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In the paper [4] all the details of the PSUBQ algorithm are described. its convergence
is examined and compared with other algorithms from the same class of methods of. feasible
directions, but (except for a short remark) numerical features of the proposed algorithm

are not discussed. So now, these considerations are completed and four versions of the PSUBQ
algorithm are presented making use of four numerically stable methods of matrix factorization,

1. Introduction

In the paper [4], the primal algorithm using conjugate directions
for quadratic programming problems with simple upper bounds, called the
PSUBQ algorithm, is described in all details. The algorithm belongs
to the class of methods of feasible directions. At each iteration a feasible
point (a successive approximation of the optimal solution) and some
system of equations (for which this point is a solution) are found.
A set of directions that are determined by rows of the inverse of the
basis matrix connected with this point is also available. A feasible direction
is chosen just among these directions. The updating scheme (2.8)H2.9) [4]
for rows of the inverse of the basis matrix is adequate for the theoretical
considerations, but is does not assure numerical stability of the PSUBQ
algorithm (see [8]). So now four versions of the PSUBQ algorithm
are presented which use four numerically stable methods of matrix factori-
zation: Gaussian elimination, the method of Bartels and Golub, the method
of Tomlin and the method of Forrest and Tomlin. All these methods
of matrix factorization must use partial or complete pivoting to ensure
numerical stability.
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2. Formulation of the problem; notations

The PSUBQ algorithm solves the problem:
min {f (x): xeX}. (2.1)

where f (x)= de+—2ﬂerx is a convex quadratic objective function,

X={xeE"Ax=bAf=<x=<a} is a feasible set and d, B, acE", béE’“,
A€eE™*", D=D"eE""" Notice that X is a compact polyhedron, and
hence the finite optimal value of the objective function is reached in X.
The PSUBQ algorithm constructs a sequence {x*} of feasible points such
that f (x**') <f (x¥. Let P*=(p%,..,p") be the basis matrix associated
with the feasible point x* Its columns pf for i=1,..,n are associated
with n linearly independent and active constraints at x* Let (P¥)~! denote
the inverse of P* and =" be its j-th row, for j=1,..,n. Let N = {1, .., n}.
We define the following sets of indices:
Rj={ieN:(JieN)pk=¢; nxh =B},
Ri = {ieN:(3j;eN) pf = e; A x§ = a;},
R ={ieN:pf=A, A AT x*=b}=1{1,..,m}

and IW* = N\(Rj UR! UR"), where 4] denotes the i-th row of the matrix A.

Directional derivatives w® of the objective function f (x) at x* in

directions nf for i=1,..,n are equal to n!" z*, where z¥ = d+ Dx* denotes
the value of the gradient of the objective function at x* Hence w'=
= (P"~!'Z* is a vector of directional derivatives of the objective function
at x* in directions #f for i=1, .., n.

In Section 2 [4] we show that if one of the following cases:
() (Grery) wy < 0;
(ii) (Frer)) Wi > 0;
(iii) (Fcm) wy #0
occurs then x* is not the optimal solution for the problem (2.1) and we
can decrease the value of the objective function moving along the direction

7 to the new feasible point x**! such, that f (x**1) < f (x").
Let us define sets of indices:

Ki = {ieR}: wif <0}, Kj={ieRl: wf>0},
K= {ieIW*: wf#0} and K* = K; UK UK]}.

Optimality criterion for the PSUBQ algorithm is formulated as follows
(see Theorem 4.1 [4]):
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Tueorem. If K¥ =0, then x* is an optimal solution for the problem (2.1).

We are going to calculate and compare costs of one iteration for
the PSUBQ algorithm and its four numerically stable versions. Accordingly,
let Ny, Noa and N, denote a number of additions, multiplications
and divisions, respectively.

3. The PSUBQ algorithm

Step 1. (see Section 3 [4]). Establish the initial feasible point x° using
the SUB method [3]. Construct the basis matrix P° and its inverse (P% "
Compute z° = d+ Dx°. Define Rj, R? and put IW®=0. Put k=0. '

Step 2. Compute w¥ = 77 2% for all i = m+1.

Step 3. If K*=0 then x* is the optimal solution, STOP. If K*# ( then
choose the feasible direction, ie. an index r = m+ 1 according to the rule A4
or B, where:

Case 1. If K} # 0 then r corresponds to

|wk| = max |wk|
K#

(A) ie Kj
Case IL. If K¥ =0 then r corresponds to

|wi| = max [wi],
fe KEUK!

and

(B) r corresponds to |w¥| = max [wh|.
e

Remove the column p¥ from the basis matrix P*

Step 4. Compute ¢* = Dnf. Compute

sign w¥ it ¢“=0
85 = W
Trn, if ¢"#0

6% n¥ and t§ (according to (2.4) [4]).
If ¢#0 and tf > 1, then 6 = 0f. Go to Step 5.
If ¢#0 and 0 <t§ <1 or if ¢ =0, then 8" =tf 6%. Go to step 6.

Step 5. Put pf*!' = ¢*. Go to Step 7.
Step 6. Put pf*! = ¢, where ¢ is found from (2.5}-(2.6) [4].
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Step 7. Put x* ' = xf— 0 nf, £ = -6 ¢*. Update = for all i =m+1
according to (2.8)429) [4]. ie.:

+1 __ 1 3
%"= Ty

k+ 1T Tfk
Iﬁf*—l:ﬂf_%;—l'))}—é-ﬂf for I#:T
Update R%, R: and IW* according to (2.11), (2.12) and (2.13) [4], respectively.
Increase k by 1. Go to Step 2.

