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We solve a one-dimensional free boundary· problem which de5cribes : solidification Of 
a two-component mixture. We also determine the composition Of liquid -and the corresponding 
solid. An existence and uniqueness theorem for the local classjcal solution. is given .. 

1. Introduction 

In the present paper we study the one-dimensional free boundary problem 
with the free boundary of a solidifying two-component mixture in the segment 
0 < x < 1 as well as the corresponding distributions of temperature and 
composition to be determined. The temperature at the free boundary changes 
because of the two-component character of mixture. Dependence of the 
temperature on the composition is given in chemistry by a so-called phase 
diagram. Such diagrams are used for molar ratios in the interval (0,1) or for 
percentage compositions in the interval (0,100). In this paper, the diagrams are 
given by two functions, describing the dependence of temperature on compo
sition of the liquid and the solid, respectively. We assume in this paper that the 
diagrams are given by piecewise linear functions. In practice such diagrams are 
given approximately, so our assumption is reasonable. 

The novelty contained in this paper consists in determining the free 
boundary on which the temperature of solidification i_s unknown. This 
temperature will also be calculated. From this we shall find the composition 
and temperatures of the liquid and the solidified-solid as functions of position 
and time. 
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. ; 

The problem including a phase diagram was considered in [15] but in 
unbounded domain. In real processes· one usually considers bounded domains, 
with boundary conditions strongly affecting the free boundary movement. 
Therefore, the problem with an unbounded domain is methodologically 
different from ours. Stefan problems over bounded domains were considered in 
[4], [6], [8], [9], [10], [12]. An extensive bibliography is offered in [5], 
[11], [13]. 

Let us briefly expose a physical origin of the problem under consideration. 
A detailed presentation is given in [2]. In most papers on the Stefan problem 
the temperature of solidification is constant, whereas in our paper the 
solidification process is perturbed by the transport of components in the liquid 
which induces variation of the solidification temperature on the free boundary 
according to the phase diagram. In effect we get a system of parabolic 
equations coupled by relevant boundary conditions. 

The diffusion of components in solid is incomparably smaller than in liquid, 
so we put the thermal diffusivity equal to zero in solid and equal to one in 
liquid. The diffusivity in the solid could be introduced as a small coefficient and 
then it would be possible to analyse the limit behaviour of the solution when 
this coefficient tends to zero. The other one does not change the generality of 
consideration because there is possibility of transforming the spatial axis in 
a linear manner to get this coefficient equal to 1. 

We shall use the results of [3] in our construction of the integral 
representation of the solution of our problem. 

We would like to point out that the Banach fixed point theorem is used in 
the proof of the existence and uniqueness of the classical solution. 

The correctness of the problem in the Hadamard sense is proved. 

2. Statement of tbe problem 

We denote by u the temperature and by c the concentration of one of the 
components in the mixture. 

We consider the problem governed by the following system of equations 

u; = D;u~"' D; > 0 for i = 1, 2 are thermal diffusivities, (la) 

cl = c!x, c; = 0 (1b) 

in two sets 

X 1 = {(x, t)ER2
: s(t) >X> 0, 0 < t <a, a< oo}, 

X 2 = {(x, t)ER2
: s(t) < x < 1, 0 < t <a, a< oo} 

with the initial and boundary conditions 

u1 (x, 0) = <p, (x), u! (0, t) = 0, (2) 
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ds(t) 
u~(s(t), t) = Au!(s(t), t)+Bdt, k1 

A= 
k ' 2 

B = A.e 
k '· 2 
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(3) 

(4) 

where k1 , k2 are thermal conductivities,). is the latent heat per unit v.olume and 
e is the density. 

u1 (s(t), t) = u2 (s(t), t), 

c1 (x, 0) = q>c(x), c! (0, t) = 0, 

. ~00 
- c!(s(t), t) = (c1 (s(t), t) - c2 (s(t), t)}dt, 

c1 (s (t), t) = g (u1 (s (t), t)), 

c2 (s(t), t) = f(u1 (s(t), t)), 

where q> .. (x), q>c(x), t{!(t), A, B, D 1 , D 2 are given. We assume 

(A1) u~x• u;, c~x• c; are continuous functions for (x, t)EXi for i = 1, 2, 
(A2) q> .. (x), <i>c(x)EC1 ([0, 1); (0, 1)), t/J(t)EC1 ((0, a); R - u {0}), 

dljl(t) dq>,(x) dq>c(x)l 
-d- < 0 for tE[O, a), -d-· - ~ 0 for xE[O, 1], -d- > 0, 

t X X x=l 

dq> .. (x) ~ 0 d dz q> .. (x) < 0 t' [0 1] d iq> .. (x)l = 0 
d "" an d 2 .or x E , an d , 

