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In this paper an implementable algorithm using the operation of space dilation for solving
constrained minimization problems involving (not necessarily smooth) convex funetions
is investigated. The algorithm minimizes an exact penalty function via the subgradient method
with space dilation for unconstrained minimization. A scheme for automatic limitation of
penalty growth is given. Global convergence of the algorithm is established.

1. Introduction

In this paper we shall be concerned with an algorithm for solving
the following constrained optimization problem

minimize f (x), subject to F(x) <0, (1)
where [ and F are convex (possibly nonsmooth) real-valued functions
defined on R". It is assumed throughout this paper that

lim f(x) (2)

lx|=+

and the Slater constraint qualification holds, i.e. there exists Xe R" satislying
F(X) <0, so that the set of feasible points S = {xeR": F(x) <0} has
a nonempty interior. The algorithm only requires the computation of
f(x) and F(x), and two arbitrary subgradlems gy (x)edf (x) and gy (x)e
€0F (x) at each xeR"

The algorithm extends and modifies the subgradient method with space
dilation in [4] for unconstrained minimization of an exact penalty function
for problem (1).
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Polak, Mayne and Wardi [5] proposed an exact penalty method for
nonconvex nonsmooth problems. They developed general schemes for the
extension of differentiable optimization algorithms to nondifferentiable pro-
blems. Kiwiel [2] presented a readily implementable algorithm for solving
constrained minimization problems involving convex function. This algorithm
minimizes an exact penalty function via the aggregate subgradient method
for unconstrained minimization.

Our algorithm is based on combining, modifying and extending the
ideas contained in Mifflin [3], Kiwiel [2], Shor [6], Wolfe [7] and [4].
We use the operator of space dilation for finding a direction at each
iteration and our choice of step sizes is based on Mifflin’s and Wolfe’s
ideas. A scheme for automatic limitation of penalty growth is given
By exploiting convexity, our method attains convergence properties that
are stronger than those in [5].

In Section 2 we present the algorithm, while its convergence is discussed
in Section 3. Section 4 contains two small illustrative numerical examples.

We use the following notation. We denote by (-, -> and |:| respectively,
the usual scalar product and norm in finite-dimensional, real Euclidean
space R". For any set Bc< R", “convB” is the convex hull of B.
If H:R"—>R" is a convex function and 5 >0, the Goldstein #-subdiffe-
rential is defined by

0H (x,n)=conv {gedH (y): |[y—x|<n, yeR"
where

0H (x)= {geR": H (z2) = H (x)+<{g,z—Xx), VzeR"}

is the ordinary subdifferential. Note that H is continuous and the mapping
JH (-, -) is locally bounded and upper semicontinuous (see, e.g. [3], [5]).

In this paper we use operators of space dilation of the following
type (see [6]). Let £eR", [£|=1, 2> 0. Then a linear operator R, (&)
such that

R, () x=x+(@—1) &  x

is referred to as the space-dilation operator acting in the direction ¢
with the coefficient o.

2. Algorithm

Define the exact penalty function for problem (1)

P(x,c)=f (x)+c-F(x),, for all xeR",
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where ¢>0 is a penalty coefficient and F (x), = max {F (x),0}. Consider
the unconstrained optimization problem

min P (x, ¢), (3)

xeR"

Clearly, if a point x, solves problem (3) and x.eS, then x. solves
problem (1). This is the case if ¢ is large enough (see [1]). We shall,
therefore, use the method in [4] for solving problem (3) and choose
a suitable value of ¢ in the course of calculations.

The algorithm uses positive parameters o, my, m,, f;, f, <1 satisfying

my <m; <05, (4)
mf(l—-m)<p, <1 (5)
and two sequences of positive numbers {J,} and {o} satisfying
0,—0, as k— +w0, ©)
ou—0, as k—o 4w
and a positive number L satisfying
L>21 (%), ' (7)

where X is some feasible point of problem (1).

