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Tn the paper f4] all the details of the PSUBQ algorithm are described, its convergence 
is examined and compared with other algorithms from the same class of methods of feasil:Jle 
directions, but (except for a short remark) numerical features of the proposed algorithm 

are not discussed. So now, these considerations are completed and four versions of the PSUBQ 
algorithm are presented making use of four numerically stable methods of matrix factorization. 

1. Introduction 

In the paper [ 4], the primal algorithm using conjugate directions 
for quadratic programming problems with simple upper bounds, called the 
PSUBQ algorithm, is described in all details. The algorithm belongs 
to the class of methods of feasible directions. At each iteration a feasible 
point (a successive approximation of the optimal solution) and some 
system of equations (for which this point is a solution) are found. 
A set of directions that are determined by rows of the inverse of the 
basis matrix connected with this point is also available. A feasible direction 
is chosen just among these directions. The updating scheme (2.!:~)-(2.9) [4] 
for rows of the inverse of the basis matrix is adequate for the theoretical 
considerations, but is does not assure numerical stability of the PSUBQ 
algorithm (see [8]). So now four versions of the PSUBQ algorithm 
are presented which use four numerically stable methods of matrix factori­
zation: Gaussian elimination, the method of Bartels and Golub, the method 
of Tomlin and the method of Forrest and Tomlin. All these methods 
of matrix factorization must use partial or complete pivoting to ensure 
numerical stability. 
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2. Formulation of the problem; notations 

The PSUBQ algorithm solves the problem: 

min {f (x): xEX}. 

G. KRYNSKA 

(2.1) 

where f (x) = dT x+ ~ xT Dx is a convex quadratic objective function, 

X= {xEE": Ax = b A fJ ~ x ~ o::} is a feasible set and d, fJ, o::EE", bEEm, 
AEEmxn, D = DTEE" x". Notice that X is a compact polyhedron, and 
hence the finite optimal value of the objective function is reached in X. 

The PSUBQ algorithm constructs a sequence {xk} of feasible points such 
that f (xk+J) '(j (xk). Let pk = (p1, ... , p~) be the basis matrix associated 
with the feasible point xk. Its columns p} for i = 1, ... , n are associated 
with n linearly independent and active constraints at xk. Let (Pk)- 1 denote 
the inverse of pk and n~T be its j-th row, for j = 1, ... , n. Let N = {1 , ... , n}. 
We define the following sets of indices: 

R~ = {iEN: pf =A; A AT xk = b;} = {1, ... ,m} 

and IWk = N\(R~ UR~ UR'A), where At denotes the i-th _row of the matrix A. 
Directional derivatives wf of the objective function f (x) at xk in 

directions nf for i = 1, ... , n are equal to nfT zk, where zk = d + Dxk denotes 
the value of the gradient of the objective function at ·xk. Hence wk = 

= (Pk)- 1 zk is a vector of directional derivatives of the objective function 
at xk in directions nf for i = 1, ... , n. 

In Section 2 [4] we show that if one of the following cases: 

(i) (3rERi) w; < 0; 

(ii) (3rER:) w; > 0; 

(iii) (3r EIW' ) W~ =/= 0 

occurs then xk is not the _optimal solution for the problem (2.1) and we 
can decrease the value of the objective function moving along the direction 
n; to the new feasible point xk+ 1 such, that f (xk+ 1 ) < f (xk). 
Let us define sets of indices: 

K~ = {iER~: w7 < 0}, K~ = {iER~: wf > 0}, 

K~ = { i E I Wk: w7 =!= 0} and Kk = K~ U K~ U K~ . 

Optimality criterion for the PSUBQ algorithm is formulated as follows 
(see Theorem 4.1 [4]): 
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THEOREM. If Kk = ~' then xk is an optimal solution for the problem (2.1). 
We are going to calculate and compare costs of one iteration for 

the PSUBQ algorithm and its four numerically stable versions. Accordingly, 
let Nactct' Nmult and Nctiv denote a number of additions, multiplications 
a.nd divisions, respectively. 

3. The PSUBQ algorithm 

STEP 1. (see Section 3 [4]). Establish the initial feasible point x 0 using 
the SUB method [3]. Construct the basis matrix P0 and its inverse (P0

)-
1

. 

Compute z0 = d+Dx0
. Define R3, R~ and put JW 0 = ~- Put k = 0. 

STEP 2. Compute wf = nfr zk for all i ~ m+ 1. 

STEP 3. If Kk = ~ then xk is the optimal solution, STOP. If Kk # ~ then 
choose the feasible direction, i.e. an index r ~m+ 1 according to the rule A 
or B, where: 

(A) 

and 

Case I. If K1 # ~ then r corres.ponds to 

lw;l = max lwfl 
iEK~ 

Case II. If Kj = ~ then r corresponds to 

I w; I = max I wf I , 
ieK~UK~ 

(B) r corresponds to I w; I = max I wf 1. 
iEKk 

Remove the column p; from the basis matrix pk_ 

STEP 4. Compute qk = Dn;. Compute 

sign w; if 

e5 = wk 
r if qkT n~ 

e~ n~ and t~ (according to (2.4) [4]). 

qk = 0 

qk # 0. 

If qk # 0 and t~ > 1, then ek = e~. Go to Step 5. 
If qk # 0 and 0 :'( t~ :'( 1 or if qk = 0, then ek = t~ e~ . Go to step 6. 

STEP 5. Put p;+ 1 = qk. Go to Step .7. 

STEP 6. Put p~+l = e1, where e1 is found from (2.5H2.6) [4]. 
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STEP 7. Put xk+ 1 = xk-(Jk n~, zk+ 1 = zk-(.Jk qk. Update n7 for all i;?: m+1 
according to (2.8)-(2.9) [ 4]. i.e.: 

( k+1)T k 
k+ 1 k Pr n; k 

n; = n; - ( k + 1) T k n, 
Pr n, 

for 

Update R~, R~ and JWk according to (2.11), (2.12) and (2.13) [4], respectively. 
Increase k by 1. Go to Step 2. 

REMARK 3.1. The updating scheme (2.8)-(2.9) [4], presented also at Step 7, 
requires performing 2n (n- m- 1) +m additions, 2n (n- m) multiplications 
and 1 division. 

4. A version of the PSUBQ algorithm 
using Gaussian elimination 

Let us recall that solving systems of linear equations and inverting 
matrices by Gaussian elimination is based on the triangular decomposition 
of the square matrix (see [7]). As it was already mentioned, to assure 
numerical stability we use the strategy of partial or complete pivoting. 
The version of the PSUBQ algorithm with Gaussian elimination uses 
the upper-triangular matrix Uk and the inverse (Lk) - 1 of the lower-triangular 
matrix Lk such that Lk Uk = pk (instead of the matrices pk and (Pk) - 1

), 

and these are the matrices that must be updated. Notice that in consequence 
the search direction n~ is not known explicit1y therefore it has to be 
computed in Step 3. 

