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This work analyzes some properties of the lattice polyhedra, in view of possible 
applications to the optimal choice of the cutting plane in discrete programming. 

1. Introduction 

The optimal choice of the cutting plane involves a characterization 
of convex figures containing a minimal number of points of the lattice. 
An old theorem by Pick connects the area of every integer vertex 
polygon to the number of internal and boundary integer points of the 
polygon, and therefore it can be useful as a starting point for a new 
approach. The theorem by Pick was extended from 2-dimensional to 
3-dimensional cases by J. E. Reeve thirty years ago, no attempt for further · 
generalizations to n-dimensional polyhedra is known until now. 

Here, Pick's and Reeve's results are used to find classifications and 
similitudes among 2 and 3-dimensional polyhedra having integer or, more 
generally, rational vertices, in order to examine the applicative possibilities 
that generalizations of the above theorems might have. 

2. Fundamental notions 

2.1. An initial transformation 

We shall limit our study to nonnegative coordinate polyhedra with 
at least a vertex on every axis; it is easy to obtain such polyhedra 
using the transformation 
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x = x-a, where a;= mm x; (i = 1, ... , n) (1) 
xE polyhedron 

We can divide all polyhedra into equivalence classes, treating all elements 
obtainable by the transformation into the same polyhedron as being 
in the same class. All polyhedra of each class can be ordered according 
to a (for instance by increasing norm and, for equal norm, lexicographically). 
In particular, all rational polyhedra of the same class can be numbered 
by combining such ordering with the classic one of rational numbers. 

The quotient set defined by the above transformation is composed 
of three subsets: 
A = polyhedra whose vertex coordinates are all integer ; 
B = polyhedra whose vertex coordinates are all rational, and at least one 

not integer; 
C = complementary set. 
We shall consider only A and B. 

2.2. A contraction for integer polyhedra 

Let PE A and m be the maximum common divisor of the coordinates 
of the vertices of P. The contraction .x 1 = x /m transforms P into the 
polyhedron P 1 EA, similar to P . P 1 is "transformed into the maximum 
network", in the sense that no network with a basis greater than 1 exists, 
so that all vertices of P 1 belong to it. Therefore we can divide A into 
equivalence classes; we shall choose as representative for every class the 
element P 1 having the maximum common divisor of the vertex coordinates 
equal to one. 

2.3. A dilatation for rational polyhedra 

Let PEB, and d be the m1mmum common denominator of the 
coordinates (at minimal terms) of the vertices of P. The dilatation 
x 1 = dx transforms P into the polyhedron P 1 EA similar to P. P 1 is 
"transformed into the maximum network", according to section 2.2. In 
particular, B is so divided into equivalence classes; P 1 can be taken 
(improperly, but pragmatically) as representative of every class. 

2.4. A numeration 

A numeration of the polyhedra of A and B will be given here only 
for the representatives of the equivalence classes introduced in the above 
sections; inside each class the integer m, or d, will provide the sub
numeration identifying the polyhedron. Besides, the numeration will be 
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effected merely for convex polyhedra, smce knowledge of their vertices 
is enough for their identification. 

Consider a generic permutation of the v vertices of a convex representative 
polyhedron, and write the following ordered sequence of nv elements: 
the n coordinates of the first vertex; the n coordinates of the second one, 
and so on until the last vertex. The minimal sequence, in lexicographic 
order, for all possible vertex permutations, is chosen as the representative 
sequence of the polyhedron. We order polyhedra according to the maximum 
number belonging to the representative sequence; when equal, lexico
graphically. Such ordering induces a numeration, which can be generated 
by a simple algorithm. Number 1 is assigned to the simplex having 
a vertex in the origin and all other vertices in the unitary points 
of axes; the first hypercube has a vertex with all coordinates equal 1, 
all other vertices being those of the first simplex. 

3. Some relations among similar polyhedra 

Consider a network R with coordinates (x 1/r, ... , xn/r) where x 1 , ... , x" 
are integers and r positive integer. Let P and P' be two generic similar 
polyhedra, all vertices belonging to R. We call v;,h the hypervolume 
of the i-th h-dimensional face of P; Pi ,h , r the number of points of R 
internal to the i-th face (a numbering for the faces can be that of 
representative sequences, as introduced in the preceding section). 