X · X X . x=O 

(A3) s (t) E C2 ((0, a); (0, 1]), 

(5) 

. (6) 

(7) 

(8) 

(9) 

(A4) f and g are real functions, decreasing and piecewise linear in their 
domains in R, such that f < g (they define the phase diagram). 

We assume that temperature u1 (x, t) of the liquid fort= 0 at the point x = 1 is 
the temperature of liquid solidification. We can change the scale of temperature 
so as to obtain q>,(1) = 0, q>A1) = 0, hence s(O) = 1. 

We say that the functions ui(x, t), d(x, t), s(t) form a classical solution of 
problem (1)-{9) if they satisfy assumptions (A1)-{A4) and equations (la), (1b) 
with conditions (2)-{9). 

3. Tbe system of integral equations 

The solution of problem (1)-{9) can be characterized as satisfying some 
system of integral equations. This system can be constructed by integrating the 
following identities 
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a a 
ae(Nc~ -N~c1)= a-.(Nc1

) for 0 < e < s(r), 0 < e < r < t - e and 

a - a 
D2 ae(G2 u~ - G~uz) = or(G2 u2

) for s('r) < e < 1, 0 < e < r < t-e, 

respectively, for the Neumann and Green functions 

N 1 (x, t; e, r) = K 1 (x, t; e, r)+ K 1 
( - x, t; e, r), 

G1 (x, t; e, r) = K 1 (x, t; e, r) - K 1 (- x, t; ~. r), 

N2 (x, t; ~. -r) = K 2 (x-1, t; e- 1, -.)+K2 (1 - x , t; e-1, -.) 

G2 (~., t; e, -r) = K 2 (x-1), t; e - 1, -.)-K2 (1-x, t; e-1, -.), 

N(x,}; e, -.) = K(x, t; e, -.)+K(-x, t; e, -.), 
G(x, t; e, -.) = K(x, t; ~' -r)-K(-x, t; ~. -r), 

i . • . 1 . (.' (x .:._ ef ) 
K (x, t, ~. r) = 2nt Dt(t - 't)t exp - 4(t--.)D; ' 

1 ( (x-e)
2

) 
K(x, t; e, r) = 2nt(t-'t)texp - 4(t-r) . 

As in [3], we arrive at the following system of integral equations 
1 t 

u1 (x, t) = J N 1 (x, t; e, O)<p.,(e)de+Dtf N1 (x, t; s(-.), -.)u!(s(-.) , -.)d-. 
0 0 

Jr [ 1 . ds(-r) + 
0 

N (x, t, s(-.), r)~ (10) 

. -D1 N!(x, t; s(-.), -r)]u1 (s(-.), -.)d-., 

u2 (x, t) = ! [D2 GHx, t; s (-r), -r)- G2 (x, t; s (-.), -.) dsd-r)J u2 (s (-.), -.)d-.·-

I t 

-DzJ G2 (x, t; s(-.), -.)uHs(-r), r)d-.-DzJ GHx, t; 1, -.)1/f(-r)dr, (11) 
0 0 

u! (x, t) = ! G1 (x, t; e, 0) d<pd;e) de+ D 1! N! (x , t; ~ (-.), -r) u!(s(-r), r) d-r + 

. 
1 

1 • · ·(ds(-.) (ds(-.))-
2 
d

2 
s(r)) 1 -

+D1! Nx(x, t, s(r), -r) ~-D1 ~ ~ u (s(-r), -.)dr+ 

t 

+D1 J Ni(x, t; s(r), r)F(s(-.))d-r, (12) 
0 
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I I 

u;(x, t) = -D2 f N2 (x, t; 1, r)~(r)d-r-D2 f G;(x, t; s(r), r)uf(s(r), r)dr+ 
0 0 