STEP 1. Establish the initial feasible point x 0 using the numerically stable 
modification (see [5]) of the SUB method [3]. Construct the basis matrix P0 

and obtain its L 0 U 0 factorization using Gaussian elimination, where 
lower-triangular matrix L 0 and upper-triangular matrix U 0 are such that 
L 0 U 0 = P 0 with its rows permuted. Find (L 0 )-

1 by solving n systems 
of linear equations: 

L 0 y;=e; for i=1, ... ,n. 

Compute z0 = d + Dx0
, define sets RZ, R~ and put IW0 = 0. Put k = 0. 

STEP 2. Compute x = (Lk)- 1 zk, where (Lk)- 1 is a submatrix of (Lk) - 1 for­
med by deleting its first m rows. Then solve the system of n- m equations 
0k wk = x, where 0k is a submatrix of Uk formed by deleting its first m 
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d l Th t - k [ k k] T . th l t' f th' rows an co umns. . e vec or w = w m+l' .. . , wn IS e sou wn o IS 

system. 

STEP 3. Define set s of indices: K~, K~, K~ and Kk. If Kk = O then xk 
is the optimal solution, STOP. If Kk 1= 0 then choose an index r ~m+ 1 
according to the rule A or B and compute the new search direction 
n:r = [n: 1 , ... , n;nJ solving n systems of n-r+ 1 equations: 

for i = 1, .. . ,n . 

where ok is a submatrix of uk formed by deleting its first r - 1 rows 
and columns, (L k)- 1 is submatrix of (L k)- 1 formed by deleting its first r - 1 

rows and (Lf);- 1 is the i-th column of (Lk)- 1
. 

STEP 4. Compute qk = Dn;' et (according to (4.3) [4]), et n; and rt 
(according to (2.4) [ 4]). If qk 1= 0 and rt > 1 then ek = et. Go to Step 5. 
If qk I= 0 and 0 ~ rt ~ 1 or if qk = 0 then ek = rt et. Go to Step 6. 

STEP 5. Put p; + 1 = qk .' Go to Step 7. 

STEP 6. Put p;+ 1 = e1. where lis found by (2.5H2.6) [4]. 

STEP 7. Compute z k = (Lk) - 1 p;+ 1
. Next, form the matrix Hk+ 1 = 

= ( U~ , ... , u; _ 1 , Z b U~ + 1 , ... , U~) = ( hij); , j = 1 • .. .• " , where Uf for i = 1 , .. . , n de­
notes the i-th column of Uk = (Lk)- 1 Pk . Hence Hk+ 1 i-s of the following 
form : 

(4.1) 

and its nonzero elements can appear only at the lined area. 

STEP 8. Put xk+ 1 = xk- ek n; and zk + 1 = zk- ek qk 0 Using Gaussian elimination 
transform Hk+ 1 to the upper-triangular matrix Uk + 1 = r~ - 1 cp~- 1 ... r; cp; Hk+ 1, 
where for i=r, ... , n - 1: j 
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'"", 
1 

(4.2) 

f~= 

hli-11 

,~ 
i+1.i 

- hli-_11 
pi 

hl,i,-11 

~ 
11 

- hli:11 
PI 

p 

: 
hli:11 

"' - hli:11 
PI 1 

is an elementary triangular matrix when h~:i 1 
> was chosen as the pivot, 

(h!Y}i ,j= I , .. . ,n = rf cpf ... r~ cp~ Hk+ 1
' h!j- 1

) = hij for all i, j and cp~ is a permuta­
tion matrix exchanging the i-th row with the p-th one. Compute the new 
matrix (L k + 1)-

1 = r~ _ 1 cp~ _ 1 .. . r~ cp~ (L k)- 1 (let us notice here that the matrix 
(Lk+ 1

)-
1 is not usually the lower-triangular one). Update R~, R~ and · 

JWk according to (2.11), (2.12) and (2.13) of [4], respectively. Increase k 
by 1. Go to Step 2. 

REMARK 4.1. To transform Hk + 1 to the upper-triangular matrix uk + 1 

using Gaussian elimination and to update (Lk)- 1 we must perform N actct = 
(n-r) (n-r+ 1) (5n-2r+ 1) (n-r+ 1) (n- r) 

= N mult = and N ctiv = ~~~~~~'--
6 2 

5. A version of the PSU BQ algorithm using 
the method of Bartels and Golub 

We point out here the differences only between the versiOn of the 
PSUBQ algorithm that uses the method of Bartels and Golub [1, 5] 
and the one described in Section 4. 

The first difference appears at the 5-th and 6-th steps, since the new · 
column qk or e1 enters the basis matrix not instead of the r-th column 
but instead of the n-th one. So let 

if 

if 

and 

and or if 
(5.1) 
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The new basis matrix is then 

i17Jk+1_(k+1 _ k k+1 _ k 
u- - P1 - P1, ... , Pr-1- Pr-1, 

k+1 k k+1 k k+1) 
Pr =Pr +1,···,Pn-1 =Pn ,Pn · 

At Step 7 we compute now Zk = (L k) - 1 p~ + 1 and instead of Hk + 1 we 
construct an upper Hessenberg matrix .Ytk+ 1 = (U1, ... , u;_ 1 , u;+ 1 , . .. , U~, Zk) 

= (hij)i ,j= 1 , ... ,n, which is of the form: 

(5.2) 

Then Step 8 is as follows: 

STEP Sa. Put xk+ 1 = xk - ek n;' zk+ 1 = zk- ek qk. Using the method of 
Bartels and Golub transform .Yt'k + 1 to the upper-triangular matrix Uk + 1 = 

= r~ - 1 <P~- 1 ... r; cp; Yl'k + 1 , where for i = r, ... , n - 1: cpf is either an identity 
matrix (if the pivot is a diagonal element) or is a permutation matrix 
exchanging the i-th row with the (i + 1)-th one (if the pivot is a sub-diagonal 
element) and 

i+1 

1 

"" 1 

1 
(5.3) 

r~ = r~, 1 i+1 

1~ 
1 

IS an elementary triangular matrix such that 
h(i-1) 

i+ 1,i 
if I h(i - 1> I >- I h(i-1)·1 

k 
h(i-1) u :::;,..-- t+ 1 ,l 

Y i +l,i = Ll 

h(i -1) 
lh(i - 1) 1 < l h(i-1)· 1 " if - h(i-1) u l+ l , l 

i+ l.i 

and (h(l)) . . - = r" k r" m" Yt'k+ I h(r - I)- h 
f/1.] - l ..... n l <Pl ... r~'r ' lj - uforall i, j. 
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Compute the new matrix (Lk+ 1 )- 1 = T~_ 1 cp~ _ 1 ... r;cp;(Lk)- 1 (notice that 
(Lk+ 1

)-
1 is not usually the lower-triangular matrix). Update R~, R~ and 

JWk according to (2.11), (2.12) and (2.13) of [4]. Increase k by 1. 
Go to Step 2. 