ALGORITHM
Initially we have a starting point x° € R", some g} €df (x°), g (x°)€dF (x°)
and

o_ [0erR", if F(x%<0,
P lgr (x9), if  F(x%)>0.

Set ¢, =1, v,=1. Suppose a point x* and ¢;,, and v;;, are known.
To find the next point x**! the algorithm realizes the following iterative
process:

Step 0. Set X0 = x¥, y*% = x* and d*° = gf+ 1+, gk, where gjedf (y°) and

k

{OER“, if F(Y<o0,
gr =

gr (XY, if F(xH>0.
Set i=0 and
& = max {\/lP(xk_l’ck+l)_“P(xksCk+l)|;6k}‘ (8)

Step 1. If |d*| < ¢, set x*"'=x¥1 [(k+1)=1i and go to Step 7; otherwise,
go to Step 2.
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Step 2. (Line search: see below for details). Find ' and ', 0 <¢ff <l
such that

P (ot =t a5 i) S P (XM epng)—mp £ | A9, ©)
P (M =gt d*h i) 2 P (555 o) —my 11 |9, (10)
It =] < i (11)
d .
Set xkritl=ki_ghighi apd ot = i1 d% and go to Step 3.

Step 3. If |x*—x**1>8 or P(X, ceyr)—P (Mt ¢iy) >0 set X7l =
= x**1 J(k+1)=i+1 and go to Step 7; otherWISe, go to Step 4.

Step 4. Choose g&'*'edf (y*'*') and g, (V""" ')edF (y*'*'). Set g~'*! =

gk. i g:};-nu1 where
gt = 0eR", if FQ*) <0,
gp(yk.i+1), 11‘ F(yk’(+l)>0.

If (g*itt, dki—ghit1y >0 go to Step 5: otherwise, go to Step 6.
Step 5. Set

kyi+l _ gk,i
gk,l’+l — g d

- ,i+1_d ,|] ]

lg

dk,:’-t—l — Rﬁl (ék.H’ 1) dk.i’
increase i by 1 and go to Step 1. ‘
STEP 6. Set

dFi— gkitt

ghoit+1 _ =
< |dFT—gFiF )

= |d*i 2 I:l " Bi-1 —‘2m1) &2 :|,

idk,i_gk,;+l |2

and ¢® =g, j=0.

i) Set ¢/t =Ry, (€N ¢'.

i) If |¢/"Y <7y, set dit' = ¢'*!, increase i by 1 and go to Step 1;
otherwise, increase j by 1 and go to i).

Step 7. If
|P(* %, cha 1) =P, oet)] S Vier 1, (12)
e = max {|x*—x*1i=1,2,.., [ (k)} <Py, (13)
PG, e <L, (14)
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set Vs = Vs 1/2; otherwise, set viip = Viyq. If

Vi+2 < Vi+1s (15)
and
PN > M (16)
set Cyya = 204+1; Otherwise, set ., = ¢4 . Line search. Define
L=1{>0:f (" —td") <f (xF)—m,t|d“"?},
R={t=0:f (x—td") = f *)—my t [d“']*}.

Choose t > 0. Set t;=0; tp= +0.
(a) If tx—t, <ouf|d"'|, go to (e); otherwise, go to (b).
(b) If te L\R go to (c).
If teLNR go to (f)
If teR\L go to (d).
(c) If tp = +oo, replace t;, by ¢t and t by 2t; otherwise, replace t, by t
and t by (tg—t;)/2, and go to (a).
(d) Replace tg by t and ¢t by (tx—1t.)/2, and go to (a).
(e) Stop.
(f) Set t;, =tz =1 and stop.
Using the proof of Theorem 4.1 in [3] it is easy to see that the above
process is finite.
The results in [4] show that the process of finding x**' is finite
for any k and our algorithm generates an infinite sequence of points {x'}.
In the next section we shall prove that any accumulation point of the -

sequence {x*} solves problem (1).

