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The paper is concerned with boundary control of two-phase Stefan problems. A construction 
of optimal solutions, based on exploiting regularization techniques, is presented. Results of some 
numerical experiments are discussed. 

Introduction 

Consider the boundary control problem 

T 

(P) Minimize { n ( u) = J [t I y- dll2<m + t lull2<om] dt} 
0 

over all ue/3(E) and y = y (u)e/3(0, T; H 1 (Q)) subject to 

{
:t v(t, x )-Ay (t, x) = f (t , x) a.e. in Q, 

v(t , x)ep(y(t, x)) · a.e. in Q, 

oy(t , x) ( ) on = U t, X a.e. on E, 

v(O, x) = v0 (x) a.e. on Q. 

(1.1) 

(1.2) 

(1.3) 
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In the above problem, Q c R", n ~ 1, is a bounded domain with smooth 
boundary r and Q = ]0, T[ x Q is a cylinder with the lateral boundary E. 
We assume that v0 E .I3 (Q), dE .I3 (Q) and that f3 is a strongly maximal 
monotone graph in R x R, bounded on bounded sets. 

The system (1.1) contains the two-phase Stefan problem as a special case. 
Let namely f3 be given by 

{

r-r0 , 

f3(r) = [ -b, 0], 

x (r- r 0)-b, 

r > ro, 

r = r0 

r < r0 

where x, () > 0, then we obtain a two-phase Stefan problem. 

(1.4) 

This paper can be considered as supplementary to the previous works [10, 
11, 12] of the authors. The material is organized as follows. In chapter 2, we 
briefly discuss the existence questions and a regularization of Problem (P). As 
usual, the regularization process consists of replacing (P) by a family of smooth 
problems and tending to the limit with the approximate controls (see Theorem 
2.3 and Theorem 2.4). The main purpose of this paper is to show that the 
standard steepest descent type algorithm (see Algorithm 3.2) may be used for 
finding iteratively the solution for the regularized control problem. The main 
result of chapter 3 is Theorem 3.3 where the descent property of the Algorithm 
3.2 is proved. Due to the lack of convexity, the emphasis will be on the descent 
property, not on the convergence properties of the algorithm. To obtain the 
numerical solution of the state equation and the ad joint system, finite elements 
in space and finite differences in time are used. In chapter 4, a numerical 
example is given. Numerical tests show that the descent property of the 
algorithm is provided. 

Concerning the recent literature of this field we first of all refer to the 
profound habilitation thesis of Pawlow [18] (and references therein) as well as 
to the special issue of this journal [16]. For the numerical approximation of 
Stefan-type problems we quote furthermore [6, 7, 17, 18, 20, 22, 23- 25], for 
control problems of the above type and their approximation see [8, 11, 13, 18, 
20, 21] and for industrial applications [9, 14, 18, 20]. For an analysis of used 
regularization technique see [1, 2, 18]. 

2. Existence and regularization 

We will briefly outline the existence of an .I3 (2:) optimal control for problem 
~~). Next, the appro:ili"?.ation properties of the regularized controls are given. 
For more details, we quote [21]. 
Denote V = H 1 (Q), H = L2 (Q) with scalar product ( ·, ·) and norm 11 · 11; V* is 
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the dual of V. System (1.1)-{1.3) can be written in abstract form as 

dv 
dt +Ay= f, v(t)eB(y(t)) a.e. [0, T], 

v(O) = v0 • 

The function f E L2 (0, T; V*) is given by 

T T 
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(2.1) 

(2.2) 

J(f(t), 1/J(t))dt = J Ju·t/Jdrdt, VI/I 'er!(O, T; V). (2.3) 
o or 

Operator A: V ~ V* is defined by 

(Ay, z) = J grady·gradzdx, 'ily, zE V. 
!2 

and operator B: H ~ H is the realization of P in I! (.Q). 

(2.4) 

The existence of a solution for problem (2.1), (2.2) is studied, for example, in 
paper [3], where A and B may be both nonlinear. From [21], we have 

THEOREM 2.1 Let un ~ u weakly in I!(J:). Then Yn ~ y weakly in E(O, T; V), 
where Yn• y are the solutions of (2.1), (2.2) corresponding to u" , u. 
From this result, one obtains at once 