REMARK 5.1. To transform the upper Hessenberg matrix .lfk + 1 to the 
upper-triangular matrix Uk+ 1 using the method of Bartels and Golub 

(n-r) (3n - r+ 1) 
and to update (.C)- 1 we must perform Nactct = Nmult = -------

2 
and N ctiv = n- r . 

6. A version of the PSUBQ algorithm using 
the method of Tomlin 

The third version of the PSUBQ algorithm uses the method of Tomlin 
[6, 5] with partial or complete pivoting. It coincides with the version 
using Gaussian elimination up to Step 8. Let it be as previously: 
z k = (e)- 1 p~ + 

1 and Hk + 
1 = (ut ... ' u~- I ' z k> u~ + I ' ... ' U~) = ( hu);. j = I. .... n' 

where Uf is the i-th column of Uk and Hk+ 1 is of the form (4.1). 
Let us notice that H" + '=L'"(l-ere/)+Z~;I!/ and Zk=U"y", where 
l = (Pk)- 1 p;+ 1

. Then Hk +1 = U"(I - ere/ +y"e;)= UkEr- 1
, where Er- 1 = 

= I- er e/ + l e[ and Er is an elementary matrix of Gauss-Jordan method 
defined by the vector l and the r-th pivot, i.e.: 

E = r 

1"" 
1 

k 
_.i.L 
~~ 
1 

Yf 

y~ --
y~ 

(6.1) 

1 

~ 
1 

We describe now how to transform the matrix Hk+ 1 to an upper­
-triangular one by the method of Tomlin. First we must find the pivot 
among four elements of the matrix Hk+ 1

: h"' hr +!,n hr,,'hr +!.n· Depending 
on 'the pivot we choose one of four algorithms: I, 11, Ill or IV. If hrr 
was chosen as the pivot then the method of Tomlin with partial or 
complete pivoting is just· the original method of Tomlin [6] and is 
carried out as Algorithm I: 

-----------------------------------------------------------------
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STEP 1. Find ck = [0, ... , 0, c, ... , c11] T by solving the system: 

en Uk = e;· Hk+1. 

137 

(6.2) 

STEP 2. Construct the matrix C, =I -e, ckT and obtain the matrix H' 1k+ I)= 
=C Hk+l =(h~·)· ·- .NoticethatC Hk+ 1 =Hk+ 1 - e cnHk+ 1=Hk+ 1 -k '1 '·1-1, ... ,n k r 

-e eT Hk+ 1 (Uk)- 1 Uk E- 1 = Hk+ 1-e eT Hk+ 1 E- 1 Hence h~. = h· · for all J. r r r r r r · t) IJ 
n 

and for all i=Fr, h~j=O for all j=Fr, h;,=h,,-.L, h,iY7 = (CkZk), = h,,-
t=r 

11 

~ .L ('i hir· 
t:::::r 

STEP 3. Denote the r-th column of H' 1k+ I) by H~(Jr+ 1 l. Construct the 
matrix Tk =I +(H;Ik+ll_e,) e(.", i.e. 

1~ h;, 
1 

h'rr 

1 

h'nr ~ 
1 

Then (Tk)- 1 is of the form: 

1~ h',, 
h'rr 

1 
(6.3) 

_1_ 
h'rr 

~ '~, h'rr 

and H" 1k+ 1l = (Tk)- 1 H'ik+ 1l = (Tk)- 1 C Hk+ 1 =(h~'·) · ._ is such an up-
k '1 <,1-l , .. . ,n 

per-triangular matrix that h;~ = 1, h~j = 0 for j ~ r + 1, h;; = 0 for i =F r 
and h;j = hij for all i =F r, j =F r. 
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REMARK 6.1. Step 3 can be also performed in a different way, i.e. 

STEP 3a. Permute rows and columns of H'<k + l) to obtain the upper­
-triangular matrix <f>rn H'<k + l) <p'(,, where <f>rn> <p'(,. are permutation matrices 
of the forms: 

1""' 
1 

(6.4) 

0 1 0 

~~ 
~1 

1 0 

1"' 
1 

1""' 1 

0 1 
(6.5) 

1~ 

~~ 
0 1 0 

1"' 
1 

for i = r, j = n . 
If h, + 1 ,r was chosen as the pivot then Algorithm II is carried out: 

STEP 1. Find ?! = [cl, ... , cnJ by solving the system: 

(6.6) 

where Wk = Uk (I- e, en + e, + 1 e'{ = ( U1, ... , U~- 1, e, + 1, U~ + 1, ... , U~) · 
u~+l . r -1 1 k 

Notice that c1 = ... = z:;. _ 1 = 0, C,. + 1 = 0 and C,. = , k so far as Ur.r + 1 of. 
[ , r.r +I 

of. 0. Moreover, the system (6.6) is equivalent to the system (!T uk = 

= e;+ 1 uk + b, e;, where br = u~r u;+ 1 
,r+ 

1 
. Hence (!T = e'{+ 1 + b, e'{ (Uk)- 1. 

ur,r+ 1 

STEP 2. Construct the matrix ck =I- e,+ 1 (!T = I- e,+ 1 e'{+ 1- br e,+ 1 e; (Uk) - 1 

and obtain the matrix fik+ 1 = Ck Hk+t = (hii)i,j=t , ... ,n· Notice that Ck Hk+ 1 = 
= (I- e, + 1 e'{+ 1 - br e, + 1 e;· ( Uk)- 1

) Hk + 
1 = (!-er+ 1 e?.~ d H~ + 

1
- b,. er+ 1 e;· · 

. ( Uk) - 1 uk E; 1 = (I- e, + I e'{+ I) Hk + 
1

- br er + I e'{ E,- 1
. Hence hu = hij for all j 
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and for all i # r + 1, h, + 1 ,j = 0 for all j # r, - k 
hr+ l,r = -b, Yr = hr+ l,r-

n 

- c, h,,- I C; h;,. 
i=r+ 2 

STEP 3. Permute columns and rows of f-ik+ 1 to obtain the upper­
-triangular matrix cp,+ 1nf-ik+ 1 cp"!,, where cp"!, is defined by (6.5) for i=r, 
J=n and cp,+ 1 ,n is a permutation matrix defined by (6.4) for i=r+l, 
j = n. 

If h,n was chosen as the pivot then Algorithm Ill is realized: 

STEP 1. Find (!' = [0, ... , 0, er+!' ... , cnY by solving the system: 

(6.7) 

k k k T [ k k k u~, l J where u, = e, U - Urr e, En = 0, ... , 0, Ur,r+ t. ... , U,,n- 1 , U,n+ ---:vr- and En 

is an elementary matrix of Gauss-Jordan method defined by the vector l 
and the n-th pivot, i.e. 