I 

-Dd G~(x, t; s(r), r)F(s(r))dr, (13) 
0 

where F(~) = Fi(~) =-:~u 1 (~, s - 1 (~)) fori= 1, 2. We denote 

F(s(r)) - (d~~-r)) -
2 

(d::~•)) u1 (s(-c), r) = H(s(r)) . 

d . ds(t) 0 . h h 1 . Further we show that un er our assumptlons dt # m t e w o e tune 

interval of the existence of solution. Then, taking x --. s (t)-0 and x --. s (t) + 0 
in (16), (12), (13), respectively, after setting (4) into (13) we have 

I 

u1 (s(t), t) = 2D1 f N 1 (s(t), t, s(-r), -r)u~ (s(-c), -r)dr+ 
0 

1 

+2f N1(s(t), t; ~. O)q>u(~)d~, (14) 
0 

u! (s(t), t)- H (s(t)) --
1 

dsd(t) u1 (s (t), t) = · 
D 1 t 

I 

= 2D1 f N!(s(t), t; s(-r), r)u~ (s(-r), -c)d-r-
o 

1 ds(r) 
- 2 J N! (s (t), t ; s(-c), r) - d- u1 (s (r), -r)dr+ 

0 f 

I 

· · +2D1 J N!(s(t), t; s(r), t)H(s(-c))d-r+ 
0 

+2!G1 (s(t), t; ~.o)dq>;i~)d~, 
ds(t) 

Au!(s, (t), t)-H(s(t))+2Bdt~1 (s(t), . t}= 

I 1 

= -2D2 fG~(s(t), t; s(-c), -c)Au!(s (-c), -r}d-r-
o 

(15) 
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1 ds ('r) 
-2 J G;(s(t), t; s(r), r)-'----d u1 (s(r), r)dr-

o r ... 
t . t . 

-2D2 JG;(s(t), t;s(r), r)H(s(r))dr+2D2 JN2 (s(t), t; 1, r).j,(r)d-r:-
o 0 

1 
• ds(r) 

-:-2 D2 B J. G; (s (t), t; s (r), •) -,--d dr. (16) 
o r 

Proceeding in the same manner as with the function·u1 (x, t) in [3], by virtue of 
(•) we have 

c!(x, t) =! G(x, t; e. o/dde) de+! Nx(x, t; s(r), r)cHs(r), r)d•+ 

1 
• [ds (r) (ds (•))-

2 
d

2 
s (r)J 1 · 

+! Nx(x, t, s_(-r:), •) ~- T ---;p:- c (s(r), r)dr+ 

t 

+ J Nx(x, t;s(•), r)Fc(s(r))dr, (17) 
0 

where 

(
ds(-r:))-

2 (d2 s(•)) 
Fc(s(r))- T ---;p:- c1 (s(r), -r) = 

= !!!__ ( ( )) - (ds(r))-
2
(d

2
s(•))g(u

1
(s(r),•)) 1 ( (. ) ) 

d 1 Fs• d d 2 1(()) u sr,r. 
U 't ! US7:,7: 

Recall that f, g are _piecewise linear functions. ,We take a segment which 
contains the point (0, 0) and define the approximations g (u1

) = r 1 u
1

, f (u 1
) = 

= f 1 u
1 -b1 on this segment. We move (0, 0) to the point u = (~, u) in which 

the phase diagram is not differentiable. Then, we successively take g (u1
) = r; ul, 

1 1 dg(ul) g(ul) . . . 
f(u ) = f;u -b;, to get -d 1 = - 1-. Hence, we obtam 

' u u 
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From (17), after taking X-+ s(t)-0 and using (8), we; have ·~ ' • • • I ... 

I ·> 

+2J Nx(s(t), t; s(r), r)cHs(r)~ r)dr-
o ., 

I 

+2r1 J Nx(s(t), t; s(t), ,t).H(s(t))dt. (18-) 
0 

To simplify notations, denote the right-hand sides of (14), (15), (16), (18) by 
P 1 (t), P 2 (t), P 3 (t), P 4 (t), respectively. 