REMARK 3.1. The updating scheme (2.8)(2.9) [4], presented also at Step 7,
requires performing 2n(n—m—1)+m additions, 2n(n—m) multiplications
and 1 division.

4. A version of the PSUBQ algorithm
using Gaussian elimination

Let us recall that solving systems of linear equations and inverting
matrices by Gaussian elimination is based on the triangular decomposition
of the square matrix (see [7]). As it was already mentioned, to assure
numerical stability we use the strategy of partial or complete pivoting.
The version of the PSUBQ algorithm with Gaussian elimination uses
the upper-triangular matrix U* and the inverse (L*)~' of the lower-triangular
matrix L¥ such that L* U* = P* (instead of the matrices P* and (P*)™'),
and these are the matrices that must be updated. Notice that in consequence
the search direction nf is not known explicitly therefore it has to be
computed in Step 3.

Ster 1. Establish the initial feasible point x° using the numerically stable
modification (see [5]) of the SUB method [3]. Construct the basis matrix P°
and obtain its L° U° factorization using Gaussian elimination, where
lower-triangular matrix L° and upper-triangular matrix U°® are such that
L° U% = P° with its rows permuted. Find (L°)~' by solving n systems
of linear equations:

L°y,=e¢ for i=1,..,n.
Compute z° = d+Dx°, define sets R}, RY and put IW°=0. Put k=0.
Step 2. Compute % = (L¥)~' z*, where (L¥)~' is a submatrix of (L*)~' for-

med by deleting its first m rows. Then solve the system of n—m equations
U*Ww* =X, where U* is a submatrix of U* formed by deleting its first m
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rows and columns. The vector w* = [w! .4, .., wk]" is the solution of this
system.

Ster 3. Define sets of indices: Kj, KX, Kf and K*. If K*=0 then x*
is the optimal solution, STOP. If K* #0 then choose an index r = m+1
according to the rule 4 or B and compute the new search direction
e’ =[x}, .., nf,] solving n systems of n—r+1 equations:
A
U|: |=@%? for i=1,.
i

ni

where U* is a submatrix of U* formed by deleting its first r—1 rows
and columns, (L¥)™! is submatrix of (L¥)™! formed by deleting its first r—1
rows and (L¥); ! is the i-th column of (L~ '.

Ster 4. Compute ¢* = Dn¥, 6% (according to (4.3) [4]), 65 ¢ and ¢}
(according to (2.4) [4]). If ¢* #0 and t§ > 1 then 6* = 6%. Go to Step 5.
If ¢*#0 and 0 <tf <1 or if ¢*=0 then 6*=1tX 0¥. Go to Step 6.

Ster 5. Put pf*! = ¢*. Go to Step 7.

Step 6. Put pf*! = ¢, where I is found by (2.5)2.6) [4].

Step 7. Compute Z,=(L*)"!'pF*'. Next, form the matrix H''! =
= (U, .., U*_y, Zi, U, 4, ., UB)Y = (B j=1.....n» Where Uf for i=1, .., n de-
notes the i-th column of U* = (L*)™! P*. Hence H**' is of the following
form:

(4.1)

S

and its nonzero elements can appear only at the lined area.

WL

Step 8. Put x* ™! = x*— 0% n¥ and ¥ *! = ¥ — 0 ¢*. Using Gaussian elimination
transform H** ! to the upper-triangular matrix U¥** = I'* | o*_|  I'* ok H¥*1
where for i=r,..,n—1:
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1
\1
(4.2)
1 i
h1ll+1}|- 1
- hll-ﬂ
Iis
L h{|i|-1]
hl;;n p
hh-ﬂ \
h“ =1} 1
is an eiementary triangular matrix when hj; '’ was chosen as the pivot,
(B j=1,.... I'f of .. Tk @ H**', ;™Y = h;; for all i, j and @f is a permuta-

fion matrlx exchangmg the i-th row with the p-th one. Compute the new
matrix (L**") "' =T%_ ok _, .. ' ¥ (L*)~ " (let us notice here that the matrix
(L**Y)~! is not usually the lower-triangular one). Update R%, RY and
IW* according to (2.11), (2.12) and (2.13) of [4], respectively. Increase k
by 1. Go to Step 2.

ReMark 4.1. To transform H**' to the upper-triangular matrix U**™!
using Gaussian elimination and to update (LF)~' we must perform N, =

(n—: (n—r+1)(5n—2r+1) (n—r+1)(n )

N Nmull - 6 aﬂd Ndn B 2

5. A version of the PSUBQ algorithm using
the method of Bartels and Golub

We point out here the differences only between the version of the
PSUBQ algorithm that uses the method of Bartels and Golub [1, 5]
and the one described in Section 4.

The first difference appears at the 5-th and 6-th steps, since the new -
column ¢* or ¢ enters the basis matrix not instead of the r-th column
but instead of the n-th one. So let

— {q* it ¢"#0 and h>1

5.1
i e if ¢"#0 and 0<th<1l orif q":O.( )
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The new basis matrix is then

pk+1 __ g k+1 k41 __ ok k+1 _ .k k+1 __ ok k
y _(pl _pjia---&pr—l_‘pr—la pr -pr‘l—la---’pn--]_pmpn

k+1
n

+1).

