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In the paper, a one-dimensional two-phase Stefan problem with nonlinear conditions imposed 
on the fixed boundary is considered. The boundary conditions comprehend time-dependent 
subdifferential operators. Theorems on the local in time existence and uniqueness of solutions are 
proved. The exposed construction of the local solution exploits methods of the theory of nonlinear 
evolution equations with time-dependent subdifTerential operators in Hilbert space. The Stefan 
problem under consideration is transformed to the form of such a system of evolution equations. 

lntrodnction 

In the previous papers [8, 9] of the author one-phase Stefan problems with 
boundary conditions described by time-dependent subdifferential operators 
were studied. The present paper is concerned with two-phase Stefan problems 
with the same type of nonlinear boundary conditions on the fixed boundary as 
in the one-phase case. 

Our problem is to find a curve x = l(t), 0 < I < 1, on[O, 11 and a function 
u = u(t, x) on [0, 11 x [0, 1] such that 

el (ult-uxx = 0 in Ql (T) = {(t, x); 0 < X< l(t), 0 < t < T}, 

e2 (u),-uxx = 0 in Qr (T) = {(t, x); l(t) <X< 1, 0 < t < T} , 
u(O. x) = u0 (x ) for 0 ~ x ~ 1. 

ux(t , O+)e obHu(t , 0)) for 0 < t < T, 
- ux(t, 1-)eobHu(t , 1)) for 0 < t < T, 
u(t, l(t)) = 0 for 0 ~ t ~ T 

(0.1) 
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and 

{
l'(t) = -u,(t, l(t)-}+u,(t, l(t)+) 

l(O) = 10 , 

N. KENMOCHI 

for 0 < t < T, 
(0.2) 

where 0 < T < oo and 0 < 10 < 1 are given numbers, u0 is a given function on 
[0, i]; l' = dlfdt; ~i = ~i(.): R-+ R, i = 1, T;-are given functions which are 
bi-Lipschitz continuous and increasing on R, and Q;(O) = 0; ,b-H.), te[O, T], 
i = 1, 2, are given proper lower semicontinuous arid. convex functions. on R. 

The Stefan problem has been discussed by many authors in case of various 
boundary conditions on the fixed boundary (e.g., [3, 4, 7, 11, 13, 14, 15]). As far 
as two-phase Stefan problems with flux conditions described by subdifferential 
operators are concerned, Yotsutani [14, 15] has treated the case when N, i = 1, 
2, are independent of time, i.e., bH . ) = b;( . ) and Q; are linear on R; an 
approximate difference method was employed there for the construction of 
a local solution, as well as the strong maximum principle for linear heat 
equations was used in the proof of the uniqueness of solutions. Subsequently, it 
was shown by Magenes, Verdi and Visintin [11] that the same type of Stefan 
problems in several space variables can be treated in the framework of the 
theory of nonlinear semigroups in L1-spaces (cf., Benilan [1]). 

The system {(0.1), (0.2)} is more general than that dealt with in [14, 15] in 
some respects, such as u being is governed by quasi-linear heat equations of the 
form{! (u),-uxx = 0 and boundary fluxes ux(t, 0+ ), u,(t, 1-) being controlled 
by time-dependent subdifferentials ab~ ( . ), ab~ (.),respectively. The purpose of 
t.he present paper is to establish a local existence theorem and a uniqueness 
theorem for {(0.1), (0.2)}. The construction of a local solution is made by using 
some results (cf., Kenmochi [5, 6]) in the theory of nonlinear evolutio1;1 
equations involving time-dependent subdifferential operators in Hilbert spaces; 
in fact, (Q.1) is reformulated as a system of nonlinear evolution equations of the 
form 

v;(t)+alj>:(B1v1(t))30, 0 < t < T, v1(0) = v1,0 , i = 1, 2, · (0.3) 

where aq,:, i = 1, 2, are the subdifferentials of proper, lower semicontinuous 
convex functions q,~ on I3 (0, 1) and B1 = ei 1 are maximal monotone operators 
in I3 (0, 1). We construct a local solution to {(0.3), (0.2)} rather than to {(0.1), 
(0.2)}. The uniqueness of solutions can be shown as a direct consequence of 
a comparison result for solutions of {(0.1), (0.2)}. 

Notations. For a general (real) Banach space V we denote by l·lv the norm 
in V. When V is a Hilbert space, we denote by (., . )v the inner product in V 

Let V be a Hilbert space and let 4> be a proper (i.e. - oo < cj; ~ oo, 4> :/; oo 
on V), l.s.c. (lower semicontinuous) and convex function on V. Then we set 

D(cj;) = {zeV;_lj>(z) < oo} 

and we refer to Brezis [2] for the definition of subdifferential a4> to 4> in V and 
for its general properties. 
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1. Two-phase Stefan problems and main results 

Given two positive numbers C 1 , C2 , we denote by r ( C 1 , C 2) the set of all 
functions Q: R --+ R such that 

Q (0) = 0 

and 

C1 (r-r')::;;Q(r)-Q(r')::;;C2 (r-r') for any r,r'ER with r::;;r', (1.1) 

i.e., r ( C 1 , C 2) is a class of strictly increasing and hi-Lipschitz continuous 
functions on R, vanishing at 0. Given 0 < T < oo and ex0 E w1.2 (0, T), 
ex 1 E W1

•
1 (0, T), we also denote by B (ex0 , ex 1) the class of all families { b' (. ); 

0 :::; t :::; T} of proper, l.s.c. convex functions on R satisfying the following 
property (1.2): 

{

For any 0:::; s:::; t:::; T and any rED(b') there is rED(b') such that 

If-rl :::; lex0 (t)- ex0 (s)l (1 + lrl + W (r)l 112
) (1.

2
) 

and 
b' (f)- b• (r) :::; lex 1 (t)- ex 1 (s)l (1 + lrl 2 + ibs (r)l). 

DEFINITION 1.1. Let Q;EF(C1, C2) and {bUEB(ex0 , ex1), i = 1, 2, let u0 

E W1
•
2 (0, 1) and 10 be a number with 0 < 10 < 1. Then P = P(Q 1 , lh; {b~}, 

{ bi}; u0 , 10 ) on [0 , T0], 0 < T0 :::; T, is the problem of finding 

x = l(t) on [0, T0 ] 

and 

u = u(t, x) on [0, T0 ] x (0, 1] 

such that 

I E W 1
•
2 (0, T0 ), 0 < l < 1 on (0, T0], 

u E W 1
•
2 (0, T0 ; I! (0, 1)) n L00 (0, T0; wu (0, 1))( c C ((0, T0] x [0, 1])) (1.3) 

and such that 

Q 1 (u),-uxx = 0 

Q2 (u),-uxx = 0 

in Qf (T0 ) = {(t, x); 0 < x < l(t), 0 < t < T0 }, {1.4) 

in Qf (T0 ) = {(t, x); l(t) < x < 1, 0 < t < T0 }, (1.5) 

u(O, .) = u0 on (0 , 1], (1.6) 
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ux(t, 0+ )eobHu(t, 0)) for a.e. t e[O, To], (1.7) 

-ux(t, 1-)e obHu(t, 1)) for a.e: te [0, T0 ], (1.8) 

u(t, l(t)) = 0 for te [0, T0 ], (1.9) 

1' (t) = -ux(t, l(t)- )+ux(t, /(t)+) f~r . a.e. tE [0, T0 ], (1.10) 

1(0)=10 • (1.11) 

In the above definition, since 

uxx(t, .) = lh(u>r(t, .)eE(O <X< l(t)) for a.e. te[O, To], 

ux(t, x) is absolutely continuous in xe[O, l(t)] and ux(t , 0+) as well as 
ux(t, l(t)-) exist (or a.e. te[O, T0 ]. Similarly, ux(t, 1-) and ux(t, l(t)+) exist 
for a.e. t E [0, T0 ]. Thus (1.7), (1.8) and (1.10) make sense. 