In particular, h = 1 corresponds to an open edge; h = n to the whole 
open polyhedron. We call Ph,r the number of points of R belonging 
to all faces of P having a dimension not greater than h. We call d 
the minimum common divisor of the coordinates (at minimal terms) 
of P, which is the transform of P in the terms of transformation 
of section 2. We adopt corresponding sy,mbols for P' and for PI, which 
is the common polyhedron obtained from the collineation given through 
definition of dilatation on P and P'. We call v, e and f respectively 
the numbers of the vertices, edges and faces of the polyhedcon. The 
similitude of P and P' yields, for all i, h, r: 

v;,h = ( :, )" v;,h (2) 

Observe that all points of R over every straight line are mutually equidistant, 
with minimal distance c depending only on the trend of the line. Such c 
is then equal for similar polyhedra (for a more detailed analysis see 
[1, theorems 2 and 3]). Therefore, the measures of the i-th edge of P 
and P' are: 
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V:. 1 = c(pi.1 ,r + 1); v; 1 = c(p; 1 ,+1). 
' ' . (3) 

It follows, for every i-th edge of the polyhedron, that: 

I d 
(Pi,1,r+1)=(f(Pi,1,r+1) (4) 

Observe that the number of points of R over all edges of PI Is: 

e 

P
1

1 , r = V + '\' P~ 1 L., '· ,r 
(5) 

i= 1 

This new connection between P and P1 follows: 

P
1

1,r = v-e+ :~ (Pl ,,-(v-e)) (6) 

In particular, when P = P1
, the above relations hold among polygon 

and their representatives. In the same way, using d = 1/m, the connections 
among integer polyhedra of section 2.2 can be deduced. 

4. Two particular cases 

4.1. n = 2 

An interesting particularization concerns the case of n = 2, i.e. of rational 
coordinate polygona. We can make the connection between the transform 
and representative of these polyhedra deeper, and in general between 
polygona of the same class. 

Firstly, we observe that (6) becomes, since v = e: 

I d 
Pl,r. = (f Pl,r (7) 

I.e. the numbers of points of R over the boun~aries of P and PI are 
in similitude ratio d/dl (*). We can thus generalize the theorem of Pick 
[2, p. 378] for the network with basis 1/r: 

V __ l_(Pl,r+ _ 1) 
1.2- r2 -

2
- P1,2,r (8) 

Such connection between the number of internal and boundary lattice 

(*) this result and the previous one were obtained by G. Stocco in [3] for similar 

polygons in the 2-dimensional lattice of integers, and have given the present author the 
idea for the generalization here contained. 
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points, and the area of a rational polygon leads to another relation 
for similar polygons: 

p'1 ,:z,r f r 2 
( :, y V1,2- :, p~, + 1 (9) 

which expresses the number of internal points of P' as a function 
of the similitude ratio, of the area of P, and of the number of points 
of R which belong to the boundary of P. 

4.2. n = 3 

It is known that, when n = 3, f +v = e + 2. Thus, the formula (6) 
of section 3, related to edges, can be expressed for similar 3-dimensional 
polyhedra as follows: 

(10) 

Recall the notations: 
p2 ,, is the number of points of R which belong to the boundary of P; 
p3 ,, is the number of points of R which belong to P; 

p1,3 ,, is the number of points of R which are internal toP. 
Of course, r = 1 refers to the network of integers. The theorem of Pick 
has been generalized by J. E. Reeve to 3-dimensional figures. A theorem 
of [2, p. 382] expresses the volume V1,3 of every convex polyhedron 
as follows: 

Besides, the following relation holds: 

(12) 

This expression of the volume, as shown in [2], always requires information 
on a sublattice as well as on the integer lattice. In fact, the volumes : 
of polyhedra are not uniquely determined only by the internal and boundary 
integer points. For instance, a tetrahedron having vertices (0, 0, 0), (1, 0, 0), 
(0, 1, 0) and (1, 1, c), where c is a positive integer, has always 0 internal 
and 4 boundary integer points, but its volume depends on c. 

The volume V1 , 3 can also be expressed as a function of the number 
of the points of the network internal to P as follows: 

V1,3 = (2 (Pl,3,,-rpl,3,1)+(pz,r - rPz,l))/2 (r-1) r (r + 1) (13) 
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Therefore, relation (9) becomes, for n = 3: 

p'l.3,,=rp't,3,t+(l-r) (; P~. 1 - (r+l)((:,y V1 , 3r+l)) 

5. Remaining problems 

We can observe that all relations given m 3. and 4. are valid for 
every value of r, until the set of points with rational coordinates is 
exhausted. 

As seen above, the theorems by Pick and Reeve can be used to 
find new relations between similar polyhedra; such relations could be 
applied to the optimal choice of the cutting plane using the transformed 
representatives. Therefore, a trial of generalization of the above theorems 
for n > 3 appears justified for applicative developments. 
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Klasy wieloscianow rzeczywistych 

W artykule analizowane sq wlasciwosci wieloscian6w rzeczywistych pod kqtem mozliwosci 
zastosowan do optymalnego wyboru plaszczyzny odcinajqcej w programowaniu dyskretnym. 

KJiaccbl .ueifcTBHTeJibHhiX MnororpauuuKoB 

B CTaTbe aHaJU!3ypy10TCSI CBOHCTBa )J.eHCTBHTeJJbHbiX MHOFOrpaHHHKOB C TO'IKH 3peHHSI 
npHMeHeHHH K OllTHMaJJbHOMY BbJ6opy CeKyll\eH llJJOCKOCTH B )J.HCKpeTHOM nporpaMMHpO

BaHHH. 