1 y1 

~ 
• y~ 

Y~-1 --
1 y~ 

(6.8) 

0 
1 

y~ 

STEP 2. Construct the matrix ck =I- e, ~T = I- e, e! + u;, e, e,T En (Uk) - 1 
and obtain the matrix fjk +I = ck Hk +I = (hij)i,j= 1, ... ,n . Notice that ck Hk+ 1 = 
= (1-e eT+Uk e eT E (Uk)- 1)Hk+ 1 = (1 -e eT)Hk+ 1 + Uk e eT E (Uk)- 1 

r r rr r r n r r rr r r n 

Uk E,- 1 = (I - e, e'[) Hk + 1 + u;, e, e"[" En E,- 1
. Hence, hii = hii for all j and for 

. ~ u~, l n 
all i # r' n,j = 0 for all 1 # n, h,n = - ~-k- = h,n I C; hin. 

Yn i=r+ 1 

STEP 3. Permute rows of flk+ 1 to obtain the upper-triangular matrix 
cprn Rk+ 1 , where cp,n is the permutation matrix defined by (6.4) for i = r, 
j= n. 
If h,+ 1 ,n was chosen as the pivot then Algorithm IV is performed: 

STEP 1. Find ~ = [c\' ... ' cnY by solving the system: 

3<T - . k 
c Vl'k = v, + 1 ' (6.9) 
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where v;+ 1 = e?~ 1 Uk E ;;
1 

= [0, ... , 0, u;+1 ,r+ 1' ... , u;+l , n-~>(Zk)r +1]. ltk = 

Uk E- I (I 1\ + r ( uk uk uk uk z ) d = n - erer) er + ler = 1, ... , r- l ,er + l • r + l • ···· n- J, k an 
E;; 1 = I - e11 e,;+le;;. 

uk 
Notice that c\ = ... = ~ - I = 0, Cr + I= 0 and c,. = r: l,r + I so far as u~.r + I i= 

Ur ,r+ I 
i= 0 . Moreover, the system (6.9) is equivalent to the system (!<T Uk E;; 1 = 

= e'{+ 1 Uk E,;- 1 + 6r e'{, where 

6 u ;r u;+1,r+1 H ~T T ' T k - 1 
r = Uk . encec = e,.+ 1 + urerEn(U). 

r,r+ I 

STEP 2. Construct the matrix ck = I -e,.+ I ('<T = I - er+ I e}~ I -6,. e,. + I e,.T Ell. 

C!t)- I and obtain the matrix Hk + I = ck Hk + I = dtij)i.j= I, .... 11. Notice that 

C= Hk + I - (I T ;; T E ( Uk) - I ) Hk + I (I T ) Hk + I k - - er + ! er+ I - u,.er+l e,. 11 = -er +l er + I -

- 6r e,. ± 1 e'{ En (Uk)- 1 Uk Er- 1 = (I - er+ 1 e'{+ 1) Hk_+ 1 - 6,. er + 1 e/ En Er- 1. 

Hence hij = hij for all j and for all ii=r + l, hr+l ,j= O for all j-=/=n, 

= 6 yk - 11 

hr +l ,n = ~= hr +l ,n-C:. hrn- L ('i hin· 
Yn i=r +2 

STEP 3. Permute rows of Hk + 1 to obtain the upper-triangular matrix 
cpr+ 1 .nHk+ 1

, where cpr+l ,n is the permutation matrix defined by (6.4) for 
i = r + i,j=n. 
Let us present now the 8-th step of the version of the PSUBQ algorithm 
using the method of Tomlin described above. 

STEP 8b. Put xk+ 1 = xk- f)k n; , zk+ 1 = zk- f)k qk Using Algorithm I, ll, III 
or IV for the method of Tomlin transform Hk+ 1 to the upper-triangular 
matrix Uk + 1 and compute the new (Lk + 1 ) -

1
: 

(I) if h,.r was chosen as the pivot then either uk + I = (Tk)- 1 ck Hk+ I and 
(Lk + 1 )- 1 = (Tk)- 1 Ck (Lk)- 1 (if Step 3 was realized) or Uk+ 1 = cprn C Hk + 

1 
· 

· cpr~ and (Lk +J)- 1 =(() ,.
11 
CdLk) - 1 (if Step 3a was realized and as far as 

we set that 1f'k+ 1 =Hk+ tcp;:,=( U~ , .. . ,u;_ 1 ,U;+1 , ... ,U~ ,Zk) and 
£?1!k + 1 = p k+ 1 cpr~ = I!: + 1 uk+ 1) ; 

(ll) 

(Ill) 

· h h · h u k+1 c- Hk +l r If hr + 1 ,,. was c osen as t e pivot t en = ((),. + t,n k ({),." = 
= ({) r+ l ,n c k :Yt'k+ I and (Lk + 1) -

1 = ((),. + l ,n ck (Lk)- l as far as we set that 
J'Ck+ 1 = Hk+ 1 cp[.;, and _jllk+ 1 = pk+ 1 cp?~ = Lk + 1 uk+ 1; 

if h,." was chosen as the pivot then uk+ 1 = cprn Ck Hk + 1 and (Lk+ 1
)-

1 = 
= cprn Ck (Lk)-1; 

(IV) if h,. +J.n was chosen as the pivot then Uk+ 1 =cp,. +1 ,n CkHk+ 1 and 

(Lk+ 1
) -

1 = cp,. + t , n Ck (Lk) - 1 . 

Update R~ , R~ and IWk according to (2.11), (2.12) and (2.13) of [4] , 
respectively. Increase k by 1. Go to Step 2. 
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REMARK 6.2. To transform Hk + 1 to the upper-triangular matrix vk + 1 

using the method of Tomlin with partial or complete pivoting and to 
(n - r) (3n-r+ 1) 

2 update (Lk)- 1 we must perform Nadd = 
2 

+n -n, Nmult = 

(n - r) (3n-r + 1) . . 
= 

2 
+ n2

, Ndiv = 2n- r for Algonthm I with Step 3, and 

(n-r) (3n-r+ 1) 
Nadd = Nmult = 

2 
, Ndiv = n- r for the remaining algorithms. 

7. A version of the PSUBQ algorithm using 
the method of Forrest and Tomlin 

Similarly to the version of the PSUBQ algorithm which uses the method 
of Bartels and Golub we form two matrices: a basic matrix yk + 1 = 

( 
k+1 k k+1 k k+1 k k+1 k k+1) h k + 1 = P1 =P1, ... ,p,.-1=P,.-1, p,. =Pr+1, ... ,Pn-1=Pn, Pn , were Pn 

is defined by (5.1), and an upper Hessenberg matrix .ll'k+ 1 = (V1, .. . , V~_ 1 , 
V~+~> ... , V~ Zk) = (hijkk= 1 , ... ,n (which is of the form (5.2)), where Zk = 
= (L k) - 1 p~ + 1. Let us notice that ..!( k + 1 = Hk + 1 cp;;, = (Vk (1- e,. e;:) + Zk e;:) cp;;, 
where q>~, is the permutation matrix defined by (6.5) for i = r, j = n, 
and Zk = Vk l where l = (Pk) - 1 p~+ 1 Then .Yf k+ 1 = Vk E,:- 1 cp;;,, where 
E,. is an elementary matrix of Gauss-Jordan method defined by the vector 
l and the r-th pivot (see (6.1)), and E,- 1 = I- e,. e'! + l e'!. 