The first main result is concerned with the local existence of a solution of P. 

THEOREM 1.1. Let Q;ET(C1 , C2 ) and {bl}eB(cx0 , cx 1 ) for i = 1, 2, let u0 

E W 1
•
2 (0, 1) and 0 < 10 < I such that 

_ u0 (l0 ) = 0, u0 (0)eD(b?) and u0 (1)eD(bg). (1.12) 

Then there exists a positive number T0 ~ T such that problem P has at least one 
solution {u, l} on [0, T0], satisfying 

b!·>(u(., i-1)) is bounded on [0 , T0 ], i = 1, 2. 

The uniqueness of solution is a direct consequence of a comparison result 
for solutions of P. Before formulating the result we recall a notion of order for 
convex functions on R. Given two proper, l.s.c. convex functions b1 (. ), b2 (.)on 
R, we use the symbol "b 1 ~ b2 on R" to indicate that 

b1 (r1 1\ r2)+b2 (r1 v r 2) ~ b1 (r1)+b2 (r2) for any r 1 , r2 ER, (1.13) 

where r 1 1\ r 2 = min { r 1 , r 2 } and r 1 v r 2 = max { r 1 , r 2 }. It is not difficult to see 
that (1.13) implies 

(rf - r!)(r1 -r;)+ ~ 0 for any rfeob;(r;), i = 1, 2. (1.14) 

Clearly, b1 ~ b2 on R if b1 = b2 . 

THEOREM 1.2 Let (};ET(Ct> C 2), {b:}, {6l}eB(cx0 , ct 1), i = 1, 2 , u0 , u0 E 

E W1
•
2 (0 , I) and lo, Ioe(O, 1). Suppose that 

{
u0 ~ 0 on [0, 10 ], u0 ~ 0 on [10 , 1], 

(1.15) u0 ~ 0 on [0, f0], u0 ~ 0 on [f'o, 1], 

{
ob'dr) c ( - oo, 0] for any r < 0 and t E [0, T], 

ob~(r)c [0, oo) for any r>O · and te[O, T] , 
(1.16) 
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and 

{
o6'l (r) c (- 00' 0] 
o6~(r) c [0, oo) 

for any r < 0 and tE[O, T], 
for any r > 0 and tE[O, T], 

bl~6l on Rfor any tE[O, T] and i= 1, 2. 

ll 

(1.16)' 

Also, let {u, l} and {u, n be solutions of p = P(Ql, Q2; {b't}, {b~}; Uo, lo) and ,,• 
P = P(Q 1 , Q2 ; {6't}, {6~}; _u0 , f0) on [0, T0], 0 < T0 ~ T, respectively. Then, 

where 

:tj(v(t, .)-v(t, .))+jL'<o.l)+ :t(l(t)-f(t)t 

+(ux(t, 0+ )-ux<t, 0+ ))a0 ([u(t, 0)-u(t, 0)]+) 

-(ux(t, 1- )-ux(t, 1-J)a0 ([u(t, 1)-u(t, 1)]+) ~ 0 
for a.e. t E (0, T0 ], (1.17) 

6 = {Q 1 (u) on Q! (T0), 

(! 2 (u) on Q t (T0) 

and a0 : R--+ R is the function defined by 

a0 (r)={ ~ 
-1 

for r > 0, 

for r = 0, 

for r < 0. 

COROLLARY 1.1. Under the same assumptions and with the SQille notations as in 
Theorem 1.2 we have 

l(v(t, .) - v(t, .)tiL'<o.l> +(l(t)-f(t))+ 

~ !(v(s, .)-v(s, .)tlu<o.l)+(l(s)-f(s))+ for any 0 ~ s ~ t ~ T0 • (1.18) 

In particular, ifu0 ~ u0 on [0, 1] and 10 ~ [0 , then u ~a on [0, . T0 ] x [0, 1] and 
l ~ f on [0, T0 ]. , 

In fact, by (1.13) (cf., (1.14)) we have 

(ux(t, 0+ ))-ux<t, 0+ ))uo([u(t, 0)-u(t, on+)~ 0 

and 

-(ux (t, 1- )-ux(t, 1-))a0 ([u(t, 1)-u(t, 1)]+) ~ 0 

for a.e. t E [0, T0 ]. Hence we obtain (1.18) from (1.17). 

COROLLARY 1.2. In Theorem 1.2, problem P has at most one solution on [0, T0]. 
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We now note that expressions (1.7), (1.8) represent various types of 
boundary conditions. Especially the following two examples are of interest. 

EXAMPLE 1.1. Let a; be positive numbers, and g;, h; E W 1•2 (0, T) with 9; < h; on 
[0, 11 for i = 1, 2. Set for each te [0, 11 and i = 1, 2, 

{ 

- a;(r-g;(t)) 

bHr) = 0 

a; (r-h; (t)) 

for r < g;(t), 

for g;(t) ~ r ~ h;(t), 

for r > h;(t). 

Then {bU E B(cxo, cxl) for suitable functions·cxo E W 1
•
2 {0, T) and cxl E W 1

•
1 (0, T), 

and (1.7) is written in the following form: 

ux(t, 0+) = -al 

. ux(t, O+)e[ -a1 , 0] 

for a.e. te{t; u(t, 0) < g1 (t)}, 

for a.e. te{t; u(t, 0) = g 1 (t)}, 

ux(t, 0+) = 0 for a .e. te{t; gdt) < u(t, 0) < h1 (t)}, 

ux(t, 0+ )e [0, a 1] for a.e. te {t; u(t , 0) = h1 (t)}, 

ux(t, 0+) = a 1 for a.e. te {t; u(t, 0) > h1 (t)}. 

Also, (1.8) is similarly written. Moreover, if h1 ~ 0 and g2 ~ 0 on [0, 71, then 
condition (1.16) is satisfied. 

EXAMPLE 1.2. Let g;, h; (i = 1, 2) be as in Example 1.1 and set 

b~(r) = {0 for g;(t) ~ r ~ h;(t), 
' oo otherwise. 

These are the limits of the functions considered in the above example as 
a;--+ oo, i = 1, 2. It is not difficult to see that {bU E B (cx0 , cx 1) for suitable 
cx0 e W 1•

2 (0, T) and cx1 e W 1
•
1 (0, T), and (1.6) is satisfied, provided h1 ~ 0 and 

g2 ~ 0 on [0, 11-

2. · Variational formulation for P 

For simplicity we use the following notations: 

H = I3 (0, 1), X= w1.2 (0, 1)( c C ([0, 1])) 

and 

Ar ={le C([O, 11); 0 < l < 1 on [0, T]}. 

In order to reformulate problem P as a system of nonlinear evolution 
equations·involving time-dependent subdifferential operators in H, we consider 
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the following functions t/>H.) = t/>H{b'}, l; . ), i = 1, 2, on H associated with 
{b'} E B (a0 , a 1), I EAT and t E [0, T]: 

A.',·(z) = {~zxl~+b'(z(i-1)) if zEK;(t), 
'I' "" if zEH \ K;(t), (

2
.1) 

where K; (t) = K;({b'}, l; t), i = 1, 2, are the sets defined by 

K1 (t) = {zeX; z = 0 on[l(t), 1], z(O)eD(b')} 

and 

K 2 (t) = {zeX; z = 0 on (0, l(t)] , z(1)ED(b~} . 