THEOREM 2.2 There is an optimal pair [u*, y*] in E (E) xI! (0, T; V) for 
problem (P). 
Consider the regularized problem 

subject to 

T 

Minimize {n:'(u) = f[tly-dl~+tlulitJdt} 
0 

ofJ"(~~t, x)) .dy(t, x) = f(t , x) a.e. in Q, 

a 
on y(t, x) = u(t, x) a.e. on E, 

y(O, x) = y0 (x) a.e. on .Q, 

where we define 
·oo 

fJ"(y) = y+ J. Y.CY-e2 O)e (O)dfJ, 
-oo 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

and y, is the Yosida approximation of the maximal monotone graph y(y) 
= fJ ( y)-y (we assume for convenience that x ~ 1 in (1.4)), and f1 is a 
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Friedrichs mollifier} such that (!·E C0 (R); supp (! c ( - 1, 1), (! (-0) = (! (0) and 

- oo 
Obviously, the problem (P J has on optimal pair [ y., uJ E E (Q) x E (l'). 
Furthermore we have, see ([21]) 

/ .. 

THEOREM 2.3 The subsequences converge as follows 

. u. ~ u* strongly in E(l'), 

Y. ~ y* strongly in E (Q). 

(2.9) 

(2.10) 

The corresponding convergence result for the cost functional is, see ([14]): 

THEOREM 2.4 The sequence n(uJ ~ n(u*), the optimal value of problem (P), 
when £ ~ 0, and therefore {u.}, is a minimizing sequence for (P). 

~· 11re descent property 

In order to obtain. a suboptimal control for (P), by Theorem 2.4, one may solve 
problem (P J. Due to the good differentiability properties in (P J, a gradient 
algorithm can be utilized to find u. efficiently. 
We denote by o.:· L2 (E)~ E (Q) the mapping u ~ y given by (2.5)-(2:7). 

THEoREM 3.1 For all ueE(E) there exists a linear operator ro.(u): E(E) 
~ E (Q) defined by: 

1'7£1 ( ) . k 
1
. O.(u+..tv)-O. (u) 

,.. v u v = wea - rm .....::...c---=-_ _;:,..;._ 
• A-+0 A 

for all v E E (E). Moreover 
;· 

where z is the solution of the problem 

( ). az 
vp• O. (u) at +Az = h a.e. [0, T], 

z(O) = 0. 

In equation (3.3), he W 1
•
2 (0, T; V*) satisfies 

I 

h(t) = J gt <e>de+vo, 
0 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

. (3.5) 
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T T 

J(gdt), 1/J(t))dt = J Jvi/JdTdt, lj!EJ3(0, T; V). (3.6) 
o or · 

Proof. Denote by B" the realization in H of {J" and Y;. = O.(u+A.v), y = O,(u). 
Then, by the definition of solution we get 

B"(d~;.)+Aw;.=g+A.h a.e. [0, T], · 

B"(~7)+Aw = g a.e. [0, T], 

w;.(O) = w(O) = 0. 
1 r 

•' . 

Here g(t)=Jf(~)d~+v0 , f given by (2.3) and w;.(t)=Jy;.(~)d~, 
0 0 

I 

w(t) = J y(~d~ 
0 

Subtract the above two relations and multiply by d~;.-~;, to get 

(3.7) 

(3.8) 

(3.9) 

SI ldW). dwl
2 

1 ( ( ) ) Jl ( dW). dw) . -d --d ds+- A w;.(t)-w(t), w;.(t)-w(t) ~A. h, -d - -d ds. 
0 t tH 2 . 0 t t 

dw). dw . 2 ( m' (0 . ) .· ' Then, dt-+ dt and w;. -+ w strongly m ]j 0, T; . , C ·~ T; 1! ~es~cttvely .. 

• · w -w 
We set z;. = -T-· that is 

•, I 

·tld:tl: ds+~(Az;.(t), z;.(t)) ~ !(h, d:t)d~: 
, ... 

. ~·;. 

Integrating by parts in the right hand side we obtain {z,._}, {d:r,.} boun~ed · in 
Leo (0, T; V), L2 (0, T; H). Since B" is Lipschitz, tQe Lebesgue theorem .shows 
that · 

dw;. dw dt ---
dt dt 

is weakly convergent in I3 (0, T; H) ,to J7 B• ( ~;)·~:, where z is such that z,. -+ z 

strongly in C (0, T; H). 
We can pass to the limit and obtain (3.2}-(3.4) to finish the proof. · • 
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Now, we can define the adjoint system for the control problem (P.): 

V{r(y.) ~"-Ap. = y.-d a.e. in [0, T], (3.10) 

P.(T} = 0. (3.11) 

The gradient algorithm for solving problem (P.) is obvious (for brevity we omit 
the . subindex e): 

Algorithm 3.2 
Step 1. Choose any u0 and set n : = 0 . 
Step 2. Compute y, by solving (2.5H2.7). 
Step 3. Test if the pair [y,, uJ is satisfactory; if YES then STOP; otherwise 

GO TO step 4. 
Step 4. Compute p,. by (3.10H3.11). 
Step 5. Compute u, + 1 by equation 

u,+ 1 =u,~e,(u,.- p,p;), where e, is 
an appropriate real parameter. 

