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In this paper an implementable algorithm using the operation of space dilation for solving 
constrained minimization problems involving (not necessarily smooth) convex fum:tions 
is investigated. The algorithm minimizes an exact penalty function via the subgradient method 
with space dilation for unconstrained minimization. A scheme for automatic limitation of 
penalty growth is given. Global convergence of the algorithm is established. 

1. Introduction 

In this paper we shall be concerned with an algorithm for solving 
the following constrained optimization problem 

minimize f (x), subject to F(x):(O, (1) 

where f and F are convex (possibly nonsmooth) real-valued functions 
defined on R". It is assumed throughout this paper that 

lim f(x)= +eo 
lxl-+ +eo 

(2) 

and the Slater constraint qualification holds, i.e. there exists x ER" satisfying 
F(X)<O, so that the set of feasible points S={xER":F(x):(O} has 
a nonempty interior. The algorithm only requires the computation of 
f(x) and F(x), and two arbitrary subgradients gf(x)Eoj(x) and g,(x)E 
E oF (x) at each X ER". 

The algorithm extends and modifies the subgradient method with space 
dilation in [ 4] for unconstrained minimization of an exact penalty function 
for problem (1). 
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Polak, Mayne and Wardi [5] proposed an exact penalty method for 
nonconvex nonsmooth problems. They developed general schemes for the 
extension of differentiable optimization algorithms to nondifferentiable pro­
blems. Kiwiel [2] presented a readily implementable algorithm for solving 
constrained minimization problems involving convex function. This algorithm 
minimizes an exact penalty function via the aggregate subgradient method 
for unconstrained minimization. 

Our algorithm is based on combining, modifying and extending the 
ideas contained in Mifflin [3], Kiwiel [2], Shor [6], Wolfe [7] and [4]. 
We use the operator of space dilation for finding a direction at each 
iteration and our choice of step sizes is based on Mifflin's and Wolfe's 
ideas. A scheme for automatic limitation of penalty growth is given. 
By exploiting convexity, our method attains convergence properties that 
are stronger than those in [5]. 

In Section 2 we present the algorithm, while its convergence is discussed 
in Section 3. Section 4 contains two small illustrative numerical examples. 

We use the following notation. We denote by < ·, · > and 1·1 respectively, 
the usual scalar product and norm in finite-dimensional, real Euclidean 
space R". For any set B c R", "conv B" is the convex hull of B. 
If H: R"--+ R 1 is a convex function and 1J > 0, the Goldstein 1}-subdiffe­
rential is defined by 

oH (x, 1J) = conv {gEoH (y): ly-x l ~ 1], yER"} 

where 

oH (x) = {gER" : H (z)? H (x)+(g, z-x), \fzER"} 

is the ordinary subdifferential. Note that H is continuous and the mapping 
oH ( ·, ·) is locally bounded and upper semicontinuous (see, e.g. [3], [5]). 

In this paper we use operators of space dilation of the following 
type (see [6]). Let ~ER", I ~ I = 1, a> 0. Then a linear operator Ra (~) 
such that 

Ra (~) x = x+(a-1H~T x 

IS referred to as the space-dilation operator acting m the direction ~ 

with the coefficient a. 

2. Algorithm 

Define the exact penalty function for problem (1) 

P(x,c)=f(x)+c·F(x)+, for all xER", 
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where c > 0 is a penalty coefficient and F (x)+ = max {F (x), 0}. Consider 
the unconstrained optimization problem 

min P (x, c), 
XER

11 
(3) 

Clearly, if a point Xc solves problem (3) and XcE S, then Xc solves 
problem (1). This is the case if c is large enough (see [1]). We shall, 
therefore, use the method in [ 4] for solving problem (3) and choose 
a suitable value of c in the course of calculations. 

The algorithm uses positive parameters (), m1 , m2 , {3 1 , {3 2 < 1 satisfying 

m2 < m1 < 0.5, (4) 

m d( 1 - m 1) ::::; f3 1 < 1 ( 5) 

and two sequences of positive numbers {C5k} and {o:k} satisfying 

bk---+ 0, as k---+ + oo, 

o:k ---+ 0 , as k ---+ + oo 

and a positive number L satisfying 

L>2f(x), 

where x is some feasible point of problem (1). 

ALGORITHM 

(6) 

(7) 

Initially we have a starting point x 0 ER", some gJ E 8f (x0), g F (x0) E 8F (x0) 

and 

0 {OER", gp = 0 
gF (x ), 

if 
if 

F (x0 )::::; 0, 

F (x0
) > 0. 