LEMMA 2.1 (cf., [8; Lemmas 1.1, 1.2]) 
(1) There is a constant R 1 = R1 (a0 ; cx1 , T) such that b' (r)+ R 1 lrl + R 1 ~ 0 

and hence · 

lb' (r)l ~ b' (r)+ 2R
1

Irl + 2R1 

for any {b'}eB(cx0 , cx1), te(O, T] and reR. 

(2) For each {b'}eB(cx0 , cx 1), leAT and te[O, T], t/>H . ) = t/>H{b'} , I;.) is 
a proper, l.s.c. convex function on H and D(t/>D = K;({b'}, 1; t) for i = 1, 2. 

(3) There is a non-negative constant R 2 = R 2 (cx0 , cxl> T) such that 

jb'(z (i - 1))j ~ t/>Hz)+R2 

and 

f or any {b'}e B(cx0 , cx1), I eAT, t e [O, T] , z eK;(t) and i = 1, 2, where 4>~ 
= t/>H{b'}, 1; .) and K ;(t) = K;({b'} , I; t). 

(4) For each {b'}eB(cx0 , cx 1), l e AT and t e [O, T], the subdifferential 8t/>l of 
t/>H.) = t/>H{b'}, I ; . ) (i = 1, 2) in H is given as f ollows: z* E 8tJ>'dz) (resp. 
z* e 84>~ (z)) if and only if z* eH, z e X and 

{ 

- zxx = z* in (0, l(t)) (resp.,(l(t) , 1)), 

z = 0 on [l(t) , 1] (resp., [0, l(t)]), and 

zx(O+ ) e8b'(z (O)) (resp., - zx(l-)e8b'(z (1))}. 

Now, let QEF(C1 ,C2 ), {b'}eB(cx0 , cx1), and fix them for the moment. We 
then consider 4>~ = t/>H{b'}, l; . ) for each 1 eAr and i = 1, 2, and the operator B: 
D (B) = H -. H defined by 

[Bz](x) = e- 1 (z(x)) for z EH and xe(O, 1). (2.2) 

Given !eAT, ge/3(0, T; H) and v0 EH, we denote by CP;(l, g, v0) (9r 
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CP;(Q, {b'}; l, g, v0 ) when e and {b'} are necessary to be indicated) the Cauchy 
problem on [0, T] : 

v' (t)+84>:(Bv(t))3g(t) , 0 < t < T, v(O) = v0 • 

' 
By a solution of CP;(l, ·g, v0 ) we mean a function v: [0, T]--+ H such that 

vE W 1
•
2 (0, T; H)( c: C([O, T]; H)), 

v(O) = v0 , 

(2.3) 

4>P (B( .)) is bounded on [0, T ], and 

g(t)-v' (t)E84>HBv(t)) for a.e. tE[O, T]. 
(2.4) 

LEMMA 2.2. Let (!;EF(C 1 , C2) , {bl}EB(ct0 , 1X 1) , i = 1, 2, u0 EX and 0 < 10 < 1. 
Assume (1.12) holds. Also, let lEATnW1•

2 (0, T) with 1(0)=10 , and put 

on [0, 10 ] , 

on (10 , 1], 

on [0, 10 ], 

on (10 , 1]. 
(2.5) 

Further, let V; be. a solution of CP;(Q;, {bl} ; 1, 0 , v;,o) on [0, T0], 0 < T0 ~ T,for 
i = 1, 2. Then, 

(2.6) 

satisfies (1.3) and solves (1.4)--(1.9), where B;, i = 1, 2, is the operator in H given 
by (2.2) with (} = fl;· Conversely, if a function u: [0, T0 ] --+ H satisfies (1.3)--(1.9), 
then 

on Qf (T0), 

on [0, T0 ] x [0, 1] \ Qf (T0) 

and 

on [0, T0 ] x [0, 1] \ Qr (T0), 

on Qt (T0), 

are · solutions of CP1 (e 1, {b't}; 1, 0, v1 ,0 ) and CP2 ((! 2 , {b~} ; 1, 0, V2,o) on 
[0, T0 ], respectively. 

Proof. Assuming that v; is a solution CP;(fl; , {bl}; 1, 0, v;,o) on [0 , 10] for 
i = 1, 2, we see from (2.3) and (2.4) with the help of Lemma 2.1(3) that u given 
by (2.6) satisfies (1.3). Besides, on account of Lemma 2.1(4), it solves (1.4)--(1.9). 
Similarly we can show the converse. • 

By Lemma 2.2, problem P((}p g 2 ; {b't}, {b~}; u0 , 10 ) can be reformulated as 
a quasi-variational problem QV= QV(g 1 , g 2; {b't}, {b~} ; Vt ,o . v2,o, 10 ) on 
[0, T0], 0 < T0 ~ T, as stated below: Find v; : [0, T0 ] --+ H, i = 1, 2, and 
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le C [0, T0]) with 0 < I < 1 on [0, T0 ] such that 

(QV 1) V; is a solution of CP;(Q;, {bH; l, 0, V;,o) on [0, T0] for i = 1, 2; 

(QV2) le W1
•
2 (0, T0), i(O) = 10 and 

l'(t)= -[B1 v1J.,(t , l(t) - )+[B2 v2]x(t, l(t)+) · for a.e. te[O, T0 ]. 

3. The Caucby problem CP; 

We begin with the investigation of some properties of the family {t/>H{b1
}, 

l; . )} defined by (2.1) in the previous section, and discuss the solvability of the 
problem CP;. 

For 0 < L < oo and 0 < fJ < 1 with [J < 1-fJ we put 

Ar.a = {leC([O, T)); fJ ~ l ~ 1- fJ on [0, T)} 

and 

AT,,(L) = {leAr,clil W1
'
2 (0, T); ll'IL2(0,T) ~ L}. 

AJso, let T{C1 , C2) and B(cx0 , cx 1) be as in the first section. In what follows, 
various constants depend on the numbers C1 , C2 and functions a:0 , a:1 in 
general. unless otherwise stated. 

LEMMA 3.1. Let 0 < [J < 1-:-fJ. Then there is a constant R3 = R3 (a:0 , cx 1 ; T, fJ) 
~ 0 such that for any {b1}eB(cx0 , cx 1) and leAr,a, 1/JH.) = <PH{b'}, l; . ) has the 

following property (*) for each i = 1, 2: 
(*) For any 0 ~ s ~ t ~ T and zeD(</Ji) there is zeD(</JD such that 

li-zl8 ~ R3 {11 (t) -l (s)l + la:0 (t)- cx0 (s)l}(1 + ltf>i(z)l 112
). (3.1) 

and 
-

1/JHZ)- 1/Jf(z) ~ R3 {I I (t) - I (s)l + la:0 (t)-a:0 (s)l + ladt)-ads)l}(l + 11/Ji(z)l). (3.2) 

Proof. We give the proof only in case of i = 1. Given zeD ( 1/JD, we consider 
the function 

where 

i(x) = zC~;~x)+(f-z(O))z,Ci;ix} O~x~ 1, 

() _ {1-x/fJ z6 x -
0 

for 0 ~ x ~ fJ, 
for [J < x ~ 1, 

and f is a number in D (b'1), which is chosen so that 

If-z (0)1 ~ lcx0 (t) -a0 (s)l (1 + lz (0)1 + lb1(z (0))! 112) (3.3) 

and 
bHf)-bi(z(O)) ~ ladt)-ads)l(l+lz(OW+ Ibi(z(O))I). (3.4) 
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Obviously, iED(t/>D with i(O) =f. Putting 

(
l(s) ) (l(s) ) 

w(x) = z l(t) x and w.,(x) = z., l(t) x , 

we obtain after some elementary calculations (cf., [8; Lemma 3.1]) that 
1 

lw-zl8 ~ bil(t)-l(s)llzxlu, 

1 1 
lw.,-z.,l8 ~ b l/(t)-/(s)llza.xlu ~ l>2 il(t)-l(s)i; 

2 2 1 2 1 I lwa,xlu-lza,xiH ~ bl/(t) -/(s)llz.!,xiH ~ (>2 1 (t)-/(s)l. 