Denote y(t) = g(Pdt))-f(P1 (t)). By (7), we have the following system of 
equations 

p (t) . 
u~(s(t~, t)-H(s(t~)+ D

1

1
y(t) c~(s(t), t) = P 2 (t), 

Au~(s(t), t)-H(s(t))+(~\(~~)- :(~)c~(s(t), t) = P3 (t), 

- r1 H (s(~))+ (- r; ~)dt) + 1) c~ (s(t), t) = P 4 (t). 

The solution of system (19), (20), (21) is given by 

u~ (s(t), t) = W(t~ y (t) (( - P 2 (t)+P3 (t))y(t)+( -P2 (t)+P3 (t))] · 

· [-r1 (P 1 (t))+2 BP 4 (t)-D
1 

P 1 (t) P4 (t)+_!_P1 (t)P 4 (t)-2Br1 P 2 (t)+ 
2 Dt 

(19) 

(20) 

(21) 

(24) 
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where the determinant W(t) is , given by 

( ). 1 [ ( ) b (A -1)-2 Br 1 ] w t = - p 1 t ---'--------'0--

. y(t) Arl_~-(A-l)fl 
I Dl Dl 

1 [ E1] 1 
::: y (t) p 1 (t)- Ez Ez ::: y (t) L(t). 

It should be pointed out that the system (22)--{24) is only a representation of the 
~olution that merely reflects an iterative procedure resulting from the Banach 
flxed point theorem. Let us assume that E1 , E2 =!- 0. We are looking for <J such 

that W (t)_ =!- 0 in the interval (0, <J). :U: sgn P 1 (t) ~ sgn! 1 , then there exists 
2 

<J such that 
.. ; , . 

IL(t)l ~ ~I(P1 (0)- !:)Ezl = ~~1 l· 
E . 

Recall that P 1 (0) = 0. If sgn P 1 (t) = - sgn - 1
, then for any <J we have 

Ez 

IL(t)l ~ ~~(P1 (0) - !:)E2 1 = ~~1 l . 
Therefore, there ·exists a such that in the interval (O; a) 

(u) 
E t 

IL(t)l ~ 2 · 

Equation. (7). admits the i~tegral form 

I 1 
s(t) = 1-J- ( ) c!(s(r), r)dr. 
' 0 y 't" 

4. Mon~tooicity of s (t) 

We shall prove the following 

. i 

(25) 

L EMMA. If the free boundary s (t) exists in problem (1)--{9) under assumptions 
(Al)--{A4), then it is strictly decreasing in the whole time interval of its existence. 

l"roof. First we shafi show that ds(t) < 0 in [0, u) ·for a certain sufficiently 
dt 

small a > 0. Indeed, from assumption (A2) we have c! (x, 0) > 0 fot x E [LI, 1], 
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A > 0. From this, by. the compactness of the set [A, 1] x {0} and continuity of 
c! we obtain c!(x, t) > 0 for te[O, u). From (7), (8), (9) we conclude that 
ds(t) . T. < 0 m [0, u). 

~00 . 
Now we ·prove that -- < 0 ·for t0 - o < t < t0, such that t0 ts chosen 

dt 
arbitrarily, o < t0 and 0 < o < u. Indeed, u" is negative in its domain by the' 
maximum principle (see [6], § 3 and [7]). The function ul- = u~" is negative' for . . a2 q> . . . ;· .. 
te[O, u) because -

0 
/ < 0 for xe[O, 1], and it is continuous in the compact. 

X . 

set [0, 1] x {0}. Moreover, uf is nega~ive for t0 -o < t < t0 becau~e we have 
. , ; . ;. \ r • . . 

·. u~~·(x, 't) =! N 1 (x, t; ~. ~)d
2

:e"2(~) d~+J? 1 i N!x(x, t; .S(-r), -r)uHs(-r), •)~•.+ 

J' [ 1 ( • ) ds (-r) 1 ( . )] 1 ( ) + 
0 

N"" x, t, s(-r), t y.-D1 N""~ x, t, s(-r), t u s(-r), ". dt. 

. . 
The first term is negative and the other ones could be taken sufficiently small in 
dependence on o to obtain that u~" is negative. Thus, upon choosing iJ,= 'J , 
sufficiently small we obtain uf < 0 for to- '1 ~ t < to+ e at some e > 0. 
Therefore u1 is a decreasing function with respect to x and t in· [t0 - '1, t 0 +e), 

. ou1 ou1 ou1 ou1 

and u1 (x, t)-u1 (x+Ax, t+At) = --;-Ax--;- < 0, hence ·-;-Ax+-;-At 
r •X r•t r·X r ·t 

> 0 forAx < 0 and At> 0. From this u1 is a decreasing function on the curves · 
. dx (t) 

x(t) . for which dt < 0. 