Set c 1 = 1, v 1 = 1. Suppose a point xk and ck + 1 and vk + 1 are known. 
To find the next point xk+ 1 the algorithm realizes the following iterative 
process: 

STEP 0. Set xk,o = xk, / ·0 = xk and dk,o = g} + ck+ 1 g}, where g}E8f (/· 0
) and 

Set i = 0 and 

if F (xk)::::; 0, 
if F (xk) > 0. 

ek=max {)IP(xk 1 ,ck+d-P(xk,ck+dl;6k}· (8) 

STEP 1. If ldk ,il ::::;r;b set xk+ 1 =xk,i, l(k+1)= i and go to Step 7; otherwise, 
go to Step 2. 
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STEP 2. (Line search: see below for details). Find tl'i and t~· i , 0::::; t1·i::::; t~·i 
such that 

p (xk,i - t1· i dk, i ; ck+ t)::::; p (xk,i; ck + 1) - m2 tl' i I dk ,i 12 ' (9) 

p (xk , i _ t~·i dk ,i; ck+ 1) ~ p (xk· i ; ck+ t) - m1 t~·i ldk,il2' (10) 

I t k. i - tk . i I s.. ____!!!<__ ( 11) 
R L " dk,i · 

Set xk ,i + 1 = xk ,i _ tl'idk ,i and l , i+ 1 = xk , i _ t~idk,i , and go to Step 3. 

STEP 3. If l xk - xk,i+ 11>!3 or P(xk , ck + 1) - P(xk ,i+ 1,ck+ 1)> !3 set xk+ 1 = 
= xk ,i+ 1, l(k + 1) = i+1 and go to Step 7 ; otherwise, go to Step 4. 

STEP 4. Choose g}·i+ 1E8f(/·i+ 1) and gp (/·i+ 1)E 8F(/·i+ 1). Set l ,i+ 1 = 

= g}· i + 1 + ck + 1 g}· i + 1 ' where 

if F (/·i+ 1
)::::; 0 , 

if F (/·i+ 1
) > 0. 

If <l· i + 1, dk,i _ gk ,i + 1 ) ~0 go to Step 5 ; otherwise, go to Step 6. 

STEP 5. Set 

gk,i + 1 - dk,i 
,::k ,i +1 -
., - -,-I 

9
-=-.k-, i"+--.-1-_-d""""k~. i-,-l , 

dk,i+ 1 = R (,::k,i + 1) dk ,i 
P! s . ' 

increase i by 1 and go to Step 1. 

STEP 6. Set 

= ldk ,il 2 [ 1+ (/JI - 1) ( 1 - 2m 1) e~ J 
Yk ldki ki +1 l2 ' . - g . 

and qo=gk ,i + 1, j = 0. 

i) Set qi + 1 = Rp2 ( ~ k , i + 1) qi. 

ii) If lqi+ 1
1 ::::; yk> set dk,i + 1 = qi + 1, increase 

otherwise, increase j by 1 and go to i). 
by 1 and go to Step 1; 

STEP 7. If 

lP (x k- 1, ck + 1) - P (xk , ck+ 1) l ::::; vk+ 1, 

YJk = max {I xk - x k ·;I : i = 1 , 2 , .. . , l ( k)} ::::; v ~ + 1 , 

P(x k, ck+ 1) < L. 

(12) 

(13) 

(14) 
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set vk+ 2 = vk+d2; otherwise, set vk+ 2 = vk+ 1 · If 

and 

F (xk+ 1) > vk + 1 , 

set ck + 2 = 2ck + 1 ; otherwise, set ck + 2 = ck + 1 . Line search. Define 

L = {t ?;;O:f (xk,i _ tdk ,i) "(f (xk,i) - m2 t ldk,i l2}, 

R = {t?;; O:f (xk,i _ tdk,i)?;; f (xk,i) - m1 t ldk ,ilz} . 

Choose t>O. Set tL = O; tR = + oo . 
(a) If tR - tL "( ak/ ldk ·t go to (e); otherwise, go to (b). 
(b) If t E L\ R go to (c). 

If tELnR go to (f). 
If t E R\ L go to (d). 
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(15) 

(16) 

(c) If tR = + oo, replace tL by t and t by 2t; otherwise, replace tL by t " 
and t by (tR - tL)/2, and go to (a). 

(d) Replace tR by t and t by (tR- tL)/2, and go to (a). 
(e) Stop. 
(f) Set tL = tR = t and stop. 

Using the proof of Theorem 4.1 m [3] it is easy to see that the above 
process is finite. 

The results in [ 4] show that the process of finding xk+ 1 is finite 
for any k and our algorithm generates an infinite sequence of points {xk}. 
In the next section we shall prove that any accumulation point of the 
sequence {xk} solves problem (1). 