From these inequalities together with (3.3), (3.4) and Lemma 2.1(3) it follows that 
(3.1) and (3.2) hold for some constant R3 ~ 0 depending only on 110 , 11 1 , T, b. • 

LEMMA 3.2. Let lEAr, tE[O, T], (!EF(C1 , C2 ) and {b'}, }{6'} EB (1X0 , 11 1) such 
that 

b'~6' on R. 

Then, for any z* E atj>l(B,J and v* E atj>HBv), i = 1, 2, 

(z*-v*, a 0 ([z-v]+))8 ~ 0, 

where 4>l = t/>H{b'}, /;.), (M= 4>H{6'}, l; .), i = 1, 2, B is the operator in 
H defined by (2.2) and a 0 is the same function as in the statement of Theorem 1.2. 
Proof. Take a sequence of smooth functions an: R-+ R such that 

0'~ ~ 0 on R, -1 ~ O'n ~ 1 on R, O'n (0) = 0 
and 

a"(r)-+a0 (r) as n-+ co for each rER. 

Then, with the help of Lemma 2,1(4) for i = 1, we see that 
1(1) 

(z*-v*, a"([Bz-Bv]+))8 =- J (Bz-Bv)xxan([Bz-Bv]+)dx 
0 

= > ,. 

+([Bz]J (0+ )- [Bv]x{O+ )) · 

· an({[Bz](O)- [Bv](O)} +) ~ 0 (3.5) 

because[Bz]x(O+)Eab'([Bz](O)), [BvJ. .. (O+)Ea6'([Bv](O)) and r* ~ f* for r* 
E ab' (r), f* E a6' (r) with r > f (cf. (1.14)). Now, letting n-+ CO in (3.5) 
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yields 

(z*-v*, u0 ([z-v]+))8 ~ 0, 

since a 0 ([z-v]+) = a0 ([Bz-Bvr). 

17 

• 
COROLLARY 3.1. Let <Pl and B be as in Lemma 3.2, and y be the continuous 
convex function on H defined by 

1 

y(z) = f z+ (x)dx for zeH. 
0 

Then oljJjoB is y-accretive in H; that is, if z* E o<!JHBz) and v* E oljJl(Bv), then 

(z*-v*, w)8 ~ 0 for some weoy(z-v), 

where oy is the subdifferential of y in H. 

Proof. It is easy to see that a0 (z+)eoy(z) for any zeH, so the corollary. is 
a direct consequence of Lemma 3.2. • 

REMARK 3.1. Lemma 3.2 is essentially due to Benilan [1] and Damlamian [3]. 
On account of the above lemmas, the abstract results in [5, 6] apply to Cauchy 
problems CP;(f!., {b'} ; l, g, v0 ), and we have 

PROPOSITION 3.1. For i = 1, 2, we have the following statements: 
(1) Let eeF{C1 , C2 ), {.b'}eB{a0 , a 1), leArn W1

•
2 (0, T) and l/J~ 

= ljJH{b'}, l; . ) . For each gei3(0, T; H), v0 eD(l/J?), CP;(e, {b'}; l, g, v0 ) has 
one and only one solution v on [0, T]; hence vis bounded in X on [0, T], and 
b(.) (Bv ( . , i -1)) is bounded on [0, T], where B is the operator defmed by (2.2). 

(2) Let 0 < b < 1-b and 0 < L < oo, and consider the class Ar . .s(L). Let k0 
be a positive number. Then there is a constant M0 = M0 (Ct> C2 ; a0 , a 1 ; 

T, b, L, k0) ~ 0 having the following property: for any eer(Ct> C2), {b'} 
eB(a0 , cx1), leAr.6 (L), gei3(0, T; H) with lgiL><O.T;HJ ~ k0 and v0 eD{l/J?) with 
ll/1? (v0)l ~ k0 , the solution v of CP; (e, { b'}; l, g, v0) on [0, T] has the following 
bounds: 

lvlw• .z<o.T;HJ ~ M0 , lvlLoo<o.r;XJ ~ M 0 and 

lb' (Bv(t, i -1))1 ~M 0 for all t e [0, T], 

where B is the operator given by (2.2). 

The next proposition is concerned with the comparison between two 
solutions of CP;. 

PROPOSITION 3.2. Let (!EF(C1 , C2), lEArn W1
•
2 (0, n, and {b'}, {6'} 

eB(a0 ,a1) such that 

b' ~ 61 on R for all te[O, T]. 

2 
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Also, let i = 1 or 2, and let v and v be the solutions of CPi(Q, {b'}; /, g, v0) and 
CPi(Q, {6'}; I, g, v0) on [0, T], respectively, where g, ge.I3(0, T; H) and v0 , 

v0 eX. Then, 

I 

j(v(t) - v(t)t 'L'(O,tl ~ j(v (s) - v(s))+k•<o.l) + J j(g (r)-g(r))+jL'(O,l)dr 
$ 

for any 0 ~ s ~ t ~ T. 

Proof. We have by Lemma 3.2, 

~y(v(r)-v(r)) = (v'(r)-v'(r), a 0 ([v(r)-v(r)J+))8 

~ (g(r)-g(r); a 0 ([v(r)-v(r)]+)}8 

~ j(g (r)-g(r)tlv<o.t> for a.e. re [0, T], 

(3.6) 

so that we obtain (3.6) by integrating the above inequalities on [s, t]. • 

COROLLARY 3.2. In Proposition 3.2, suppose further that g ~ g a.e. on [0, T] 
x [0, 1] and v0 ~ v0 on [0, 1]. Then v ~ v on [0, T] x [0, 1]. 

In the proof of Theorem 1.2 we shall use the following types of approxima
tions { bD and { b1

_ e} to { b'}: 

(3.7) 

where 0 < e ~ 1. 

LEMMA 3.3. Let {b1}eB(cx0,cx1), and O <e~ I. Then the families {b~} , {b1-e} 
given by (3.7) are contaned in B(a0 , a1), where 

I 

a0 (t) = (3+4R 1)Jicxo(r)ldr, 
0 

and 
I 

a1 (t) = (R 1 + 1)(R 1 + 5)J {lcx0 (r) +lex! (r)l} dr 
0 

with the same constants R 1 as in Lemma 2.1 ( 1 ). 

Proof. Given reD (b:) and 0 ~ s ~ t, we see that r-eeD (b5
) and hence there 

is r' e D (b1
) satisfying 

lr'-r+el ~ lcx0 (t) -cx0 (s)l(1 +lr -el+jb•(r-e)j112
} (3.8) 



Two-phase Stefan problems 19 

By Lemma 2.1(1), .. 
lbs(r-s)i ~ bs(r-s)+2R1 Ir-si+2R1 

~ b~(r)+(2R1 + 1) lrl +4R1 (3.10) 

and 

Now, take f = r' +s. Then it follows from (3.8) and (3.11) that 

If-rl ~ lr'- r +si 

~ la0 (t)-ct0 (s)I(3+4R1 +(2+2R1)Irl+lb!(r)l112) 

~ (3+4R 1)Ia0 (t)-ct0 (s)l(1+1rl+lb!(r)l 112). _ 

Also, it follows from (3.8)-{3.11) that 

b!(f)-b!(r) = b'(r')-s(r' +s)-bs(r-s)+er 

= b' (r')-bs(r-e)-e(r' -r+e) 

~ lct1 (t)-cx 1 (s)l {(R1 + 1)(R1 +5)+31rl2 +lb!(r)l} 

+ lcx0 (t)-ct0 (s)l {(R1 + l)(R1 + 5) + lrl2 + lb! (r)l}, 

from which we get 

b~ (f)- b! (r) 

~ (R 1 + 1)(R 1 + 5) {lct0 (t)- ct0 (s)l + lct1 (t)-ct1 (s)l}(l + lrl2 + lb! (r)l) . 