At Step 7 we compute now Z,=(LH7!'p and instead of H**! we
construct an upper Hessenberg matrix #* ™! =(U%, .., U*_,, U¥,,, .., U Z)
= (hij)i.j=1....n» Which is of the form:

(5.2)

RIS

Then Step 8 is as follows:

Ster 8a. Put x¥Tl'=xF—@fnk ZF*'=zK_@"g" Using the method of
Bartels and Golub transform #**' to the upper-triangular matrix U**! =
=TIk ok .. TE@* #**!, where for i=r,..,n—1: ¢! is either an identity
matrix (if the pivot is a diagonal element) or is a permutation matrix
exchanging the i-th row with the (i+ 1)-th one (if the pivot is a sub-diagonal
element) and

1

B
1 | (5.3)

AN

1

is an elementary triangular matrix such that

(i—1)

— el : i—1 i-1
. Q=1 if [TV = A
Vit1,i= "
B

—qa=n- i [TV < R

E+1.4

and (B} j=1...o=T1 @ . IY @ A1 W™D = by for all i, j.
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Compute the new matrix (L**")™'=T%_, of_, .. I'" @k (L¥)™! (notice that
(L**1)~' is not usually the lower-triangular matrix). Update R%, R and

IW* according to (2.11), (212) and (2.13) of [4]. Increase k by 1.
Go to Step 2.

Remark 5.1. To transform the upper Hessenberg matrix #*'! to the
upper-triangular matrix U**! using the method of Bartels and Golub

and to update (I¥)™! we must perform Ny = Nou = (”_"){3;—*1‘-*}-1]

and Ndi\‘ =Hn-r.

6. A version of the PSUBQ algorithm using
the method of Tomlin

The third version of the PSUBQ algorithm uses the method of Tomlin
[6, 5] with partial or complete pivoting. It coincides with the version
using Gaussian elimination up to Step 8. Let it be as previously:
Ziy=(IH1 k"t and HY '=(UY,.., Ul_is.Zp Ubiis oo UR) = g j=10m0
where U¥ is the i-th column of U* and H**! is of the form (4.1).
Let us notice that H* '=("(I—e,e/)+Z, ¢! and Z,= U')", where
W=(P) L pktl. Then H**! = U*(I—e, el +)y* e!)= UYE 1, where E ' =
=1I—e, e/ +)y* el and E, is an elementary matrix of Gauss-Jordan method
defined by the vector y* and the r-th pivot, ie.:

1

]
Ny 6.1)

i

y¥

1
i

We describe now how to transform the matrix H**! to an upper-
-triangular one by the method of Tomlin. First we must find the pivot
among four elements of the matrix H**': h,,., h,., ,, hy.“h, 1., Depending
on the pivot we choose one of four algorithms: I, II, III or IV. If h,
was chosen as the pivot then the method of Tomlin with partial or
complete pivoting is just the original method of Tomlin [6] and is
carried out as Algorithm I:

1
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Step 1. Find ¢ =0, ..,0,¢,, .., c,]" by solving the system:

& U = el H 1, (6.2)
Hence T =¢! H**1 (UM~ L.
Step 2. Construct the matrix €, = I—¢, " and obtain the matrix H'* " =

— Ck Hi(+1 =, {hgj},-‘jzl_m,ﬂ.NOIice thatck Hk+l = Hk-'—l —e,. Ckr Hk+1 = Hk+1 ==
—e. el H*" (U  UYE ' =H""'—¢,ef H**' E;*. Hence hj; = hy; for all j

and for all i#r, hy=0 for all j#r, h,=h,— 3 h;yi=(Cy Zy), =h,—
_Z ir] hir-

Step 3. Denote the r-th column of H'**Y by H®*Y  Construct the
matrix T = I+(H%*V—~¢,) e’ ie.

1 \ h;r
1

1
Then (T%)™! is of the form:
1\ Hy
5 hErr (6.3)
1
[Tk]“‘= h‘rr
O &
LI
her
5
and H"®* V= (T H'&*D = (1% C, B*** = (W));.;=1...... is such an up-

per-triangular matrix that h;, =1, h;=0 for j=r+1, hli=0 for i#r
and hi;=h; for all i#r, j#r.
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REMARK 6.1. Step 3 can be also performed in a different way, ie.

Step 3a. Permute rows and columns of H'®**! to obtain the upper-
-triangular matrix ¢,, H'**" ¢!, where ¢,,, @}, are permutation matrices
of the forms:

:
\1 (6.4)
ol 0 i
'P.,-
\1
1 0 ;|
‘l\1
i ]
"\
1
5 3 , (6.5)
gp:}: 1\
0 110 i
1\\1

for i=r, j=n.
If h.,, was chosen as the pivot then Algorithm II is carried out:

Step 1. Find & = [¢;, .., C,] by solving the system:

FT W =el, U (6.6)
where Wk = Uk (I_er ei?‘)+er+i e;r = (Uk-r s Ui,f—lsker+11 Uf-i—la ey Uﬁ)‘
4 = ” - — Upsigp
Notice that ¢,=..=¢-,=0, ¢,+,=0 and ¢,= % sofaras U, . #

r.rtl
#0. Moreover, the system (6.6) is equivalent to the system &' U*=
Uﬁr Ul"(+l,r+l
Ur;f.r+1

StEP 2. Construct the matrix Cy =I—¢,,, &' =1—e,,, ¢/+1—0, erﬂ_ef(U“)"‘
and obtain the matrix A**! = C, H**' = (;)); j=1...... Notice that C H“‘?
= (I_er+1 efs1—0, €41 6] (UNT)H™ = (I—ep4y 3:'+1)Hf_+1‘5r Criin
(U VUXE '=(l—e,. el ) H* ' =6, e,,, ¢/ E ' Hence h;=h;; for all j