3. Convergence of the algorithm 

LEMMA 1. Suppose that there exist numbers kc and c' > 0 such that 
ck = c' for all k?;; kc · Then 

i) {xk} minimizes P(-,c'), i.e. P(xk,c')lmin{P(x,c'):xER"}. 

ii) min P (x, c') = min f (x). 
xeR" xeS 

iii) There exists an accumulation point x' of the sequence {xk} and x' 
solves problems (1) and (3) with c = c'. 

Proof. From the description of the algorithm and the proof of the 
theorem in [4] it follows that the sequence {P (xk, c')}k;.k, is nonincreasing 
and 

lim P (xk, c') = min P (xk, c') . 
k-+ +oo xeRn 

(17) 
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From Assumption (2), (17), and the proof of the theorem in [ 4] it is easy 
to see that there exists an infinite subset K c N and x' E W such that 

xk ~ x', as k ~ + oo , k E K 
(18) 

11k _ 1 = max {I xk- 1 - xk- 1 • i I: i = 1 , 2, ... , l ( k - 1)} ~ 0 , 

as k~ + oo, kEK. From Assumption (7) and (17) it follows that there 
exists k' such that 

P (xk-t, c') < L for all k ~ k', k E K. (19) 

Combining (12)-(16) and (17)-(19), it is easily seen that there exists an 
infinite subset K' c K such that 

F(xk):(vk and vk~o, as k~ + oo, kEK'. (20) 

From (18) and (20) we obtain F (x') :( 0, i.e. x' E S. Then we have 

min P (x, c') = minf (x). 
xeR" xeS 

This completes the proof. • 
LEMMA 2. If the set Kc = {k: ck+ 1 > ck} is infinite, then the subsequence 
{ xkheKc has no accumulation point. 

Proof. For purposes of a proof by contradiction, suppose that there 
exists an infinite subset K c Kc and x ER" such that 

lim xk = x .. 
k-> + 00 keK 

(21) 

We know that the function F (x)+ = max {F (x), 0} IS convex, therefore 
the function F ( · )+ is locally Lipschitz (see [6]). It follows that there 
exists Q > 0, M E(O , oo) such that 

(22) 

for all x',x"EU 2e(x), where U2u(x)= {xER":Ix-xl :( 2Q}. From (12)-(16) 
it follows that 

vk~o, as k~ +oo, kEK, (23a) 

therefore there exists k such that 

(23b) 

for all k ~ k, kEK and 

(24) 
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for all k ~ k. Now let us consider xERn with lx-xkl < 2vt. From (24) 
and (23b) we have 

Then we obtain 

IF(x)+-F(xk)+i :::;;Mixk-xl :::;;2Mvt :::;;vk/2 , 

for all k ~ k, kEK. On the other hand 

F (xk)+ = F (xk) > vk> 

for all k E Kc- From (26) and (25) it follows that 

F (x)+ ~ vk/2 , 
k -for all X E W, X E U2vr (x ), k ~ k, k E K. 

(25) 

(26) 

(27) 

Combining the definition of the function F (-)+, condition (13) and inequality 
(27), it is easily seen that 

F (xk - 1,;)+ = F (xk - 1,;) ~ vk /2 , i = 1, ... , l (k-1) , (28) 

for all k ~ k, kEK. On the basis of the lemmas in [4] and from 
the description of the algorithm it is easy to see that 

dk - 1,l(k - 1) = d1 - 1,l(k - 1l+ck d~- 1 , l(k-1l, 

where d~ - l , l(k - l)E 8f(xk , 2vf}; d;- J.zrk - l)E 8F(xk,2vt). Let us now prove 
that 

(29) 

for k sufficiently large and k E K . Assume, for contradiction purposes, 
that there exists an infinite subset K' c K such that 

lim l d~-1,1(k-1ll = 0 . 
k-++ oo 

keK ' 

From upper semicontinuity of the mapping: (x, 17)--+ 8F (x, ry) it follows 
that 0 E aF (.X' 0) = aF (.X). On the other hand 

F (.X) = lim F (xk) ~ lim vk = 0 . 
k--++ oo k--++ oo 

keK 

Then we have derived a contradiction with the Slater condition. Therefore 
we obtain inequality (29). Combining (21), Assumption (2) and the local 
boundedness of the ry-subdifferentials, it is easily seen that there exists b > 0 
such that 

ld1- 1·1<k-ll l :::;:; b, for all kEK. (30) 

From the assumption of our lemma and (29), (30) it follows that 
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I dk- 1 .z (k- 1 l I ~ + oo , as k ~ + oo ' k E K . 