. :Thus {b~}eB(<i0 , <i1)._ Sim.ili!-~ly we see that {b'-.}eB(<i0 , a1). 

Besides we have the following lemma which admits an easy proof. 

LEMMA 3.4. Let {b'±e} be given by (3.7 ), and 

1 (r)(resp. I_ (r))=[-e~(resp. er) ifr;;ii;e(resp. r~ -e) 
• • 'oo if r > e(resp. r < -e). 

Then we have: 
(1) b~ ~ b' ~ b'-e on R for any te[O, T]. 

• 

(2) If ob' (r) c (- oo, 0] (resp. ob' (r) c [0, oo ))for any r < 0 (resp. r > 0) and 
any te[O, T], then I.~ b~(resp. b'-· ~ L.) on R for any te[O, T]. 

From Lemmas 3.3 and 3.4 we see that Propositions 3.1 and 3.2 can apply to 
the Cauchy problems CP; associated with eer(C1 , C2), {b'±•} and {I'±•}· 
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4. Con•ergence of solutions of CP; 

First of all we recall the notion of convergence of convex functions, which is 
due to Mosco [12]. 

·Let V be a Hilbert space and { t/1 ,.} be a sequence of proper, l.s.c. convex 
functions on V. Then it is said that t/1,. converges to a proper, l.s.c. convex 
fmiction t/1 on V as n -t oo (denoted by t/1. - t/1 on V as n - oo) in the sense of 
Mosco, if the following two properties (m1), (m2) are fulfilled: 

(ml) If {n1} is a subsequence of {n} and v1 -t v weakly in V ask-t oo, then 

lim inft/l,.,.(vJ ~ t/l(v). 

(m2) For each veD(t/1) there is a sequence {v.} in V such that v,.eD(t/1,.), 
v. - v in H and t/1, (v,.)- t/1 (v) as n -t oo. 

For the families {b'±•} given by (3.7) one can easily check that b'±•-b' on 
.R ass- 0 in the sense of Mosco; more precisely, b'±•~c- b' on R as k- oo in 
the sense of Mosco for every sequence { s"} with s" l 0. 

LEMMA 4.1. Let i = 1 or 2, feAr, {b'}eB(a:0 , a:1) and l,.eAr, {b~}eB(a0 , a:1) 

for n = 1, 2, . . . . Suppose that · 

1,. -t/ pointwise on [0, T] 

and 

b~- b' on R in the sense of Mosco for each te(O, T] 

as n -t oo. Denoting by l/>t,. (resp. l/>D the proper, l.s.c. convex function on H given 
by (2.1) corresponding to 1,., {b~} (resp. 1, {b'}), we have 

l/>L,. - 4>~ on H in the sense of M osco for each t e [0, T] qs n - oo . 

Proof. We prove only the case corresponding to i = 1. First, let {n"} be any 
subsequence of {n} and {z"} be any weakly convergent sequence in H. Assume 
that 

lim inf l/>'1,,.1< (zJ < oo 
lt -+<XJ 

and z"- z weakly in H as k- oo. Then it follows from Lemma 2.1(3) that 
z" -t z weakly in X and z,. (0)- z (0) ask -t oo. Since b~ -t b' on R in the sense of 
Mosco, we see that 

lim infl/>'1 ,,.,.(zJ = lim inf{tlzt.xlfi+b~(z,.(O))} ~ !lz..,lfi+b'(z(O)) = l/>'dz). 

Nex~. let v be any (unction in D(l/>'1~ i.e., veX, v = 0 on [l(t), 1] and 
v(O)eD(b~. We take a sequence {r.,} in R so that 

r,.- v(O) and b~(r,.) -t b'(v(O)) (as n -too), 
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.. 
and define a sequence { v,} in X by 

( 
/(t) ) 

v,.(x) = v l,.(t)x +(r,-v(O))z0 (x), __ 

where 

{

l- 2x 

zo(x) = 0 l(t) 

I (t) 
for 0 ::;;;;x :::;:;; 2 , 

1 (t) 
for 2 < x:::;;;; 1. 

21 

Just as in the proof of Lemma 3.1, we obtain that v,eD(l/>L,) with v,(O) = r, 
and 

. ' 

This shows that 4>t, (v,)--+ 4>~ (v). Thus, l/>t,--+ l/>'1 on H in the sense of 
M~o. • 

We are now in a position to prove a convergence result for Cauchy 
Problems CP;. 

PROPOSITION 4.1. Let i = 1 or 2, 0 < b < 1-b, 0 < L < oo, e er(C1 , C2), 

lEAr,6 (L), {b'} eB(cx0 , cx1) and l,EAr,.J(L), {b~} eB(cx0 , cx1), n = 1, 2, .... Also, 
let ge13(0, T; H), v0 ED(l/>?) and g,e13(0, T; H), v0 ,,ED(l/>?,,), where 
4>~ = l/>H{b'}, I;.) and l/>l,, = l/>H{b~}. 1,; .). If 

1,.--+ I uniformly on [0, 1], 
b~--+ b' on R in the sense of Mosco for each t E [0, 1], 
g,. --+ g in 13 (0, T; H), 
{ 4>?,, (v0 ,,)} is bounded, and 
v0 ,, --+ v0 in H, 

then the solution v, of CP;,, = CP;(e , {b~}; 1,, g,, v0 ,,) converges to the 
solution v of CP; = CP;(e, {b'}; /, g, v0) on [0, T] in the following sense: 

Bv,--+ Bv in C([O, T]; H) and 13(0, T; X), 

v~--+ v' weakly in 13 (0, T; H), 

Bv,.( ., i-1)--+Bv(. , i-1) in 13(0, T), 
T T 

J b~(Bv,.(t, i -l))dt--+ J b' (Bv(t, i -l))dt, 
0 0 

where B is the operator in H given by (2.2), and 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

[BvJx(., 0+)--+ [Bv]x(., 0+) in 13(0, T) } if i = 1, (
4

.S) 
[Bv,.]x( . , /,(.)-)--+ [Bv]x(., /(.)-)in 13(0, i) 
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[Bv,.]x(., 1-)-+ [Bv]x(., 1-) in L2 (0, T), } .. 

[Bv,.]x(.,l,(.)+)-+[Bv]x(.,l(.)+) in H(O, n if l=
2

· 
(4.5)' 

Proof. We show only the assertion at i = 1, since the other case can be 
considered similarly. For simplicity we write 4>~, 4>' for 4>i,,., 4>i, respectively. By 
virtue of a convergence result [5; §2.8] (or [10; Theorem 1.3]) and Lemma 4.1 
we have, as n -+ oo, 

v,.-+ v in C([O, T]; H) and weakly in W1•2 (0, T; H) (4.6) 

and 
T T 

J 4>~(Bv,(t))dt-+ J l/>1 (Bv(t))dt. (4.7) 
0 0 

Since b~-+ b' on R in the sense of Mosco, it is inferred from (4.6) and (4.7) with 
the help of the uniform estimates for solutions in Proposition 3.1(2) that 

Bv,.-+ Bv in C([O, T]; H) and weakly in E (0, T; X), (4.8) 

Bv, (. , 0)-+ Bv (., 0) weakly in E (0, n, (4.9) 

(4.10) 

and 
T T 

J b~(Bv,(t, O))dt-+ J b'(Bv(t, O))dt. 
0 0 

Therefore, by the uniform convexity of E (0, T; X), (4.8) and (4.10) imply that 
Bv,-+ Bv in L2 (0, T; X) and hence v,.-+ v weakly in E (0, T; X) as well as the 
convergence of (4.9) is valid in the strong topology. Thus (4.1)-{4.4) hold for 
i = 1. 