But we may see from the definition off and g (see the phase diagram) that 
the function c1 is increasing at those time moments for which u1 is a decreasing 
function .. Hence. the solid dismisses an excess of the component r into the 

liquid and thus the solidification process goes on. Therefore we have ds(t) < 0 
dt 

for t0 - '1 ~ t < t 0 +e. At last, we can cover the whole · given time interval by 
neighbourhoods chosen m the above way, using the ~orel theorem. • 

5. The existence and uniqueness theorem 

First we shall prove 

THEOREM 1. The problem offinding a solution of problem (1H9) is equivalent to 
the problem of finding a continuous solution of the system of integral equations 
(14), (15), (16), (18), (25). 
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Proof. Directly frorri .the-constructionofequations (14), (15), (16), (18), (25) it 
follows that each.solutwn-li{x, t), d(x, t), s(t) fori ·= 1, 2, of problem (1H9) 
satisfies integral equations (14}, (15), (16), (18), (25}, too. 

Suppose that for some a > 0 the functions u1 (s (t), t), u! (s (t), t), H (s (t)), 
~00 . . . . 

c! (s(t), t), dt form a solution of system (14), (15), (16), (18), (25). Observe that 

ui(x, t), .c'(x, t) an<fs .(t~ satisfy{1H9). 1t is obvious that they satisfy (1), (2),(3), 
(6), Conditions (4), (5), (8), (9) are satisfied due the construction of solution by 
a fixed point argument given in Theore~ 2. But c! (together with ul, u!, s) have 
the reguhitity properties described in § 2, therefore from the calCulations in§ 3, 
leading .. to (25),- condition (7) follows, ;which ends the proof. · • 
· The ·correctness· of the solution in the Had~mard sense can be derived by 

a modification of . Rubinstein;s method [14] wpich has J?een applied, for 
example, by M. Nl~zgodka [9J to integral equations similai to these of our 
paper. 

THEoREM 2. There exist some O'E(O, a] and a unique solution ui~x, t), 
ci(x, t), s(t) of the system of integral equations (14), (15), (16), (18), (25) over a time 
interval [0, a] which fulfils conditions (Al), (A3). 

Proof. We shidl denote by X= (C0}5 the space of vectors v(t) = (vdt), ... 
. . . , v5 (t)}, treated as a Cartesian product with the uniform norm 
llvll = max{ sup jv1 (-r:}j, . .. ,"sup jv5 (-r:)}. C~ = C0 ([0, a]; R) is the space of 

O~ r<" O<r<" . 

real continuous functions in [0, a]. Let us defme by Xa,M the closed ball of 
vEXa,M such that llvll ~M. We introduce the transformation T: V€¥Xa.M 

-+ wEXa,M• wh~re v(-r) = ( u1 (s('r}, r), u~ (s('r), -r), H(s(r)), c~ (s(r), -r), d~~-r:)) 
and wi(t) = 7;v(-r) (i = ·1, .. . , 5) are given by (14), (15}, (16), (18), (25). First we 
shall show that T maps Xa,M into itself. Let us take vEXa,M and estimate Pi(t), 
i = 1, 2, 3~ 4. We have . 

sup lv
5 

(t)l ~sup lv4 (t)l . for J..l = min y(t} > 1, 
'J..l . 

suplP2 (t)l ~ E21 M
2 at+ E22 M

3 at+ E 23 ll<i>ull = h2 (M) at+ E 23 ll<i>ull, 

supJP2 (t)l ~ E 21 M
2 at+E22 M 3 a*+E23 II<i>ull = ·h2 (M)at+E23 II<i>ull, 

supjP3 (t)l ~· E 31 M
2 at +E32 M

3 at+ E 33 lltbll at= h3 (M) at, 

supjP4 (t)l ~ E41 M 2 at+E42 II<i>cll = h4 (M}at+E42 II<i>J, 

l
ds(t)l . M! M 

~ ~ . 
dt . J..l 
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To estimate w, we _transform (22), (23), .(24) and w_~ get 

sup lu1 (s(t), t)l ~ E11 M11t +E12 M~O"t +Er~·~l q}., !i;- · · 

sup lu! (s (t), t)l ~ Eo I~<P .. II (lf1 P dt) P 2 (t)i :+-lbP,dt)i·~- ... · · ·::. · .. 