" " -
=el,, U434, ¢!, where 6, = . Hence &7 =¢!,;+4, ¢/ (UL
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and for all i#r+1, B,y ;=0 for all j#r, Ryy,=—6,yi=hy,—

n

—Gh,— ) Th,.

i=r+2
Step 3. Permute columns and rows of H**' to obtain the upper-
-triangular matrix @,.,, H**' ¢l,, where ¢, is defined by (6.5) for i=r,
j=n and ¢,.;, is a permutation matrix defined by (64) for i=r+1,
j=n.
If h,, was chosen as the pivot then Algorithm III is realized:

Step 1. Find & =[0, ..,0, & 4y, .., &,]" by solving the system:

T U = uf, (6.7)

) Uk k
where 1t = ¢, U*— Uk ¢! E,,:|:0,...,0, B npiia oy Wk ‘;ky'} and E,

is an elementary matrix of Gauss-Jordan method defined by the vector y*
and the n-th pivot, ie.

1 5
o . (6.8)
Y::-'l
Enz| O —
1 Ya
1
0
yn

Hence " =uf (U ' =l - Uk el E,(U" 1.

Step 2. Construct the matrix C,=I—e¢, &T=I—¢,ef+ Uk ¢, T E,(UY !
and obtain the matrix H**' = C, H**"' = (h); j=4,...,. Notice that C, H**' =
= (I—e el +Uk e e E,(UN) B! = (I—e, e]) "' + Ul ¢ ef E, (UM ?
U'E '=(—e e H**' + U}, ¢, e E, E*. Hence, h;;=hy; for all j and for

_ Uk yk n
all i#r,h;=0for all j#n, h,=——""=h,— Y G h,.
! yi i=r+1

Step 3. Permute rows of H*'! to obtain the upper-triangular matrix
@, H*™', where ¢,, is the permutation matrix defined by (6.4) for i=r,
j=n.

If h,., , was chosen as the pivot then Algorithm IV is performed:

Step 1. Find & = [¢,, .., ¢,]" by solving the system:

T W= vh1, 6.9)
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where o =¢fs; U Ex' =[0,..,0, Ukiq a1 Ui+1 i-15(Zs1]. W=
= UE; Y (I—e, eN)+e, . ¢f = (U’{ WU e Ub gy UKL Z) and
Ejl=1-e,el+y*ef.

- = = > k
Notice that (= = =1, Coyi =0 and = _":ﬁ so far as Ui.ﬂ ¢

r.ort1

=;é0‘ Moreover, the system (6.9) is equivalent to the system &7 U*E,'=
=el,, U'E; '+4, e, where
5 = U;r(r Ur+1 71

e — oy . Hence ¢" =el,,+4, el E, (U1,
rao+l

Step 2. Construct the matrix C,‘—I—tl+| AT =TI—e,41 618,84 ¢ Ey.
(U"™! and obtain the matrix H ' = H* ' = (hi}).j=1...... Notice that
C H' M = (I—e, e =660 E, (U ) H ! = (I—e,, el )H T~

- 6,.3,-;1 er En(Uk) lUk Er- = (I_er+ler+1] Hk=+1 - 5r€r+le:“ EnEr_l'
Hence h;;=h; for all j and for all i#r+1, hy, ;=0 for all j+#n,
- 0“ K _ n
Ih:r-i~1.:l = _r.:_)r = hr+1.n_(:r hm_ Z ‘(=1 hirr

Vn i=r+2

Step 3. Permute rows of H**! to obtain the upper-triangular matrix
@ps1.0 HY, where ¢,,,, is the permutation matrix defined by (6.4) for
I=r41; j=mn.

Let us present now the 8-th step of the version of the PSUBQ algorithm
using the method of Tomlin described above.

Step 8b. Put x**!'=x—0F ¥, "' =25 —0" ¢*. Using Algorithm I, II, 1II
or 1V for the method of Tomlin transform H*"' to the upper-triangular
matrix U**! and compute the new (L**!)~':

(1) if h,, was chosen as the pivot then either U**'=(T*)"' C; H*"' and
(L¥*1)~1 = (TH ™1 ¢, (L¥) ™" (if Step 3 was realized) or U* "' =¢,,C, H*"!-
<ok and (L) =g, Cel L"')‘I (if Step 3a was realized and as far as
we set that #*tl=H''ol —(UX, .. U, Uk, ..,Uk Z) and
/-k+1 Pk+1(,0 Ec+l Uk+l}

(1) if h,.,, was chosen as the pwot then U= @, . Co H " Vo) =
=@, 4.0 Ch ;‘/*” and (L¥*1)~! —(p,H . G (LF)™1 as far as we set that
#{k+1 Hk+l. qo aﬁd )};k‘i'] Pk+1 (P _Lk+] Uk+1

(IIT) if h,, was chosen as the pivot then U**! = ¢,, C, H**' and (L**')" 1=
= Py Cuk (Lk)_l; N

(IV) if h,.,, was chosen as the pivot then U**'=¢,,,,C, H**' and
”—-“ ])_I =@ri1.n (_?k [Lk)_ 1

Update R§, R and IW* according to (2.11), (2.12) and (2.13) of [4],

respectively. Increase k by 1. Go to Step 2.
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ReMARk 6.2. To transform H**' to the upper-triangular matrix U**™!

using the method of Tomlin with partial or complete pivoting and to
(n—r) Bn—r+1)
2

update (L¥)™! we must perform N,y = +n®—n, Npa =

_ (n—r)Bn—r+1)

3 tn®, Ny =2n—r for Algorithm I with Step 3, and

(n—r)(Bn—r+1)

Nadd = Nu]ul] = 2

, N4, =n—r for the remaining algorithms.