Now we show (4.5). Given e > 0, we take a smooth function 7 in Ar.b so that 

0 ~ 1,-f ~ e on [0, T] for all large n. 

Observe that for a.e. t e [0, T], 

j[Bv,]x(t , l,.(t)- )-[Bv]x(t, l(t)- )12 
~ 9I[Bv,.Jx(t, f(t))-[Bv]x(t, f(t))l2 

+9I[Bv,]x(t, l,(t)- )-[Bv,]x(t, f(t))l2 

+9I[Bv]x(t, l(t)-)- [Bv]x(t, f(t))j2. 

Also, for a.e. t e [0, T], 
1(1) 

![Bv]x(t, l(t)- )-[Bv]x(t, f(t))j2 ~ { J [Bv]xx(t, x)dxp ~ 
- 1(1) 
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1(1) 

~ { J {lv1 (t, x)l + jg (t, x)l} dx Y ~ 4 11 (t)- f(t)l {lv' (t)lh + jg (t)lh} 
. 1(1) 

~ 4e {lv' (t)lh + jg (t)li} 

and similarly 

j[Bv,.]x (t, 1 .. (t)-)- [Bv .. ]x (t, f(t))j2 ~ 4e {lv~ (t)li-+ lg .. (t)lh} 

for all large n. 

Besides, using the same function z~ as in the proof of Lemma 3.1, we have 

T 

J ![BvJx(t, f(t))- [Bv}.,(t, f(t))l 2 dt 
0 

r 1c1> a 
= J J -;- {(1-z~(x))([Bv .. Jx(t, x) - [Bv]x(t, x))}2 dxdt 

o o uX 

2 T 6 . T 1(1) 

~ ~2 J Jl[BvJx-[Bv]xl2 dx dt+2J J l[Bv .. Jx-[Bv]xll[Bv .. ]xx-[Bv]xxldxdt 
u 0 0 0 0 

~ : 2 1Bv .. - Bvllzco.T;XJ + 21Bv .. - Bvbco. T;Xl {lv~- v'ILzco,T;HJ +I g .. - 9lP co. T;Hl} . 

. Consequently, 

lim supi[Bv .. Jx(., l .. (t)-) - [Bv]x( ., 1( .)-)lizco,T) ~ const. e. 
n -+oo 

Thus [Bvn] (. , I .. (.) - ) .._. [Bv]x(. , l(. )-)in E (0 , T). The other convergence of 
(4.5) can be concluded in a similar way. • 

5. Proof of Theorem 1.1 

Let(!;, {bl} , i = 1, 2, u0 and 10 be as in the statement of Theorem 1.1; (1.12) 
is satisfied as well. Also, let v;,0 , i = 1, 2, be the functions in X given by (2.5). 

Now, let L be any positive number and fix it in this section. Next, taking 
a positive number o with 

28 < 10 < 1- 28, 

we consider the subclass Ar,6 (L, 10 ) of Ar,6 (L): 

Ar,6 (L, 10 ) = {1 e Ar,.,(L); 1(0) = 10 }: 

By virtue of Proposition 3.1 we have: 
(a) For each l e Ar,6 (L, 10) , CP; = CP;(l!; , {bU ; I , 0, v;,o) has a unique 

solution vi on [0, T] for i = 1, 2. 
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(b) There exists a positive constant M 0 such that 

lvllwt.2(0,T;H) ~ Mo, lvliL""(O,T;X) ~ Mo, lbHB;v!{t, i-1))1 ~ Mo, te[O, n, 
for any leAr,d(L, 10) and i = 1, 2, 

where B; is the operator in H given by (2.2) with e = e;· 

LEMMA 5.1. There is a number T' with 0 < T' ~ T such that for all leAr . .s(L, 10) 

Proof. With the same convention of notations for i = 1 as in the proof of 
Proposition 4.1 we have for v =vi and B = B1 

, , L<t> a 
fi[Bv]x(t, l(t)-)ildt = J f -;---1{1-z,s(x))[Bv]x(t, x)!ldxdt 
o o 0 uX 

2 I 6 t l(t) 

~ cPJ fi[Bv]xl 2 dxdr+2f J I[Bv]x[BvJxxldxdt 
0 0 0 0 

2 I I 2M2 
~ <52 f IBv ( r)li dr + 2 f IBv ( r)lx lv' ('r)l8 dt ~ <52 ° t + 2M5 t 1

'
2

• 
0 0 

We have the same type of inequality for v~ as above. Hence the required 
inequality holds for a certain T' with 0 < T' ~ T. • 

Now we define an operator P: Ar,.s (L, 10 ) -+ C ([0, T]) by putting 
I I 

[Pl] (t) = 10 - J [B1 vi]x{r , l(t)-)dr+ f [B2 v~Jx{r, l(r)+ )dr 
0 0 

for each IEAr,a(L, 10) and te[O, T]. 

Moreover, let us consider the operator P*: Ar,.s (L, 10)-+ C ([0, 71) given by 

[P* l] (t) = {[Pl] (t) 
[Pl] (T0 ) 

for 0 ~ t ~ T0 , 

for T0 < t ~ T, 

for each leAr,.s(L, 10 ), where T0 = min {T', (b/L)2
}, T' being as in Lemma 5.1. 

LEMMA 5.2. 
(1) P* maps Ar.6 (L, /0 ) into itself. 
(2) P* is continuous in the topology of C ([0, T]). 

Proof. Since 



Two-phase Stefan problems 25 

it follows from Lemma 5.1 that 

I!!_[P* 1]1 = I!!_[Pl]l ~ L for any leAr,6 (L, 10). 
dt L2(0,T) dt L2(0.To) 

Also, 

I 

I[Pl] (t)-/01 ~ f {I[B1 v't]x(-r, l (r)-)I+ j[B2 v~Jx(r, l (r) +)I} dr 
0 

~ Tl12 {j[B 1 v't]x(., I (.)- )lu<o.T') + j[B2 v~]x (., l (.) + )IL2(o.T')} 

~T0112 L~b for any leAr,6 (L,l0 ) and te[O, T0 ]. 

Hence, P* maps Ar.<~ (L; /0) into itself. Thus (1) holds. In order to prove (2), let 
l,eAr.<~(L, /0) and assume 1, --.[in C([O, T]). Then it follows from Proposition 
4.1 that 

and 

[B 2 vT]x(., l,.(.)+)-.[B2 v~Jx(., i(.)+) in I3(0, T), 

which shows that P* I,--. P* I in C([O, T]). Thus we have (2). • 
We note that Ar.<~ (L, 10 ) is a compact convex set in C ([0, T]). Therefore, .bY 

the classical fixed point theorem, P* has a fixed point in Ar.6 (L, /0), i.e., there 
exists lE Ar.<~ (L, /0 ) such that 

P* l = l. 

It is easy to see that {vL v~, l} is a solution of QV(e1 , e2 ; {bU, {b'z}; 
v1 •0 , v2 ,0 , 10 ) on [0, T0 ]. Thus the proof of Theorem l.l is complete. -

6. Proof of Theorem 1.2 

We make the same assumptioQs and use the same notations as in the 
statement of Theorem 1.2. 

