclude that opjov E L2 (0, T - 6; H 1i 2 (TJ)) for every b > 0. 
Moreover, since 

op/ot+iJp = og (H*, t)!oy in V(T1)x(O, T) 

p(x, T) ~ 0 m V(TJ) 

and og (H*, t)/oy = 0, by the strong maximum principle we conclude that 
p < 0 in V (Tl) X (0, T) and opjov > 0 in ri X (0, T). Since opjov = cpopjov+ 
+ pocpjov = cpopjov in r 1 x (0, T), and cp = 1 on r 1 , we obtain that 

opjov > 0 m rl X (0, T) . (2.39) 

Next, we see from (2.27) that q{ ~ 0 in [0, T] and dq{/dt = J.li satisfies 
the equation 

df.ljdt = fi' (u{) J.li + (u{)' fi'' (u{) q{ - J gi opjov dx a. e. in [0, T), 
r 
' 

J.li (T) = 0 i = 1, 2, .. . , m . 

Then, by (2.33) we get 

1' T T 

J.l i (t) ~ exp [J - Ji' (u{) ds] J ds [exp J j; (u{) dr J 9i opjov dx] 
t t s r , 

for a.e. t E(O, T), i = 1, 2, ... , m. 
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Together with (2.39) the last inequality tells us that /1; (t) > 0 for a.e. 
t E (0, T) and for all i = 1, 2, ... , m. Therefore, the functions q* are strictly 
increasing on [0, T]. By (2.28) we conclude that every v( has at most 
one switch point ti and so (2.36) must be true. 

Now consider the special case m= 1. Then, by (2.36) we see that 
(T- t;) aN= M as claimed. This completes the proof. • 

REMARK 1. From the proof of Theorem 2 it is clear that the conclusions 
still hold if assumption (2.34) is weakened to 

og(H*,t)joy"?;O, g~(H*(T))"?:.O, tE[O,T], (2.40) 

og (H*, t)/oy+g~ (H*) = o 
for every optimal H*. 

3. Optimal control of the one-phase Stefan problem 

(2.41) 

To begin with we consider the following problem. Given a set E ~ 1J 
find v = U such that E ~ [(x, t)EQ x (0, T); a (x) "?:. t}. The least squares 
approach leads us to consider the optimal control problem: 

min [J H 2 (x, t) x1, (x, t) dxdt; VE UJ (3.1) 
<1> 

where H is the solution of (2.1) and x1, is the characteristic function of E. 
Under the assumptions (2.33)-(2.35) we use Theorem 2 to obtain 

CoROLI.ARY 1. El'en' optimal control v* of problem (3.1) is of the form 
(2..37) if" H* XE = 0. 

Now letS= [(x, t)E <P; t = ~ (x)} be a given C 1-surface and let H0 
E C 2 (cP) 

be such that H 0 (x, t) = 0 for 0 ~ t ~a (x). Consider the optimization 
problem : 

Minimize J (H (x, t)-H0 (x, t))Z dxdt (3.2) 
<1> 

over all (H, u , v) subject to (1.3)-(1.5) and (2.1). 

This is a least squares approach to the controllability problem mentioned 
in section 1, i.e. to the problem of finding v E U such that S = 

= {(x, t); t = a (x)}. 
We will assume that 

I 8~
0 
jot - !J~0 ~ f in (/> 

H ~0 m L:=L: 1 UL: 2 

H 0 (x, 0) ~ 0 in Q . 

(3.3) 
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Then by (2.10) we see that 

(H,-H 0 )t-L1 (H, - H 0 )+f3' (H,) ~ 0 m 1/J 

(H'-H0
) ~ 0 m E (3.4) 

(H' - H 0
) (x, 0) ~ 0 m Q. 

Multiplying (3.4) by (H,- H 0r and integrating over 1/J we get that 
(H, - H0) ~ = 0 in 1/J. By Lemma 1 we then infer that 

in (3.5) 

for every solution H* to problem (2.1). Then, by Theorem 2, (see also 
Remark 1), we have 

CoROLLARY 2. Let (H*, u*, v*) be any optimal triple for problem (3.2). 
Then, if H* = H 0 and assumptions (3.3) hold, the optimal control v* has 
the form (2.37). 

Consider, finally, the optimal control problem 

Maximize J e (x, t) dxdt (3.6) 
c]J 

over all (8, u, v) satisfying (1.1)-(1.5). 
In terms of the control system (2.1), the problem (3.6) can be expressed as 

Maximize J H (x, T) dx (3.7) 
Q 

over all (H , u, v) subject to (1.3)-(1.5) and (2.1). 
Then, we have the 

CoROLLARY 3. Every optimal control v* of problem (3.7) is of the form (2.37). 
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Sterowania typu ,bang-bang" dla pewnej klasy 

optymalnych procesow chlodzenia 

V. BARBU. E. N. BARRON 

W pracy rozwaiany jest problem istnienia optymalnych sterowan brzegowych typu 
,bang-bang" w przypadku pewnej klasy sterowanych zagadnien parabolicznych ze swobodn<i 
granicq. Rozwaiane zagadnienia naleiq do klasy jednofazowych zadan Stefana. 

YnpaBJieHHH Tuna "6aur-6aur" )l.JIH ueKOToporo 

KJiacca onTuMaJibHbiX npoueccoB oxJiaJK)l.eHHH 

PaceM a I pusaKHCH npo6JieMbl cymeCTBOBaHHH OTITHMaJibHblX KpaeBbiX ynpaBJieHHH THna 
,6aHr-6aHr" L\JIH HeKoToporo KJlacca ynpaBJil!eMbJX napa6oJiuqecKux 3aL(aq eo cso6oL(HOH 
rpaHuuefi. PaccMoTpeHbl npo6JieMbl Tuna OL\Ho<!Ja3HbiX 3aL(aq CTe<!>aHa. 