L]

1

3. Convergence of the algorithm

LEmMA 1. Suppose that there exist numbers k, and ¢ >0 such that

¢ =c for all k =k, Then

i) {x*} minimizes P (-, ), ie. P(x*, ") min {P(x, ¢'): xeR"}.

i) min P (x, ¢') = min f (x).
xeR" xe8s

iii) There exists an accumulation point x' of the sequence {x*} and x'
solves problems (1) and (3) with ¢ = ¢

Proof. From the description of the algorithm and the proof of the

theorem in [4] it follows that the sequence {P (x*, ¢')},~, is nonincreasing
and

H k "o = k '
kllinw Px"e)= ig;l}f’(x , ). (17)
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From Assumption (2), (17), and the proof of the theorem in [4] it is easy
to see that there exists an infinite subset K = N and x'eR" such that
k _y ot .
x—=x', as k- 4+, kek (18)
M-y = max {|xX*T—x"1i:i=1,2, . I(k—1)} -0,

as k— +oo, keK. From Assumption (7) and (17) it follows that there
exists k' such that

P(x*"',¢)<L forall k>kK, kekK. (19)

Combining (12)-(16) and (17)(19), it is easily seen that there exists an
infinite subset K' < K such that

F(x<v, and v, —0, as k- 4w, kekK' (20)
From (18) and (20) we obtain F (x') <0, ie. x'eS. Then we have
min P (x, ¢') = min f (x).
xeR" xe5

This completes the proof. Bl

LemMmAa 2. If the set K.= {kicyyy > ¢} is infinite, then the subsequence
{x"}kEKc has no accumulation point.

Proof. For purposes of a proof by contradiction, suppose that there
exists an infinite subset K = K, and XeR" such that

lim x*=%. 1)
M

We know that the function F (x). = max {F (x),0} is convex, therefore
the function F(-); is locally Lipschitz (see [6]). It follows that there
exists ¢ > 0, M (0, c0) such that

|F (x)+ —F (x")4 | < M |x"=x"], (22)

for all x', x"eU,, (X), where U,, (X) = {xeR": |x—X| <2¢}. From (12){16)
it follows that

v,—0, as k- +o, kek, (23a)
therefore there exists k such that
My, <1/4, <o), (23b)
for all k =k, keK and
x*eU, (%), (24)
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for all k >k. Now let us consider xeR" with |x—x*| <2vf. From (24)
and (23b) we have

|x—X| < |x—x¥|+|x*—x| < 2.

Then we obtain :
|F(x)s—F (X", | <M |x¥—x| <2Mvi <v/2, (25)

for all k >k, ke K. On the other hand
F(x")y = F (NS vy (26)

for all ke K.. From (26) and (25) it follows that
F(x)s+ = v /2, (27)

for all xeR", xeU,: (x*), k=k, keK.
Combining the definition of the function F (-),, condition (13) and inequality
(27), it is easily seen that

FF1), =F@"")2w2, i=1,..,1k-1), (28)
for all k>k, keK. On the basis of the lemmas in [4] and from
the description of the algorithm it is easy to see that

dk— Lik—=1) _ dﬁi— 1,1k - ”‘l"Ck dlé" 1LIk— 1),
where d{~'1*"Def (x*, 2v); dy ' *DedF (x*, 2v3). Let us now prove
that
|5~ ie-1 > 5.0, (29)
for k sufficiently large and ke K. Assume, for contradiction purposes,
that there exists an infinite subset K' < K such that
lim |d% &b =0.
k—++
keK’ '
From upper semicontinuity of the mapping: (x,n)— dF (x,n) it follows
that 0edF (x,0) = dF (x). On the other hand
F(X) = lim F(x}= lim v =0.
k-;‘:’(oo k= + o

Then we have derived a contradiction with the Slater condition. Therefore
we obtain inequality (29). Combining (21), Assumption (2) and the local
boundedness of the n-subdifferentials, it is easily seen that there exists b>0
such that

|d- 1= <p for all keK. (30)

From the assumption of our lemma and (29), (30) it follows that
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| 11€=D) 4 Lo, as k— +o, keK. (31)
From (6), (8), (12), (23a) and assumption of our lemma we obtain

;(_l.linw 8*...1 = 0 (32)
keK

From (32) and the description of the algorithm it follows that

lim [ b=V < lim ¢g.,=0,
k—=++m k= +a
keK keK

so we have derived a contradiction with (31). This completes the proof. B

Combining Lemmas 1 and 2 we shall prove the following theorem.