We describe now how to transform an upper Hessenberg matrix J'fk + 1 

to an upper-triangular one by the method of Forrest and Tomlin [2, 5]. 
To ensure numerical stability we use the strategy of partial or complete 
pivoting. So first we must find the pivot among four elements of Yfk+ 1 : 

h,.n, h,.+ 1,n , h,. ,n- 1, h,.+ 1 ,n- 1 · Depending on the pivot we choose one of four 
algorithms: A, B, C or D. If h,.n was chosen as the pivot then the 
method of Forest and Tomlin with partial or complete pivoting is just 
the original method of Forrest and Tomlin [2, 5] and is carried out 
as Algorithm A: 

STEP 1. Find ck = [0, ... , 0, c,.+ 1 , ... , cnY by solving the system: 

(7.1) 

where u~ = e; vk- v~ .. e?' = [0, ... , 0, v~ ... + 1 ' ... , v:nJ. Hence ckT = e;- v;,. . 
. e'! (Vk)-1. 

STEP 2. Construct the matrix Ck=l-e,ckT=l - e,.e,.T+V~,.e,.e,.T(Vk)- 1 and 
obtain the matrix Jlt'<k+ 1l = Ck J"fk+ 1 = (h;j)i,j =1, ... ,n· Notice that Ck Jltk+ 1 = 
= (1 - e eT +Vk e eT(Vk) - 1) l{'k+1 =(1 - e eT)Jifk+1 + Vk e eT(Vk)-1 Vk. r r rr r r · " r r rr r r 

. E,.- 1 cp;;, = (1 - e,. e;) :Yfk + 1 + V~,. e,. e'! E,.- 1 cp;;,. Hence h;j = hij for all i =1 r 
n 

and for all j , h;.j = o for all j =1 n, h;n = v~ .. l = h,." - I ci hin· 
i=r+ 1 
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STEP 3. Permute rows of yp'<k + l) to obtain the upper-triangular matrix 
CfJrn Yt''(k+ll, where CfJrn IS the permutation matrix defined by (6.4) for 

i = r, j = n. 
If h,. + 1 ,n was chosen as the pivot then Algorithm B is performed. 

STEP 1. Find (! = [cl' ... ' cnY by solving the system: 

(7.2) 

where Wk = Uk (I -e,. e,!) + e,.+ 1 e'{ = (U1, ... , u;_ 1 , e,.+ 1 , u;+ 1 , ... , U~). Notice 

h - - 0 - 0 d - u; + 1 r + 1 f uk 0 t at c1 = ... = c,. _ 1 = , c,.+ 1 = an c,. = k • so ar as r,r+ 1 =F • 
ur,r+ 1 

Moreover, the system (7.2) is equivalent to the system (!T Uk = e'{+ 1 Uk+ 

~ T h ~ u;,. u;+l,r+1 H "*T T ~ T(Uk)-1 + u,. e,. , w ere u,. = k . ence c = e,. + 1 + u,. e,. . 
u,.,r+ 1 

· - -:*T T T k - 1 STEP 2. Construct the matnx ck = I - e,·+l c =I - er+ 1 e,.+ 1 -b,. er+l e,. (U) 
and obtain the matrix y(k + 1 = C Y't'k + 1 = -(Ti . ·)· ._ . Notice that C ypk+ 1 = k !J <, j-l, .. ,n k 

= (I - e,..+ 1 e;r+ 1- (),. e,.+ 1 e'{ (Uk) - 1) :JI'k+ 1 = (I - e,.+ 1 e'{+ t) :Jf'k+ 1 - (),. e,.+ 1 . 
T k -1 k - 1 T T "k+l T - 1 T -· e,. ( U) U E,. CfJrn = (1 - e,.+ 1 e,.+ d Jlt - b,. e,.+ 1 e,. E,. CfJrn· Hence hij = 

= hij for all i =F r+l and for all j, Ti,.+ 1 ,j=0 for all join, h,.+ 1 ,n= 
n 

= - b,.y:=hr+l,n - c,.h,.n - I C;hin· 
i=r+ 2 

STEP 3. Permute rows of y(k + 1 to obtain the upper-triangular matrix 
CfJr+ l,n y(k+l, where CfJr+l ,n is the permutation matrix defined by (6.4) 
for i = r+ 1, j = n. 

If h,.,n-l was chosen as the pivot then Algorithm C is carried out: 

STEP 1. Find {!<=[O, ... ,O,c,.+ 1, ... ,cnY by solving the system: 

'(!T uk = u:, 
where U: = e'{ Uk - u:,. e'{ En= [ 0, ... ,0, u;,r+ 1, ... , U~n' u;n + 

an elementary matrix of the form (6.8). 
Hence '(!T =eT- uk eT E (Uk)- 1 

' r rr r n · 

(7.3) 

u:,. y; J d E . 
k an n IS 

Yn 

STEP 2. Construct the matrix Ck=l - e,.(!T = J-e,.e'{+U:,.e,.e'{En(Uk)- 1 

• . '~k + 1 - ~ " k + 1 - ~ . ~ " . k + 1 and obtam the matnx Y't' - Ck :If - (hij)i,j= 1 , ... ,n- Notice that Ck Yf = 
= (I - e eT + Uk e eT E (Uk)-l)::lt'k+1 = (l - e eT)ypk+l+Uk e eTE (Uk)-1 r r rr r r n r r rr r r n 

k - 1 T _ T , •k + 1 k T - 1 T ~ _ U E,. CfJrn - (I- e,. e,. ) .If + U ,.,. e,. e,. En E,. CfJrn. Hence hij - hij for all 
~ u;,. y; 

i=Fr and for all j, h,.j = O for all j=Fn - 1, hr, n- 1= --k- · = h,. ,n- 1 
Yn 

- I C; hi ,n- 1 · 
i=r + 1 
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STEP 3. Permute rows and columns of y(k+ 1 to obtain the upper-triangular 
matrix Cf>rnYfk+ 1 Cf>~- 1 , 11 , where Cf>rn is the permutation matrix defined by 
(6.4) for i = r, j = n, and q>~·- 1 , n is the permutation matrix exchanging 
the (n -1)-th column with the n-th one. 
If hr+l ,n- 1 was chosen as the pivot the Algorithm D is carried out: 

=:k - - T STEP 1. Find c =[cl , ... , cnJ by solving the system: 

:"kC- T W- k = Vk 
r+ I' (7.4) 

where v~+ 1 = e'!+ 1 Uk E;; 1 = [0, ... , 0, U~+ 1 ,r+ 1 , ... , u;+ 1,11 - 1, (Zk)r+ 1] and 
wk = uk E;; 1 (I -er e,!') + er+ 1 e,!' = (U1, ... , u;_1' er+ I' u;+ 1o ... , u~-!o Zk) . No-

tice that 'tl = ... = t..-1 = 0, t,.+ 1 = 0 and t,. = U~+k 1 ,r+ 1 , SO far as U~,r+ 1 # 
ur,r+ 1 

=F 0. Moreover, the system (7.4) IS equivalent to the system (kT uk E;; I = 

· t" I L ~ ) 1
. 

u;r u;+1,r+l 

u;,r+ 1 

H =:i<T T ~; T ence C = er+ 1 + Ur er · 

S 2 C h · "' "'kT T T TEP . onstruct t e matnx Ck=l -er+l c = 1 -er +l er+l-brer+l er . 