Step 6. Set n:= n+ 1 and GO TO step 2. 

(3.12) 

The convergence test involved in step 3 is based on the difference iu,- PniEI 
which is to be smaller than a given parameter. In step 5, the parameter e,. can 
for example be selected by utilizing a line search. 
It is known that without convexity assumptions, the above gradient algorithm 
may be convergent only to a stationary point of the functional (see [5]). Since 
the state equation is nonlinear, the cost functional is no more convex and our 
result underlines the descent property of (3.12). In finite dimensional case the 
situation is evident. 

THEOREM 3.3. 
(i) Let e be fixed. The sequence n. ( u,) is convergent, when n --+ oo. 

(ii) Let a. be the approximate value of a. as computed by Algorithm 3.2. The 
sequence n. (a.) is bounded with respect to e and every cluster point it satisfies 

where u0 is the first iteration. 

Pr-oof. 

(3.13) 

(i) The sequence {n,(u,)} decreases and it is bounded by n.(u0 ) and n,(uJ. 
(ii) We have 

n.(uJ ~ n.(uJ ~ n.(u0 ) (3.14) 

and, by an easy consequence of Theorem 2.4, n.(u,)--+ n(u*). 
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We will show that n, (u0)- n (u0 ), too. This is equivalent" to 

Y. = O.(u0)- y strongly in fl(Q), 

39 

I 

where y is the solution of(l.1H1.3) corresponding to u0 . Let w,(t) = J y,(~)d~. 
0 

Then 

(dw,) 
"W dt +Aw, = qo a.e. [0, T], (3.15) 

w,(O) = 0, 
I 

with g0 (t) = J /0 (()d(+v0 and 
0 

T T 

J{/0 (t), t/t(t))dt = J Ju0 · t/tdTdt, 'Vt/t Efl(O, T; V). 
o o r 

Multiply (3.15) by {d:r·}· Then we obtain {w.}, {d;·} bounded in L"'(O, T ; V) 

and fl (0, T; H), respectively. 

Since B is supposed to ~e bounded on bounded sets, we get { "W ( d;·)} 
bounded in fl (0, T; H). . 

. dw dw 
Next, subtract two equations (3.15) and multiply by dt•- dt". By (2.8) we get: 

J ldw,_ dw"l2 

+ J J (y•(dw•)-y"(dw"), dw,_ dw") 
0 dt dt H 0 n dt dt - dt dt 

1 -
+21Vw,(t)- Vw"(t)lii = 0. (3.16) 

Here ~· ( y) = {J' ( y) - y, i.e. the second term in (2.8) and .{ t ( d; •)} is bounde,d 

in L2 (Q). 
Taking into account the properties of the Yosida approximation: 

y,(y)Ey{(J +sy) - 1 (y)), sy,( y) = y-(1 + ey)- 1 (y) 

and the above boundedness, one can infer from (3.16) that {w.}, {d;·} a-~e 
Cauchy sequences in L2 (0, T; V) and fl (Q), respectively. Now, it is possible to 
pass to the limit in (3.15) and to finish the proof. 

R EMARK 3.4. The practical meaning of Theorem 3.3 is that in a given problem 
one should take the control u0 already used in practice as the first iteration. 
Then, the algorithm improves the performance given by it. 
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4. A numerical example 

The regularized state problem (2.5}--(2.8) and the adjoint state problem are 
discretized by applying a finite difference method in time and a finite element 
method in space. The adjoint state in the discrete case as well as optimality 
conditions are derived in [11, 18]. For the convergence of approximations see 
[11, 18]. To illustrate the use of Algorithm 3.2, the following numerical 
example is considered·: 

Let 

and 

Q = ]0, 1( X ]0, 1(, 

T=l. 

{

y, 

p(y) = [0, 2], 

4y+2, 

{
8 (2e- 2 ' -1), 

f(t, xl, x2) = 2(e-2'-2), 

Vo = P(Yo) 

if, y < 0, 

if y = 0, 

if y > 0, 

if xi +x~ > e-21 , 

if xi + x~ :::::; e- 2
' 

{
xi + x~ - 1, if xi +xi < 1, 

Yo = 2(xi+x~-1), if xi+x~ ~ 1. 