From (6), (8), (12), (23a) and assumption of our lemma we obtain 

lim ek - 1 = 0. 
k-+ + <XJ 

kEK 

From (32) and the description of the algorithm it follows that 

lim I dk - 1 .z (k- 1 l I :S:: lim ek- 1 = 0 , 
k-+ + <X! k-+ + <XJ 

hK hK 

(31) 

(32) 

so we have derived a contradiction with (31). This completes the proof. • 

Combining Lemmas 1 and 2 we shall prove the following theorem. 

THEOREM 3. Assume that conditions (2), (4)--{7) and the Slater condition 
are satisfied and let {xk}k'=o be the sequence generated by the algorithm. 
Then 
i) There exists k' such that ck = ck' for all k ?: k'. 

ii) The sequence {xk} has an accumulation point, and every such accumulation 
point of {xk}k'=o solves problem (1). 

Proof. For purposes of a proof of assertion i) by contradiction, suppose 
that there exists an infinite subset Kc = {k: ck+ 1 > ck} . From condition (14) 
we have f(xk - 1 )+ckF(xk- 1 )+<L , for any kEK0 where F(xk-i) + ?:0 
and ck > 0 . This implies 

(33) 

Combining (33) and (2) it is easily seen that the set {xk- 1:kEKc} 
is bounded. Therefore, from condition (13) it follows that set { xk: k E Kc} 
is bounded, which means that there exists an accumulation point of 
{xkhEKc· Then we have derived a contradiction with Lemma 2. Therefore, 
there exists k' such that ck = ck'' for all k ?: k'. From Lemmas 1 and 2 
we obtain assertion ii) of Theorem 3. The theorem is proved. • 

4. Example 

In this section we report on computational testing of the algorithm 
on two small problems. We used the following parameter values: m1 = 0.2, 

mz=0.1, [3 1 =[32 =0.3, bk= 1/ft, rxk= 1/k2
, c0 = 1. 

The first example is given by 

f (x) = max {/; , 100 (x): i = 2, 3}; F (x) = fs1,1oo (x), 

xER2
, with the solution .X = (0, 0); f (.X) = 0, where 
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h,i = x 1 cos [2n (i-1)/j] + x2 sin [2n (i - 1)/j]. 

Starting from x0 =(1,-1) with P(x0 ,c0)=0.935; we obtained k = 31, 
31 

L l(k) = 235, P(x31 ,c3 d=7·10- 6
. 

k=l 

The second example is 

f (x) = xi+x~+2x~ +x~ - 5x 1 - 5x 2 -21x3 + 7x4 

F ( x) = max {}; (x): i = 1 , 2 , 3}, 

/ 1 (x) = 2xi +x~ +x~ +2x 1 -x2 - x4- 5, 

/ 2 (x) = xi+x~+x~+x~+x1-x2 +x3 - x4 - 8, 

/ 3 (x) = xf+2x~+x~+2x~-x 1 - x4 -10, 

with the solution .X= (0, 1, 2, -1);.f (.X) = - 44. Starting from x 0 = (0, 0, 0, 0) 
25 

with P (x0
, c0 ) = 0, we obtained k = 25, L l (k) = 182; P (x25

, c25) = 
k=l 

= -43.997. 
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Metoda funkcji kary wykorzystuj~ca operacj~ rozci~gania przestrzeni 
dla wypuklych zadan minimalizacji z ograniczeniami 

W artykule tym wprowadzilismy nowy algorytm rozwiqzywania zadan minimalizacji 
z ograniczeniami nieliniowymi. Rozszerza on na przypadek niegladki metod t< funkcj i kary. 
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Osiqgni,.:to to poprzez wprowadzenie reguly zwi,.:kszenia wsp6lczynnika kary. Regula ta 

gwarantuje skoriczonosc wsp6lczynnika kary w algorytmie. 

1\:'feTO~ IDTpa4la ~JIH BbiDYKJibiX Ja~aq MHHHMH3a ... HH 

C orpaHHlfeHHHMH HCOOJih3YJO .... HH onepa ... HIO 

paCTHrHBaHHH DpOCTpaHCTBa 

B pa6oTe rrpeL!CTaBJieH HOBbiH anropHTM perneHHSI 3aL(a'l MHHHMH3al.IHH C HeJIHHeRHbiMH 

orpaH!I'IeHHliMH. BBOL!ll 1aKOH KOHe'!HOro yseJlH'IeHHll K03<f>qJHI.III.eHTa IllTpa<f>a, MeTOLl IllTpa­
<f>HblX <f>yHKUHH pacrnHpaeTCSI Ha CJly<JaH HerJla)J.KHX 3aL(a'l . 