t

7. A version of the PSUBQ algorithm using
the method of Forrest and Tomlin

Similarly to the version of the PSUBQ algorithm which uses the method
of Bar:eis and Golub we form two matrices: a basic matrix 2! =

A+1 pliv 9pr 1'_pr 1s Pﬁ“—Pinv 9p,r‘x+]1._pm pfr+i): where pk+l
is deﬁned by (5.1), and an upper Hessenberg matrix #**'=(U%, ..., Ur_,,
UF iy e UL Zi)y= (B . (which is of the form (5.2)), where Ly =

=(L*"! pk*! Let us notlce ‘that #**+1 = g+ oh=(U(I—e eN)+Z, el ol
where ¢/, is the permutation matrix defined by (6.5) for i— ¥ J=n;

and Z, = U*y* where y"=(P¥)"'pt*'. Then #**'=U*E, !¢, where
E, is an elementary matrix of Gauss-Jordan me!hod deﬁned by the vector
,'* and the r-th pivot (see (6.1)), and E;'=I—e¢, el +1* ¢

We describe now how to transform an upper Hessenberg matrix #*!
to an upper-triangular one by the method of Forrest and Tomlin [2, 5]
To ensure numerical stability we use the strategy of partial or complete
pivoting. So first we must find the pivot among four elements of #**!:
Pews Moiy ps Bop—1s Besq n— 1. Depending on the pivot we choose one of four
algorithms: A,B,C or D. If h,, was chosen as the pivot then the
method of Forest and Tomlin with partial or complete pivoting is just
the original method of Forrest and Tomlin [2, 5] and is carried out
as Algorithm A:

Step 1. Find ¢*=[0,..,0,¢,44, .., c,]" by solving the system:

T U* = uf, (7.1)
where wk=ef U*—UX el =[0,..,0,U%,,q,.., U] Hence & =ef—Uk.
g (U,

Step 2. Construct the matrix C, =I—e, T=1—e¢, e+ Uk ¢, ¢! (U")™! and
obtain the matrix #'**V = C, #**' =(h})); j=1.....- Notice that C, #**! =
= (I—e, el +Uke el (U ) A =(I—ee) e + Uk e el (UY* U
Etel = (I—e e]) #** '+ Uk e, el E/' ¢},. Hence hj;= h;; for all i#r

and for all j, h;=0 for all j#n, h,=Ul y¥=h,— Y ¢ h,.

i=r+1
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Step 3. Permute rows of #'®*! to obtain the upper-triangular matrix
@ A'*TY, where ¢,, is the permutation matrix defined by (6.4) for

b=7; = n.

If h,., , was chosen as the pivot then Algorithm B is performed.

Step 1. Find & = [¢,, ..., ¢,]" by solving the system:

AT Wk = oI, | UF, (7.2)

where WX = U (I—e, €f)+e,41 & = (U, ..., Ut_1, €41, UXLy, .y UM, Notice
k

that & = su=C oy =0, 8y ="0a0d E= Eﬁk]'fﬂ so far as U¥,. ,#0.

r,rt+1
Moreover, the system (7.2) is equivalent to the system &7 U*=¢l, , U+

k
Urr Ur+1 r+1
Ur r+1

Step 2. Construct the matrix C,=I—e,,, &7 =I—e,. ey 1—0,2,+1 eT(U"}“
and obtain the matrix #**' = C, #**' =(h;); j=1.,. .. Notice that C, #**! =
= (I—€,4+1€+1—0; Lr+1€ T (UM 1) AR = (I er+ler+l) A — 4, €r+1-
T (UN ' UYE ' olh=(I—e,4q ]y) H** ' =5, 6,1 T E; ' . Hence h;=
=hy for all i#r+1 and for all j, h.., ;=0 for all j#n, hiy,=

+90, el, where 6, = . Hence @7 =el,,+4, e" (UY™L.

= _61' yﬁ=;1r+l.n_fr hrn__z C_'i hfn-

i=r+2
Step 3. Permute rows of #*"' to obtain the upper-triangular matrix
@pe1,a #*T, where @,,;, is the permutation matrix defined by (6.4)
for i=r+1, j=n.
If h,,—, was chosen as the pivot then Algorithm C is carried out:

Step 1. Find & =10, ..,0,& 41, ... ¢,]" by solving the system:
&7 U = i (7.3)

]

Uk k
where i = ef U*—U* ¢! E, =[O.A..,0,Uf‘,+1, ,UE, Uk + ”ky"] and E, is
Vn
an elementary matrix of the form (6.8).
Hence, & =el —UX. e E, (U™

Step 2. Construct the matrix C,=I—e, &' =1—e¢, el +U* ¢, el E, (U !
and obtain the matrix #**! = C, #**' = (h,)); ;=1....... Notice that C, .}Y"“

= (I—e¢,e] +Uf, e, e] En(Uk)_l) AN = (I—e, &) A"+ U e, ] En(Uk)_l
UE Y ol =(I—e, &) #** '+ U} e,e] E, E ' ¢},. Hence h;=h; for all
1 = i ::h

r.a—1 =

i#r and for all j, h

rj
n
= Z “-_x hi.u- 1-

i=r+1

=0 for all j#n—1,

ron=1
Va
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Step 3. Permute rows and columns of #**' to obtain the upper-triangular
matrix @,, #* "' ¢!_, ,, where ¢,, is the permutation matrix defined by

(64) for i=r, j=n, and ¢, , is the permutation matrix exchanging
the (n—1)-th column with the n-th one.
If h,., ,—, was chosen as the pivot the Algorithm D is carried out:

Step 1. Find & = [¢y, ..., ¢,]7 by solving the system:
T Wr=1df,,, (7.4)

“_fhere U£+ 1 =€ Uk E, '= [0 50, Ur+[ P ER Uf+1.n— 1»(Zi)p+1] and
Wk: Uk e (I €, e }+er+]. €, _(Uk, Ur 1:€ 41, U§+ls---s Uf!—lszk}‘ NO-

- - - = U
fice that ¢; = =64 = 0, 645 =0and &= %”fi, so far as Uf, .y #
rr+1
# 0. Moreover, the system (7.4) is equivalent to the system &7 U*E;'=
i N 5L 2 LI =
=el.y U"E; ' +6,¢f, where §,=—"—""1"""  Hence & =el,,;+0d,e!-
r.or+1
Y )

Step 2. Construct the matrix Ck—I e,*,?"——l ey il i =0, 841 ] -
“E,(U"™' and obtain the matrix #**'=C, #**'=(h,), -, ... Notice
that C, #**' = (I—e,,; ef,—5, e,+1{TE (U™ Y A = (I—e,pq €]y y)
V-8, e;41 & E, {Uk) URE Y g = U=gppr65q) Y — b, 0,516
.E, E; ' @}. Hence hj=hy; for all i#r+1 and for all j, h,, ;=0
for all j#£n—1, Bpynoq= %—: et 1m-1—Cp Bppo1— Y. Gy

n i=r+2

i,n—1-

Step 3. Permute rows and columns of #**' to obtain the upper-
-triangular matrix @,;q., A ®r_1.,, where @,.,, is the permutation
matrix defined by (6.4) for i=r+1, j=n and @], , is the permutation
matrix exchanging the (n—1)-th column with the n-th one
Let us present now the 8-th step of the version of the PSUBQ algorithm
using the method of Forest and Tomlin described above.

Step 8c. Put xX**'=xk—0*nf, F*' =50 ¢*. Using Algorithm 4, B, C

or D for the method of Forrest and Tomlin transform #**! to the

upper-triangular matrix U**! and compute the new (L**')~:

(A) if h,, was chosen as the pivot then U**' =¢,,C, #**! and (L**!)™'=
= @,, Cp (L)~ ! since #**1 = (Lh~' A1

(B) if h,.,, was chosen as the pivot then U**'=¢,., ,C; #*
(LY =1 G (LYY

(C) if h,,., was chosen as the pivot then U**'=g¢,, C, #* ' o]_,,
and (L**1)" ! = ¢,, G (L") ! as far as we set that #**1 = y**1ol | =
= (U, .. OF 5 Uy Zi U ‘And PP 1= g5 @l e [FD OFYYS

*1 and
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(D) if M4y ,-; was chosen as the pivot then U'*'=¢,,, ,C, #**!.
o _ynpand (LYY =g, 1, C (LY" as far as we set that #*T!=
= Al = (U wy Ub g s U pgses Uk a1y Zs U and #44 =
= PH1 gl | R R
Update Rj, R} and IW* according to (2.11), (2.12) and (2.13) of [4],

respectively. Increase k by 1. Go to Step 2.

ReMARK 7.1. To transform the upper Hessenberg matrix #**! to the
upper-triangular matrix U*"!' using Algorithm 4, B, C or D for the
method of Forrest and Tomlin with partial or complete pivoting and to

—r) Bn—r+1
update (Lk)_l we must perform Nadd == Nmult = (” r) ( 2” = } and Ndivz

=MN—=1r.

8. A version of the PSUBQ algorithm using
the modified methods of triangular factorization

We describe now how to take advantage of the structure of Z, to
modify two of methods of triangular factorization: the method of Bartels
and Golub and the method of Forrest and Tomlin. Let H**' = (L*)" ' P**!1=
= (UK, .., Ur_1, Zy, Uk 1y o, UR) = (Wij)i,j=1,....n Where Z; = (LY™' pi™ ! is the
r-th column of H**'. Let h,, be the last nonzero element of Z,. Let
us notice that [, = r. (If [, < r then h,, =0, U*"! = H**! and det (U**")=0.
But det P**'#0 and P**'=L*"! U**! a contradiction). If [, =r then
U*' = H**! So let us assume that I, >r. Then H*"' is of the following
form:

-

(8.1)

PNOOCREBINGN

The differences between the versions of the PSUBQ algorithm using the
modified methods of triangular factorization and the versions using the
methods described earlier do not appear up to the 5-th and the 6-th
steps. Namely, the new column ¢* or ¢ is introduced into the basis
matrix not instead of the n-th column but instead of the [-th one.




Stable algorithm for QP 145

Let

el
1 -

¢ if ¢ #0 and t§>1
g if ¢#0 and 0<t§<1 of 4"=0.

and the new basis matrix is

+1 _ (mk+1 kb1 k g+l _ g+l
PHE R e Bt =g B —Pfﬂ:---apu—t‘-

= pi' ﬁ.fk+11 ﬂk‘:'ll = plik+1t ey ﬁi+l = pfx}
Let us notice that if [, =n then there is no reason to modify methods
of triangular factorization. At Step 7 we compute Z, f_(L")_1 pEt1 instead
of Z, and construct an upper Hessenberg matrix H**'=(U%,.., Uf_,,

Uks sy s US L Zy, UL oy, ey U9 = ()i j=1,...,n Which is of the form:

(8.2)

Let us notice, that A**'= H**! ¢} , where ¢ is a permutation matrix
defined by (6.5) for i=r, j=1I,. The way of realizing Step 8 of the
PSUBQ algorithm depends on the method of (riangular factorization.
If we use the modified method of Bartels and Golub then we transform
the upper Hessenberg matrix A**! to the upper-triangular matrix U¥*! =
=%, ¢f_y .. [* o* A+ andcompute(L* )™ = T% _, @}, ... T¥ g% (19!
where I'{ for i=r,..,[,—1 are the eclementary triangular matrices defined
by (5.3) and ¢* for i =r, .., [,—1 are either identity matrices or permutation
matrices exchanging the i-th row with the (i+ 1)-th one.