· E11 (U~T 1 and obtain the matrix YfH 1 = Ck .1t'k+ 1 =(/:;ii)i ,j=l, ... ,n· Notice 

that ck y~ + I = (I -er + I erT+ I -br er+ I e; En (Uk) - 1
) £k+ I =(I -er+ I e;+ d . 

. Yt'k+ 1_ (jr er+ I erT E,. (Uk)-1 uk Er- 1 <p;;, = (I -er+ I erT+ I) £k+ I (jr er+ I erT . 

·E11 Er- 1 cp;;,. Hence hij=hii for all i=Fr+l and for all j , hr+l.j=O 
(jr y; = n 

for all j=F n-1, hr+1 ,n- 1 = ------.,;-= hr+1,n-1-cr hr ,n-1 - L C;h;,n -1 · 
Yn i=r+2 

STEP 3. Permute rows and columns of _y{'k+ 1 to obtain the upper­
-triangular matrix Cf>r+ 1,,. il'k+ 1 Cf>~- 1 , 11 , where Cf>r+ 1,n is the permutation · 
matrix defined by (6.4) for i = r + 1, j = n and Cf>~- 1 ,n is the permutation 
matrix exchanging the (n- 1)-th column with the n-th one. 
Let us present now the 8-th step of the version of the PSUBQ algorithm 
using the method of Forest and Tomlin described above. · 

STEP 8c. Put xk+ 1 = xk-f)k n;, zk+ 1 = zk-ek qk. Using Algorithm A, B, C 
or D for the method of Forrest and Tomlin transform ../fk+ 1 to the 
upper-triangular matrix uk+ 1 and compute the new (Lk+ 1

) -
1

: 

(A) if hrn was chosen as the pivot then uk+ 1 =Cf>rnck Yf'k+ 1 and (Lk+ 1
)-

1
= 

= Cf>rn Ck (Lk)-1 since Yt'k+1 = (Lk)-1 .5-'k+1; 

( ) ·f h h h · h uk + 1 c- ·k·k + 1 d B I r+l ,n was c osen as t e pivot t en = Cf>r+ 1,n k .:n an 
(Lk+l)-1 = Cf>r+1 ,n Ck (Lk)-1; 

(C) if hr n- 1 was chosen as the pivot then uk+ 1 
= Cf>rn Ck Ytk+ 1 Cf>~- 1 , 11 

and (z..k+ 1)- 1 = Cf>rn Ck (Lk)- 1 as far as we set that y{k+ 1 = Yfk+ 1 cp'[._ 1 ,n= 
= (U1' ... , u~-1' u;+ I' ... , zb U~) and !}k+ I= .:f>k+l q>~·-1,n = Lk+ 1 uk+ I ; 
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(D) if hr+1,n-1 was chosen as the pivot then uk+ 1=fPr+ 1 ,nCkyfk+ 1· 
T d (Lk + 1) - 1 c= (Lk) - 1 f h k + 1 ·fPn-1,n an = fPr+ 1,n k as ar as we set t at £ = 

YlH 1 fP~- 1 . n = (U1, ... , U~- 1 ,, U~+ 1 , ... , U~- 1 , Zb U~) and JJH
1 = 

= . .!1' + I q>,;_ 1 .n = Lk + 1 uk + 1. 

Update R~ , R~ and JWk according to (2.11), (2.12) and (2.13) of [4], 
respectively. Increase k by 1. Go to Step 2. 

REMARK 7.1. To transform the upper Hessenberg matrix yfk+ 1 to the 
upper-triangular matrix Uk + 1 using Algorithm A, B, C or D for the 
method of Forrest and Tomlin with partial or complete pivoting and to 

(n-r) (3n-r+ 1) 
update (Lk)- 1 we must perform Nadd = Nmult = 

2 
and Nctiv = 

= n-r. 

8. A version of the PSUBQ algorithm using 
the modified methods of triangular factorization 

We describe now how to take advantage of the structure of Zk to 
modify two of methods of triangular factorization: the method of Bartels 
and Golub and the method of Forrest and Tomlin. Let Hk+ 1 = (Lk)- 1 pk+ 1 = 
= (U1, ... , u;_ 1 , Zb u;+ 1 , ... , U~) = (hiiki= 1 . ... , n where Zk = (e) - 1 p;+ 1 is the 
r-th column of Hk + 1. Let h1kr be the last nonzero element of Zk. Let 
us notice that lk ? r. (If lk < r then hrr = 0, uk+ 1 = Hk+ 1 and det (Uk+ 1

) = 0. 
But det pk+ 1 =1- 0 and pk+ 1 = Lk + 1 Uk + 1, a contradiction). If lk = r then 
Uk+ 1 = Hk +1. So let us assume that lk > r. Then Hk+ 1 is of the following 
form: 

(8.1) 

The differences between the versions of the PSUBQ algorithm usmg the 
modified methods of triangular factorization and the versions using the 
methods described earlier do not appear up to the 5-th and the 6-th 
steps. Namely, the new column qk or e1 is introduced into the basis 
matrix not instead of the n-th column but instead of the lk-th one. 
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Let 

-k+1_{l if qk # 0 and 
Pzk - Cz if qk # 0 and 

t~ > 1 
O:::::t~:::::1 of qk = O. 

and the new basis matrix IS 

Pk+1_(~+1 _ k ~+1_ k ~+1_ k ~+1_ - P1 -p1 , ... ,Pr - 1-Pr-1,Pr -Pr+1, ... ,pzk-1-

145 

k ::1<+1 ::1<+1 k ::1<+1 k) =pzk,pzk ,pzk+1=Pzk+1, ... ,pn =Pn· 

Let us notice that if lk = n then there is no reason to modify methods 
of triangular factorization. At Step 7 we compute Zk = (Lk)- 1 ptk+ 1 instead 
of Zk and construct an upper Hessenberg matrix fik +1 = (U1, ... , U~ _ 1 , 

k k - k k -h h' h . f h f . ur+1 , ... ,Uzk,Zk>Ulk+1, ... ,Un)=( ij)i,j=1, ... ,n w IC IS 0 t e orm. 