For the solution {u, l} of P = P(Q 1 , Q2 ; {bU, {b~}; u0 , 10 ) on [0, T0 ] we 
put 

( ) {

. Q 1 (u) (resp., O) 
v1 resp., v2 = · 

0 (resp., Q 2 (u)) 

and 

ori Ql (T0), 

on Qr(T0)' 



26 N. KENMOCHI 

where Bi is the operator in H given by (2.2) associated with e = ei fori ·= 1, 2. 
Clearly, u = u1 +u2 . As was seen in Lemma 2.2, for each i = 1, 2, vi is the 
solution of 

v;(t)+o</>HB;v;(t))30, 0 < t < T0 , v;(O) = v;,0 , 

where v;.o is the function given by (2.5) and </>l = </>H{bl}, l; . ). Now, we 
approximate V; by the following function V; •• , e > 0, which is the solution of 

vi,,(t)+o<J>t,(B;v;,,(t))3fe(t), 0 < t < 7'o, · V;,,(O) = V;,t ,O• 

where </>l,,=</>i({b't,.}, 1;.) with bi .• (t) = b1t(r-e)-er, </>~ .• = </>~({b~. -,} . 1;.) 
with b~.-.(r) = b~ (r+e)+er, 

and 

a . . . 
fe(t, x) =-;- {e;(e(l(t) - x))} for (t, x)E Qi(T0 ), i = 1, 2, 

ut · 

Vt ,e.o(x) = () 1 (u0 (x)+e [(10 -x) v z1 (x)]) on [0, 10 ], = 0 on [10 , 1], 

with z 1 E coo (R), z 1 ;::: 0, z 1 (0) = 1, z 1 = 0 on [(10 1\ [ 0)/2, oo ), 

v2,.,0 (x) = 0 on [0, 10], = e2 (u0 (x)+e[(l0 -x) 1\ z2 (x)]) on ·[10 , 1], 

with z2 EC 00 (R), z2 ~0, z2 (1)= -1 , z2 =on (- oo, (l+/0 vf0)/2]. 

Also, we put 

LEMMA 6.1. We have: 

u1 ,, (x) ;::: e(l(t)-x) for (t, x)EQ{ (T0 ), 

and 

u2 •• (x) ~ e(l(t)-x) for (t, x)EQl(T0). 

Proof. It is easy to see that w.(t, x) = {e 1 (e{l(t)-x))} + satisfies 

w~(t)+otji~(B1 w. (t))3.fe(t) for a.e. tE[O, T0], 

where t/1~ = </>1
1 ({/~}, l; .) with /~=I, for any t. Also, by (1.15), 

v~. •. o(x);::: {e 1 (e(l0 -x))} + = w, (O, x) . 

Hence it follows from Proposition 3.2 and Lemma 3.4(2) that 

Vt.•;::: w. = (1 1 (e(l(t)-x)) on Qf (T0 ), 

(6.1) 

(6.2) 

which implies (6.1). Similarly (6.2) is obtained by making use of L , . • 

In view of the above lemma, u, is strictly positive in Qf (T0 ) and strictly 
negative in Ql (T0). This fact will be used ·in the proof of Lemma 6.4. 
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LE~MA 6.2. As dO, we have: 

u, ~ u in C([O, T0]; H) and 13(0, T0 ; X), 
. . 

v~ ~ v' weakly in 13 (0, T0 ; H), 

and 

(6.3) 

The above lemma is a direct consequence of Proposition 4.1. 

COROLLARY 6.1. u ~ 0 on Qf (T0) and u ~ 0 ori Qf (T0). 

LEMMA 6.3. For any tf E wl,2 (0, To; H) 11 L00 (0, To; X) we have: 

(v~(t), tT(t))~+(u,,x(t) , tTx(t))+l'(t)q(t , l(t)) 

+u,,x(t, O)t~(t, 0)-u •. x(t, 1-)q(t, 1) 

= {l' (t)+u •. x(t, l(t)- )-u •. x(t, l(t)+)} q(t , l(t)+(ft(t), tT(t))8 

(6.4) 

for a.e. t E [0, T0]. 

Proof. We observe with the help of Lemma 2.1(4) that 

(v~ (t), tT(t))8 = (v'1 .• (t), tT(t))8 +(v2 .• (t), tT(t))8 
I 

1(1) 1 

= J u1 ,e,xx(t , x)q(t , x)dx + J u2 ,.,xx(t, x)q(t , x)dx+(f.(t), q(t))8 
0 l(t) 

1(1) 

= - J U1 ,.,x{t , x)qx(t , x)dx+ut ,e,x(t, l(t)- )t~(t, l(t)) - u1 ,.,x(t , 0 + )q(t, 0) 
0 

1 

- J u2, •. x(t, x )qx(t , x)dx + u2,e,x(t, 1-)tT(t, 1)-u2,e,x(t, l(t)+)q(t, l(t)) 
1(1) 

+(ft(t), tT(t))u 

= - (u.,x(t), tfx(t))8 +{u,,x(t, l(t)- )- u •. x(t, l(t) + )} t~(t , l(t)) 

- u,,x(t , O+)t~(t , O) + u,,x(t, 1 - )t~(t, l ) +(f. (t), 1'/ (t))8 . 

From this we infer (6.4). • 
Let {u, l} be the solution of P = P(e t> e2 ; {b't}, {6~} ; u0 , l0f on [0, T0 ] , 

and consi~er the similar functions v., u., J. corresponding to this solution as v,;, 
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u., !,_.Now, taking the difference between (6.4) and that for v., u,, fr.,[, we have · 

(v~(t)- V~ (t), '1 (t))II + (u(,X (t)-u •. x(t), '1x (t))n 

+l'(t)tt(t, l(t))-f(t)'7(t, f(t)) 

+(ua,x (t, 0+ )-u,,x (t, 0+ )} '7 (t, 0)-(u •. .r(t, 1-)-u,,x (t, -1)) '7 (t, 1) 

= {l'(t)+ua,.r(t, l(t)- )-u • .x(t, l(t)+ )}'l(t, l(t)) 
(6.5) 

-{f(t)+u •. x(t, f(t)-)-u •. x(t, f(t)+)}'l(t, f(t))+(f,_(t)-/.(t), '7(t))8 

Next, substitute the function u.,([u.-uJ+) as '7 in (6.5), where u,. is the same 
function as in the proof of Lemma 3.2, and note that 

1 

= f(u •. x(t, x)-u.,x(t, x))2 u~([u.(t, x)-u.(t, x)r)dx ~ 0 
0 . 

for a.e. tE [0, T0]. 

Accordingly, it follows from (6.5) that 

V.,, (t) + L,,, (t) + U~~J (t) + U~~J (t) ~ ~1 > (t) + S~2> (t) +F. (t) (6.6) 

where 

and 

for a.e. tE [0, T0 ], 

V. ... (t) = (v~(t)-v~(t), u,.([u,(t)-u.(t)]+))8 , 

L .... (t) = l'(t)u,.([ -u.(t, l(t))]+)-f(t)u,.([u,(t, f(t))] +), 

u~~J(t) = (u •. x(t, 0+ )-u •. x(t, 0+ ))u .. ([u,(t, 0)-u.(t, on+), 
u~~J(t) = - (u •. x(t, 1-)-u,,x(t , 1- ))u.([u.(t, 1)-u.(t, 1)]+), 

~1>(t) = ll'(t)+u •. x(t, i(t)-)-u,,x(t, l(t)+)l, 

~2>(t) = f (t)+u •. x(t, f(t)- )-u,,x(t, f(t)+ )I 

LEMMA 6.4 For each 0 < e ~ 1 we have: 

lim L •. "(t) = dl (l(t)-f(t))+ for a.e. te[O, T0]. 
H~ <X> 't 

• 

Proof. By Lemma 6.1, u, (resp., u,) is stric!lY positive on Qf (T0) (resp., Q/ (T0)) 
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and strictly negative . on Qf (T0) (resp., Qr (T0)), so that 

and 

{
1 if l (t) > f(t), 

a .. ((u£(t, f(t))]+)..,..a0 ([u,(t, f(t))]+) = 0 if /(t) ~ f(t) 

if I (t) > f(t), 
if I (t) ~ f(t). 