Remark 8.1. To transform the upper Hessenberg matrix H**! to the
upper-triangular matrix U**' using the modified method of Bartels and
(I,'(—r}(4n—i,»,—r+1)

Goluband to update (L*)~ ! we must perform N = N, ;= 5

and Ny, = —r.

To transform the upper Hessenberg matrix H**! to U**' we can
‘also use one of two modifications of the method of Forrest and Tomlin
with partial or complete pivoting. For both of them, first of all we must
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find the pivot among four elements of H**!: ﬁ,ik, 7}3,+u*, Boty=1s Bosy g1

instead of elements of H#**: by, By us Bege1s Mowgp-g. Lot H¥fl=

=B (I- Y ee)+ Y eefandUF=U*(I- Y eief)+ Y
=t =Lt j=ht1 i=h+1
be the matrices H*'' and U* with their last n—[, columns equal to
€, +15 -5 €, instead of H; +15 w5 H, and U, +1» -, Uk, respectively, where H
denotes the j-th column of H"“‘ Notice that At = g*E-1 o, and

HH = g (- ¥ ¢ ed)+ Z H;e! Hence h;=h,; for all i and for
j=h+t J=h+1
all j <.

Let us suppose that Br:,, was chosen as the pivot. Then, the first
modification of the method of Forrest and Tomlin is performed as
Algorithm A" ;. . .

Step 1. Find & = [cl, = ,E’:Ik_,,]T by solving I,—r equations:

&T Uk = gk, (8.3)
where ur - [Ur oy b B D r !g] Uk ({}{‘; Li=l..ah—r and I}k Ur+l i for
i, j=1,.,L—r.

Hence, ¢*=1[0,..,0,¢41, .6, 0,..,0]7 such that ¢;=¢_, for i=r+
+1, ..., I, is the solution for the system:

KT O = o, (84)
where uf = e U*—U% e = [0, ...,0, U% .1, ..., Ut 0,..,0].
Step 2. Construct the matrix C, = I—e, &7 = I—e, ef + U%, ¢, ¢7 (%)~ ! and
obtam gy — ¢ B*' = (h)j=y....r Notice that C, H**?

—e, eT)H““+U:.‘,.e,. Tithy =1 I+t —(I—e ey B*+1 4 gL e T (-
U" Eftoh =(1—e, e H* '+ Uk e, ¢ E7 ' @}, Hence, hj;= hy; for all i #r

Iy

and for all j, hj;=0 for all j+#h, hy, =Uky=h,—~ ¥ ¢ hy. Now,

i=r+1
n n
g%y = ¢, B = C;,HHI(I— Z e}_ej]) + G Z HjeJT =
j=h+1 J=fxa
n n
=H®V(I- Y eef)+(I—e ") Y Hjef.
= +1 =Lt

Hence,
B = Ry =Ry =hy for all j <I and for all i #r.
ﬁb: EU- for j> [, and for all i #r,
h;=h;=0 for all j <1,
Iy Iy

~, . . - o ~
hrlk = hrl, = Ay, — Z Ci hﬂ,‘ = hr!n'_ Z Ci hn,,

i=r+1 i=r+1
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I _
FE:.J = E”-.—“ Z C; hij fOI‘ a].]_ J} lk‘
i=r+1

Step 3. Permute rows of H'**D to obtain an upper-triangular matrix
@, H'**Y, where ¢,, is a permutation matrix defined by (6.4) for i=r,
j = lrk.

At Step 8 of the PSUBQ algorithm we obtain then U**' =g, C, H**!
and (L*"')7' = @n, Cx (91

Analogically we can modify Algorithm B, C or D in the case when
By s ey, 1 OF By -y was chosen as the pivot to obtain Algorithm B,
" or D', respectively.

Remark 8.2. To transform the upper Hessenberg matrix H**!' to the
upper-triangular matrix U**! using the first modification of the method
of Forrest and Tomlin and to update (L*)™!' we must perform

ﬁ—r) (dn—1Il.—r+1)
2 ?

Ny = Ny = Ngy=l—r.

The second modification is just the method of Forrest and Tomlin
with partial or complete pivoting used for triangular factorization of
A" = H*"! @ instead of #**'=H'"!'¢, where @) and ¢/, are
permutation matrices defined by (6.5). The only difference is that everywhere
in the method of Forrest and Tomlin where the index n appears we
replaced it by the 1ndex Iy, ie. we deal with matrices @, @, @ +1.1,
@Ik 1,0, Elk and EI instead of matrices Dyns ‘prm (pr+1 n: (P;': 1,ns En
and E, 1, respectwely

RemArk 8.3. Let us notice, that to transform H**! to U**! by the second
modification of the method of Forrest and Tomlin with partial or complete
pivoting we must perform the same number of elementary arithmetic
operations as it was required in transforming #**!' to U*"! by the
original method of Forrest and Tomlin with partial or complete pivoting
(n—r) Bn—r+1)
2
only advantage is a decrease of the number of required permutations
at Step 3 of the algorithms A4, B, C and D.