(8.2) 

Let us notice, that fik+ 1 = Hk+ 1 <p~k' where <p~k is a permutation matrix 
defined by (6.5) for i = r, j = lk. The way of realizing Step 8 of the 
PSUBQ algorithm depends on the method of triangular factorization. 
If we use the modified method of Bartels and Golub then we transform 
the upper Hessenberg matrix fik + 1 to the upper-triangular matrix Uk + 1 = 

r k k rk k H-k + 1 d t (Lk + 1)- 1 rk k rk k (Lk)- 1 = lk-1 <pzk-1 ... r <fJr an compu e = lk-1 <pzk-1 ... r <p, 
where r~ for i = r, ... , lk -1 are the elementary triangular matrices defined 
by (5.3) and <p~ for i = r, ... , lk -1 are either identity matrices or permutation 
matrices exchanging the i-th row with the (i + 1)-th one. 

REMARK 8.1. To transform the upper Hessenberg matrix fik+ 1 to the 
upper-triangular matrix Uk + 1 using the modified method of Bartels and 

Golub and to update (L k) - 1 we must perform Nadd = Nmult = (lk - r)(4n-lk - r + 1) 
2 

and N div = lk - r . 
To transform the upper Hessenberg matrix fik+ 1 to uk+ 1 we can 

'also use one of two modifications of the method of Forrest and Tomlin 
with partial or complete pivoting. For both of them, first of all we must 
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find the pivot among four elements of fik+ 1
: h,1k, h,+ 1 , 1k , h, ,zk- 1 , h,+ 1 , 1k_ 1 

instead of elements of Ytk+t: h,n, h,+ 1 ,n , h, ,n- 1 , h,+t ,n- t· Let ffk+t = 
n n n n 

=fik+ 1 (I-" e.e!)+" e·eTandUk=Uk(J - " e.eT)+" e.l L. J J L. J J . . L. J J L. J J 
j=lk+l j=lk+l j=lk+l j=lk+l 

be the matrices fik+ i and Uk with their last n -lk columns equal to 
- - · -· k k -

· e1 +l' ... ,en instead of H1 +l' ... , Hn and U 1 +l ' ... , Un, respectively, where Hi 
k k - k """' ....... 

denotes the j-th column of Hk+ 1
. Notice that, Hk+ 1 = Uk E; 1 q>~ arid 

k 
n 

H-k+l = H~k+l (I - " ej.ejn + " H- T H h- h~ !' 11 . d f L. L. i ei . ence ii = ii 10r a z an or 
j = lk + I j = lk + I 

all j ~ lk. 
Let us suppose that h,1k 

modification of the method 
was chosen as the pivot. Then, the first 
of Forrest and Tomlin is performed as 

Algorithm A': 
STEP 1. Find (;k = [C1, .. . , (\_,]T by -~olving lk-r 

r,._ 

equations: 

' kT u' k _ 'k c - u, . (8.3) 

k k k 0 k 0 k 0 k k where u, = [U,,,+ 1 , ... , U,, 1k], U = (Uii)i,i=t, ... ,zk-r and U;i = Ur+i,r+i for 
i, j = 1 , ... , lk - r . 

Hence, ck = [O, ... ,O,c,+ 1 , ... ,c1k,O, ... ,O]T such that C; = C; - , for i = r+! 
+ 1, ... , lk> is the solution for the system: 

(8.4) 

where u~ = e'{ Qk _ u~, e'{ = [0, ... , 0, u~.r+l• ... , u;,lk' 0, ... , 0] . 

STEP 2. Construct the matrix Ck = I - e, ckT = I - e, e'{ + U~, e, e'{ (Uk)- 1 and 
obtain R'<k+ll C fik+ 1 (h' ·)· ._ . Notice that C. fik+1 = k t} t, J - I , . .. , n k 

=(1-e e!)fik+ 1 +Uk e eT(Uk) - 1 fik+l = (I - e e!)fik+l + Uk e eT(Uk)- 1 · r r rr r r r r rr r r 

· Uk E,- 1 q>'!zk = (1 - e, e,I) fik + 1 + u;, e, e! E,- 1 q>'!zk . Hence, fi;i = hii for all i =F r 
~ ~ ~ lk 

and for all j' h~j = 0 for all j =F lk' h~lk = u;, l = h,zk - I C; h;zk. Now, 

fjr(k+ I) 

n 

n 

ck fjk+ 1 (I- L ej e]) 
j=lk+ I 
n 

= fi'<k+ ll (I - L ei e}) + (I -e, ck1) L fii eJ. 
j=lk+l j=lk+ l 

Hence, 

ii;i = ii;i = h;i = h;i for all j ~ lk and for all i =F r. 

ii;i = hii for j > lk and for all i =F r, 

h~i = h~i = 0 for all j < lk> 
lk lk 

h~1k = h~1k = h,1k - L C; huk = h,1k - L C; h;1k, 
i=r+l i= r + l 

i=r + I 

+ 
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lk 

h~j = h,j- I C; hij for all j > lk. 
i=r + 1 

STEP 3. Permute rows of ii'<k + 1) to obtain an upper-triangular matrix 
q>,zk ii'<k + 1), where q>,1k is a permutation matrix defined by (6.4) for i = r, 
j = lk. 

At Step 8 of the PSUBQ algorithm we obtain then Uk + 1 = q>,zk Ck fik+ 1 

and (L k+ 1
)-

1 = q>,1k Ck (Lkr 1. 

Analogically we can modify Algorithm B, C or D in the case when 

ii,+ 1 , zk, ii,,zk- 1 or iir+ 1 ,zk - 1 was chosen as the pivot to obtain Algorithm B', 
C' or D', respectively. 

REMARK 8.2. To transform the upper Hessenberg matrix fik+ 1 to the 
upper-triangular matrix Uk + 1 using the first modification of the method 
of Forrest and Tomlin and to update (Lk)- 1 we must perform 

(lk-r) (4n-lk-r+ 1) 
Nadd = Nmult = 

2 
' Ndiv = lk-r. 

The second modification is just the method of Forrest and Tomlin 
with partial or complete pivoting used for triangular factorization of 
fik + 1 = Hk + 1 m T instead of :Yt k + 1 = Hk + 1 m T where m T and m T are 

't'rlk 't'rn' 't'rlk 't'rn 

permutation matrices defined by (6.5). The only difference is that everywhere 
in the method · of Forrest and Tomlin where the index n appears we 
replaced it by the index lk> i.e. we deal with matrices q>,1k, q>~k' q>,+ 1 ,1k, 

T E d E - 1 . t d f t . T T E q>zk-1,lk' lk an lk IllS ea 0 ma nces !f>rn• !f>rn• !f>r+1,n• !f>n-1,n• n 

and E;; 1
, respectively. 