THEOREM 3. Assume that conditions (2), (4)H7) and the Slater condition
are satisfied and let {xX*}y., be the sequence generated by the algorithm.
Then
i) There exists k' such that ¢, = ¢, for all k = k'.
ii) The sequence {x*} has an accumulation point, and every such accumulation
point of {x*}i-, solves problem (1).

Proof. For purposes of a proof of assertion i) by contradiction, suppose
that there exists an infinite subset K, = {k: ¢;+, > ¢}. From condition (14)
we have f (X Y)+¢ F(x* "), <L, for any keK,, where F(x*"1), >0
and ¢, > 0. This implies

f(x*Y<L, forall kek,. (33)

Combining (33) and (2) it is easily seen that the set {x* ':keK,}
is bounded. Therefore, from condition (13) it follows that set {x*:keK,}
is bounded, which means that there exists an accumulation point of
{x*}1ek.. Then we have derived a contradiction with Lemma 2. Therefore,
there exists k' such that ¢, = ¢, for all k =k From Lemmas 1 and 2
we obtain assertion ii) of Theorem 3. The theorem is proved. @

4. Example

In this section we report on computational testing of the algorithm
on two small problems. We used the following parameter values: m; =0.2,

my=01, By =B,=03, & = 1/ ¥k, oy = 1/k2, co=1.
The first example is given by _
fx)=max {f; 100 (x):i=2,3}; F(X)=fs1,100 (%),

xeR?, with the solution £ = (0,0); f (X).= 0, where
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fis = xy cos [27 (i—1)/j]+x, sin [2x (i—1)/j].

Starting from x°=(1, —1) with P (x°, ¢o) =0935; we obtained k = 31,
il (k) =235, P(x*,¢3,)=7-10"5.
k_lThe second example is

f(x)=x3+x3+2x34+x2—5x; —5x,—21x3+7x,

F(x)=max {f;(x):i=1,2,3}, xeR*

1)) =2x3+x3+x3+4+2x; —x3—x4—35,

fox)=xt+x3+x3+xi+x;—x,+x3—x4—8,

f3 (x) = x}+2x34+x3+2x3 —x; —x,—10,
with the solution X = (0, 1,2, —1); f (X) = —44. Starting from x° = (0, 0,0, 0)
with P (x% ¢,)=0, we obtained k=25, f 1(k)=182; P(x*°,¢3)=
= —43.997. o
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Metoda funkcji kary wykorzystujaca operacje rozciagania przestrzeni
dla wypuklych zadan minimalizacji z ograniczeniami

W artykule tym wprowadziliSmy nowy algorytm rozwigzywania zadai minimalizacji
z ograniczeniami nieliniowymi. Rozszerza on na przypadek niegladki metode funkeji kary.
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Osiagnigto to poprzez wprowadzenie reguly zwickszenia wspélczynnika kary. Regula ta
gwarantuje skoficzono§¢ wspolczynnika kary w algorytmie.

Meton mrpadga AN BBIIYKJIBIX 337134 MHHHMH3AUHHA
C OrpaHHYeHHsiMH MCIO.Ib3YIOLMIi onepannio
PACTSIrHBAHKS NPOCTPAHCTBA

B paboTe npeacTaBieH HOBbIl aNrOpuUTM pelleHMs 3a/ay MHHHMH3ALUMH C HEJUHEHHBIMH
orpasnuenusiMu. BBojs 3aKOH KOHEUHOIo yBeiauuyeHus xoddduumenra wrpada, meron mrpa-
dubix (YHKUHI paciumpaeTcs Ha cay4ail Hernankux 3anat.