(see Remark 7.1), ie. Nyy= N, = and Ny, = n—r. The

9, Conclusion

The versions of the PSUBQ algorithm presented in Sections 4-8
require performing additional operations. First, at Step 1, we must obtain
once the triangular decomposition of the initial basis matrix P° (which
nn—1)(n-2)

requires performing 3

multiplications, the same number of
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(n—1)(n—2)

additions, and >

divisions) and obtain (I°)"' by solving n

multipli-

2(n_
systems of n linear equations (which requires performing w

cations, the same number of additions, and n* divisions). Hence, we must
additionally perform

Nys= N =n(n—17? and Ndiv=%n(n—1]+1‘
Many times (at each iteration of the PSUBQ algorithm) we must
— at Step 2, compute Ww* by solving a system of n—m linear equations,
(n—m—1) (n—m)
2

of additions, and n—m divisions;

— at Step 3, compute m' by solving n systems of n—r+1 linear

n(n—r+1)(n—r)
2

me number of additions, and n(n—r+1) divisions;
— at Step 7, compute Z,=(LY'p*t or Z,=(LY 'pt*t or Z, =
= (L%~ pi,*', which requires n(n—1) additions and »* multiplications;
— at Step 7 and 8 form and reduce H*'! or #**! or H**!' to
triangular form U**' by one of methods of triangular factorization
described in Sections 4-8, and next update (L¥)~ 1.
The Table 9.1 contains comparison of costs for different methods of
matrix factorization calculated in Sections 4-8.

which requires

multiplications and the same number

equations, which requires multiplications and the sa-

Comparing costs (in the sense of numbers of elementary arithmetic
operations and required permutations of rows and/or columns) of the
presented methods of matrix factorization, we can order them along
increasing costs in the following sequence:

1. the first modification of the method of Forrest and Tomlin with
pivoting (if [, < n).

2. the modified method of Bartels and Golub (if [, < n),

3. the second modification of the method of Forrest and Tomlin with
pivoting (if [ < n),

4. the method of Bartels and Golub,

the method of Forrest and Tomlin with pivoting,

6. the method of Tomlin with pivoting (unless we use Algorithm 1 with
Step 3),

7. the method of Tomlin with pivoting (if we use Algorithm I with
Step 3),

8. Gaussian elimination.

i




Table 9.1

Gaussian elimination

The method
of Bartels
and Golub

The modified
method of
Bartels and

Golub

The method of Tomlin

The method
of Forrest
and Tomlin

The modified method of Forrest
and Tomlin

The 15
modification

The 2
modification

Nada

(n—r){(n—r+1)(5n—2r+1)

(n—r)(3n—r+1)

(ly—r)dn—l,—r+1)

6

2

2

for Algorithm I with

Step 3
—r)@Bn—r+1

(n r}{zn r )+n2

—Hh

n—r)(3n—r+1)

(fk—‘r){4.'l—l';(—r+ 1)

(n—r)B3n—r+1)

for the remaining

Algorithms

(n—r)(3n—r+1)
2

2

1

2

2

Nmult

—y—

R —

—_——

for Algorithm I with
Step 3

—r)(3n—r+1
(n ) nz r+ }+nz

for the remaining
Algorithms

(n-r)(3n—r+_1“)
2

——g——

Niv

(n—r+1)(n—r)
2

f,‘—r

for Algorithm I with
Step 3
2n—r

for the remaining
Algorithms

B=r

!lk—f
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Let us notice that the 1-st and the 2-nd method from the above
sequence require the same number of elementary arithmetic operations.
(n—1) Bn—1,+1)

2
tions and n—/[, divisions less than the 3-rd one.

Next, a number of elementary arithmetic operations for the 3-rd, 4-th,
5-th and 6-th method is the same. They vary only on numbers of
permutations of rows and/or columns. The 6-th method requires n’-n
additions, n*> multiplications and n divisions less than the 7-th one and
it is also cheaper than the 8-th one since it requires
(n—r)(n—r—1) (5n—2r+2)

6
and —{-}1——1(—112;;;_—1-)— divisions less than Gaussian elimination. Moreover,
costs for the 7-th and the 8-th methods are comparable.

They require additions, the same number of multiplica-

additions, the same number of multiplications
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Numerycznie stabilna implementacja algorytmu PSUBQ

W pracy [4] zostal opisany algorytm PSUBQ kierunkéw sprzezonych, zbadana zostala
jego zbieznos¢ a takze porOwnano go z innymi algorytmami z tej samej klasy metod
kierunkéw dopuszezalnych. W niniejszej pracy uzupelniono rozwazania dotyczace numerycznych
wlasnosci algorytmu PSUBQ i przedstawiono cztery rozne numerycznie stabilne metody
triangularyzacji macierzy.




Stable algorithm for QP 151

Yucenwo ycroifunBoe npuMenense aaroputvMa PSUBQ,

B pabore [4] onmucanst anroputm PSUBQ conpsxenusix HanpapneHuii. Vicciemosana ero
CXOMMOCTh, & TAKKe JAETCs CPABHEHHE €ro ¢ APYrHMM airOpHTMaMH W3 ITOr0 Ke Kiacca
METOAOB AONYCTHMBIX HanpapleHuit. B pannoii paGoTe NOMONHWTENLHO paccMOTPEHBI NO-
HATHA, KACAKOLIMCS YMC/EHHbIX CBoiicTs anroputma PSUBQ u npejcrasieHbl 4eThIPe pasHbie,
YUCTIEHHO YCTOWHYHBEIE METO/BI TPHAHTY/IAIMH MAaTPHIL