Hence, for a.e. tE [0, T0], 

lim L .... (t) = l'(t) a 0 ([ -u.(t, f(t))]+) - l'(t)a0 ([u.(t, f(t))]+) · 

{
/' (t)- f (t) if I (t) > f(t) , 

= 0 if l(t) ~ f(t) 

d 
= dt(l(t)-f(t))+. 

Noting Lemma 6.4, we deduce from (6.6) by letting n..,.. oo 

d . d 
dt l(v. (t)~ v. (t))+ lvco.t> + dt (I (t) - f(t))+ + U~1 > (t) + UF> (t) 

29 

• 
. ! 

~ sp>(t)+Sl2>(t)+F. (t) · for a.e. te[O, T0], (6.7) 

where U~il(t) (i = 1, 2) is the function u~~(t) with .an(.) replaced by Go(.). 
Integration of both sides of (6.7) over [s, t] yields 

l(v. (t)-v. (t)t lvco,t> - l(v. (s)-v. (s)tlvco.t) + (l (t)- f(t)) + 
t 

- (l(s)-f(s))+ + J {U~l)(t)+ U~2>(t)} d-r: (6.8) 
s 

I 

~ J {S~1 > (-r:)+S~2'(-r)+F. (-r:)} dt for any [ s, t] c [0, To]. 
s 

LEMMA 6.5 There is a sequence {t"} with t 11 ! 0 (as k..,.. oo) such that 

lim infU~!'(t) ~ (ux(t, 0+)-u"(t, 0+))a0 ([u(t, 0)-u(t, 0)]+) (6.9) 

and 

lim inf u~>(t) ~ -(ux(t , 1- )-u"(t, 1- ))ao([u(t, l)+u(t , 1)]+) (6.10) 
11-+ 00 

f or a.e. t E [0, T0 ]. 

Proof. On account of Lemma 6.2, there is a sequence {t~} with t"! 0 such that 
u,.( . ' 0) ..... u ( . ' 0), ur..( . ' 0) ..... u ( . ' 0), u.k ( . , 1) ..... u (. ' 1 ), u.k (. ' 1) ..... u ( . , 1 ), 

-------
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u6k.A. , o +) -+ ux ( . , o + ), a.k.A . , o +) -+ (a"' ( . , 0.+ ), utk.A. , 1-) -+ ux (., 1-) 
and a.k.x (., 1-)-+ ux (., 1-) a.e. on [0, T0]. Also, since bt. ~ 6L on R, we see 
by (1.14) that · 

Ue,x(t, 0+) ~ a •. At, 0+) if u,(t, 0) > a.(t, 0). 

Hence, by the lower semicontinuity of a0 (.) on [0, oo ), (6.9) holds for a.e. 
t e [0 , T0]. Similarly, (6.10) holds for a.e. t E [0, T0]. • 

.. 
LEMMA 6.6 Sii>-+ 0 in 13 (0, T0) for i = 1, 2, and F

6
-+ 0 in L2 (0, T0) as e l 0. 

Proof. Since l'(t) = -ux(t, l(t)- )+ux(t, l(t)+) and f (t) =. -ux(t, f(t)-) 
+ux(t, f(t)+) for a.e. te[O, T0 ], (6.3) of Lemma 6.2 implies that S}i)-+0 in 
13 (0, T0 ) as e l 0 for i = 1, i Next, we observe from (1.1) that 

lft(t, x) ~ ell'(t)lmax{C1 , C2}. lfe(t, x)l ~ elf(t)lmax{Cp C2 }. 

Hence, F,-+ 0 in L2 (0, T0 ) as e l 0. • 
Letting e = ek l 0 in (6.8), we see by Lemmas 6.2, 6.5, 6.6 that 

l(v(t)-v(t)tlv<o.t> -l(v(s)-v(s)tlv<o,t> +(l (t)- f(t))+ -(l(s)- f(s)t 
t 

+ J(uJr, 0 + )-ux(t, 0+ )) O'o ([u (t' 0) -a (t ' 0)] +) dt 
s 

t 

-J(ux(t, 1-)-ux(t, 1-))a0 ([u(t, 1)-a(r, 1)J+)dt 

~ 0 for any [s, t] c [0, T
0
], 

so that (1.17) holds. Thus the proof of Theorem 1.2 is complete. 

REMARK 6.1 As is easily seen in the above proof of inequality (1.17), when 
u (resp. a) is strictly positive on Ql (T0) (resp., Q[ (T0)) and strictly negative on 
Qr (T0) (resp., Qf (T0)), it is not necessary to approximate u (resp., a) by u. (resp., 
aJ but one can directl~ obtain (1.17). 
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Dwufazowe zagadnienie Stefana z nieliniowymi warunkami brzegowymi 
opisywanymi przez subrozniczki zale:ine od czasu 

W pracy rozwa:i:ane jest jednowymiarowe dwufazowe zagadnienie Stefana z nieliniowymi 
warunkami zadanymi na nieruchomej czc.;sci brzegu. Warunki te zawieraj!! operatory subr6inicz
kowe zmienne w czasie. Udowodnione zostaj!! twierdzenia o lokalnym w czasie istnieniu 
i jednoznacznosci rozwi!!zania rozwaianego zagadnienia. Konstrukcja rozwi!!zania lokalnego 
korzysta z metod teorii nieliniowych r6wnan ewolucyjnych ze zmiennymi w czasie operatorami 
subr6iniczkowymi w przestrzeniach Hilberta, rozwinic.;tej przez autora. Rozwaiane zagadnienie 
Stefana zostaje sprowadzone do ukladu r6wnan ewolucyjnych takiego. typu. 

llsyxcltnnMe npo6JJeMM Cnct»aua c ueJJnueiinLIMH Kpae&LIMH yCJJoBHHMH 

COJJ.ep:lK310IQIIMH cy6JJ.Hcflcltepenl(HaJJbl 33BHC~He OT BpeMeHH 

B pa6oTe paccyx,~:~aeTCll o.AHOMepHall ·,~:~ayx<J>a:mall npo6neMa CTe<j>aHa c HenHHeiiH.b!MH 
ycnOBHliMJI Ha <j>HXCKpOBaHHOM ICpae 06naCTH. 3TH ycnOBHll CO,llep)KaJOT cy6.AH<l><l>epeHI.I,HllJihHble 
OnepaTOpLI 3aBHClll.llHC OT BpeMeHII: . .z:J:oiCa3aHbl TeopeMbl 0 noiCant.HOM BO BpeMeHH CYl.I.ICCTBO
BaHHH H e,AHHCTBeHHOCTH peweHHll npo6neMbt. KoHCTPYICllHJI noKaJibHOro peweHHll Hcnonb3yeT 
MeTO.LILI TCOpHH HCllHHeHHbiX 3BOIDOI.I,HOHHbiX ypaBHCHHH C 3aBRCliiiJ,HMH OT BpeMCHH cy6-
,liH<j><j>epeHI.I,HanbHbiMH onepaTopaMH a rHn6epTOBOM npocrpaHCTBe. Paccy)K,llaeTcll rrpo6neMa 
CTe<j>aRa CBe,lleHa lC CHCTCMe 3BOIDOllHOHHLIX ypaBHCHIDi TalCOJ'O po,Aa. 