For the boundary control 

{
0 if x 1 = 0, or x 2 = 0, 

u(t, x 1 , x2 ) = 
4 on the remaining of iJQ. 

The exact solution y, of (1.1)-{1.3) with given data (4.1)-{4.4) is 

{
2(xi+xi-e- 2

'), 
y(t, X1, X2) = 2 2 - r 

x1 +x2 -e , 

Consider the cost functional 

11 A. 
1t;, (u) = 2 HI YIL2(.f2l +2lull2<omJ dt 

0 

if xi+x~ > e- ', 
if xi+x~:::::; e- '. 

with A. = 0.1. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.6) 

We shall now test the efficiency of different variants of Algorithm 3.2. The 
nonlinear programming methods tested are: 

- steepest descent Algorithm 3.2, 
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a conjugate gradient method with an automatic restart ([19], ZXCGR 
of IMSL Subroutine Library), 
a bundle algorithm due to .C. Lemarechal (BCG). 

We have chosen At= 1/16 (time step) and 64 triangular linear elements in 
discretization of state and adjoint problem. 
For simplicity, we have replaced If by a piecewise linear function such as 

{

y, if y<O 

Pt(y) = 
2

: Ye, if ye [0, e] 

4y+2, if y > e 

for e = 1/16 (with appropriate modification for y = 0 and y = e in the case of 
standard gradient algorithms). 
In Table 4.1 we see the diminutiotf of 1t l per iteration when three different 
gradient algorithms have been applied. 

Table 4.1. Comparison of different gradient algorithms 

Value of nA (u") for different gradient 
Number of algorithms 

iteration 
steepest descent ZXCGR BCG 

0 2.166 2.166 2.166 
1 .426 .418 .935 
2 .203 .148 .681 
3 .124 .116 .252 
4 .110 - .208 
5 .101 - .144 
6 .091 - .142 
7 .090 - .102 

CPU (seconds) 84Q 181 488 

· The optimal control found by different gradient algorithms is roughly speaking 
the same. 
In Figures 4.2--4.4 we can see the boundary controls and corresponding 
temperature distributions obtained by Algorithm 3.2 at time levels t = .325, 
t = .625 and for t = .935. 
From above results we see that gradient algorithms have modified boundary 
control to the right direction. As the number of boundary nodes is relatively 
high (i.e. number of unknowns in control problem; 412 in above case) cg-type 
algorithm is relatively efficient. 
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.11 .14 .15 .14 .13 .11 .077 .049 .035 
o. 0 

.11 ~ 
1.00 
. ..:.035 

.15 .049 

.26 .077 

.33 .11 

.40 .13 

.46 .14 

.52 .15 

.53 .14 

.546 o.o 
~.11 

1.0 
.54 .53 .52 .46 .40 .33 .26 .15 .11 

Figure 4.2. u~ and Yh for _1 = .325 

.10 .12 .14 .12 .16 .20 .22 .22 .22 
.10~0. 0 1.0~22 

.14 . 22 

.25 .22 

.36 .20 

.46 .16 

.54 .12 

.60 .14 

.63 .12 

ci.10 1.0 
.63 .60 .54 .46 .36 .25 .14 .10 

Figure 4.3. u~ and Yh for t = .625 
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.69 .066 

.72 .10 

.75 .27 

.77 .44 

.77 .59 

.75 .67 

.70 .70 

Figure 4.4. uh and Yh for t = .935 

As a summary of the above numerical tests we note that the descent property is 
provided and we have succeeded m improving the given performance as 
claimed. .. 
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0 aproksymacji sterowan brzegowycb w dwufazowycb zagadnieniacb Stefana 

W pracy rozwa:iane S<t zadania sterowania brzegowego dwufazowych zagadnien Stefana. 
Konstrukcja rozwi~tzan optymalnych bazuje na zastosowaniu metody regularyzacji. Przedstawione 
S<t wyniki testow numerycznych. · 

B pa6oTe paccMaTpH~IOTCll JaAa'IH rpaHH'IHoro ynpasneHID! A!Ill .ll.ByxqmJHblX · npo6neM 
CTe<jlaHa. L\ml DOCTp<>eHIDI OTITHMlUibHhlX pernemrn HCTIOJlhJYIOTCll MCTOJ{bl peryJlllpHJaUHH. 
ITpeACTaBJieHhl i>e3Y Jih TaTbl 'IHCJieHBblX :n:cnepHMeHTOB. 