REMARK 8.3. Let us notice, that to transform fik + 1 to uk + 1 by the second 
modification of the method of Forrest and Tomlin with partial or complete 
pivoting we must perform the same number of elementary arithmetic 
operations as it was required in transforming :Ytk + 1 to Uk + 1 by the 
original method of Forrest and Tomlin with partial or complete pivoting 

. (n-r) (3n-r+ 1) 
(see Remark 7.1), I.e. Nactct = Nmuit = 

2 
and Nctiv = n-r. The 

only advantage is a decrease of the number of required permutations 
at Step 3 of the algorithms A, B, C and D. 

9. Conclusion 

The versions of the PSUBQ algorithm presented in Sections 4-8 
require performing additional operations. First, at Step 1, we must obtain 
once the triangular decomposition of the initial basis matrix P0 (which 

n(n - l)(n-2) 
requires performing multiplications, the same number of 

2 
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additions, and (n-
1
)(n-

2
) divisions) and obtain (L0)- 1 b solving 2 y n 

f 1. . ( h.h . f . nz(n - 1) systems o n mear equations w 1c reqmres per ormmg ---- multipli-
2 

cations, the same number of additions, and n2 divisions). Hence, 
additionally perform 

Nactct = Nmuu = n (n - 1? and 
3 

Ndiv = 2 n (n-1)+ 1. 

Many times (at each iteration of the PSUBQ algorithm) we must 

we must 

- at Step 2, compute wk by solving a system of n- m linear equations, 

h.h . (n-m-1)(n-m) 1.1.. d h b w 1c reqmres 
2 

mu hp 1cat10ns an t e same num er 

of additions, and n- m divisions; 
- at Step 3, compute n~T by solving n systems of n- r + 1 linear 

. . h . n(n-r+1)(n-r) 
1

. 
1
. . d h 

equatiOns, wh1c reqmres 
2 

mu hp 1cat10ns an t e sa-

me number of additions, and n (n-r+ 1) divisions; 
-at Step 7, compute Zk=(Lk)- 1 p~+ 1 or Zk=(Lk)- 1 p~+l or Zk= 

= (L k)-
1 i1zk+ 1

, which requires n (n-1) additions and n2- multiplications; 
- at Step 7 and 8 form and reduce Hk + 1 or .Yl'k + 1 or fik+ 1 to 

triangular form uk + 1 by one of methods of triangular factorization 
described in Sections 4-8, and next update (L k)- 1

. 

The Table 9.1 contains comparison of costs for different methods of 
matrix factorization calculated in Sections 4-8. 

Comparing costs (in the sense of numbers of elementary arithmetic 
operations and required permutations of rows and/or columns) of the 
presented methods of matrix factorization, we can order them along 
increasing costs in the following sequence: 

1. the first modification of the method of Forrest and Tomlin with 
pivoting (if lk < n). 

2. the modified method of Bartels and Golub (if lk < n), 
3. the second modification of the method of Forrest and Tomlin with 

pivoting (if lk < n), 
4. the method of Bartels and Golub, 
5. the method of Forrest and Tomlin with pivoting, 
6. the method of Tomlin with pivoting (unless we use Algorithm I with 

Step 3), 
7. the method of Tomlin with pivoting (if we use Algorithm I with 

Step 3), 
8. Gaussian elimination. 



Table 9.1 

The modified The modified method of Forrest 
The method 

method of 
The method and Tomlin 

Gaussian elimination of Bartels The method of Tomlin of Forrest 
and Golub 

Bartels and 
and Tomlin The 1'1 The 2nd 

Golub modification modification 

Nactd for Algorithm I with 
Step 3 

(n-r)(3n-r+ 1) 
2 

(n-r)(n-r+ 1)(5n-2r+ 1) (n-r)(3n-r+1) (lk- r)(4n-lk- r + 1) 
+n -11 

n-r)(3n-r+ 1) : (lk-r)(4n-lk-r+ 1) (n- r)(3n- r +I) 2 
6 2 2 

for the remaining 2 I 2 2 
I 
I 

! Algorithms 
(n-r)(3n-r+ 1) 

2 

for Algorithm I with 
Step 3 

(n-r)(3n-r+1) 
2 +n 

Nmult 
2 _ ,, _ _ ,,_ _ ,,_ _ ,, _ _ ,,_ _ ,, _ 

for the remaining ~ 

Algorithms 
(n-r)(3n-r+l) 

2 

i I 
for Algorithm I with 
Step 3 

(n-r+1)(n-r) 
lk-r 

2n-r 
lk-r Nctiv n-r n-r n-r 

2 
for the remaining 
Algorithms 

n-r 
----- ------ --- ---
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Let us notice that the 1-st and the 2-nd method from the above 
sequence require the same number of elementary arithmetic operations . 

. (n-lk)(3n-lk+l) .. 
They reqmre add1t10ns, the same number of multiplica-

2 
tions and n -lk divisions less than the 3-rd one. 

Next, a number of elementary arithmetic operations for the 3-rd, 4-th, 
5-th and 6-th method is the same. They vary only on numbers of 
permutations of rows and/or columns. The 6-th method requires n2 -n 

additions, n2 multiplications and n divisions less than the 7-th one and 
it is also cheaper than the 8-th one since it requires 
(n-r) (n-r-l) (5n-2r+2) 

6 
additions, the same number of multiplications 

. (n-r) (n - r-l) 
and divisions less than Gaussian elimination. Moreover, 

2 
costs for the 7-th and the 8-th methods are comparable. 
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Numerycznie stabilna implementacja algorytmu PSUBQ 

W pracy [4] zostal opisany algorytm PSUBQ kierunkow sprz<r:i:onych, zbadana zostala 

jego zbie:i:nosc a tak:i:e porownano go z innymi algorytmami z tej samej klasy metod 
kierunkow dopuszczalnych. W niniejszej pracy uzupelniono rozwa:i:ania dotycz<tce numerycznych · 
wlasnosci algorytmu PSUBQ i przedstawiono cztery ro:i:ne numerycznie stabilne metody 
triangularyzacji macierzy. 
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qucJieuuo yCTonqusoe npuMeueuue aJiropuTMa PSUBQ. 

B pa6oTe [4] onncaHbi anropnTM PSUBQ conpHlKeHHbiX HanpasneHnii. lifccJieJJ.OBaHa ero 

CXO)].llMOCTb, a TaKlKe )].aeTCH cpaBHeHne ero C JJ.pyrMMll aJirOpllTMaMH 113 3TOfO lKe KJiacca 

MeTOJJ.OB )].onycTHMbiX HanpasneHnii. B JJ.aHHOH pa6oTe JJ.OnOJIHnTeJibHO paccMoTpeHbi no­

Hl!TMH, KacaiOruncH •mcneHHbiX CBOHCTB anropMTMa PSUBQ 11 npeJJ.cTaBJieHbi qeTbipe pa3Hbie, 

'IHCJieHHO YCTOHqllBble MeTO)].bl TpHaHryJIHUllll MaTpllU. 

' 