1 i . ) 
+!bP 3 (t)l + 12 BD1I +D lP 1 (t) P 2 (t)l + ii J~\(t) P 4 (t)l , 

1 1 

(26) 
. . . - --

sup IH (s(t))] ~ D
1 

D
2 
~0 ll<tJ .. II (ID1 D2 r1 P 1 (t) P 3 (t)) :.~~~-1 D~ .p 3 (t)l ~ 

+ lP 1 (t) P 4 (t)l + 12 BD2 P 1 (t) P 4 (t)l +lAD 1.D2 P 2.(t) (ft-p; (t) + ~)), (27) 

1 . . 
sup le! (s(t), t)l ~ Eo ll<tJ .. II (lP 4 (t)l + lr 1 P 3 (t)r +I~!' 4 (t)l + 11~ 1 P 2 {t~~): (28) 

Let us write out explicitly the terms in products P 1 (t) P1 (t) fork = 2, 3, 4 which 
do not contain 11112 and express the remaining terms as functions of M, h12 (M), 
h13 (M), h14 (M). We have · : · - · --

IP1 (t)IIP2 (t)l ~ h12 (M)O"t + IE13IIE23III<tJ.,IIII<P .. II. 

lP .(t)I IP 3 (t)l ~ h13 (M) qt, 

IP1(t)IP4(t)l ~ h14(M)O"t+1Et311Ed II<P.,IIII<,bcll· 

We ~_ubstitute these estimations into (26), (2?), (28) to get 

suplu!(s(t), t)l ~Eo l:<tJ .. II (qt (lf1lh12 (M)+ ~2 h12.(M)+ ~l h14 (M)+ 

+ lbl h1 (M)+h3 (M))+ lf11 E13 E23 ll<tJ.,II.II<P .. ·II+Jbl E13 ll<tJ.,II + 

+h14 (M)+2BD2 h14 (M)+AD1 D21f11 h12 (M)+AD1 D2ibl h2 (M)).+ 

+. Et3 E42 ll<tJ.,IIII<Pc ll + 2 BD2 E13 E42ll<tJ .. II<i>cll + 

+ ADt D21f1l E13 E23ll<tJ.,IIII<P .. II + AD1 D2!b! E2'3 11 <i> .. ll), . 

1 
suplc!(s(t), t)l ~ E ll 

11
(«1th4 (M)+Ir1lh3(M)+Ah4(M)+ 

0 (/)., ' . .... 

.. , +A lr11 h2 (M)+E42 (1 +A) li<Pc li +A lr11 E2-3 l[<,b., ll ) . 
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In the above three inequalities, we shall denote by a 1 , a 2 , a 3 the components 
which do not contain at. From (14) it follows that 

sup l(u1 (s (t), t}l :::;;; h12 at+ E 13 11 q>J . 

Let us take M= max(E13 II<P .. II + 1, a 1 + 1, a 2 + 1, a 3 + 1). Then we get a such 
that 

(***) suplc;(s(t), t)l:::;;; M, sup!H(s(t))j:::;;; M, suplu!(s(t), t)l:::;;; M, 

sup lu1 (s(t), t)l:::;;; M, ~d~~t)l ~M. 
Now Wi.! shall show that T is a contraction. Assume that llv-v'll =e. We are 
going to show that IITv- Tv'll <e. First we verify it for s(t). We have 

, _ 
1 I c~(s(-r), r) c~(s'(r), r) I 

ls(t)-s (t)l-! g(P
1 
(r))-f(P

1 
(r)) g(P', (r))-f(P', (r)) dr:::;;; 

J
1 1 I _ , ( , ) _ I Jl +M (r 1 - 1\) 

:::;;; 2 (r1 -r1)P1 (r)+b+c~ s (r), -r (r1 -r1) dr:::;;; e 
2 

. t. 
oJl Jl 

Thus 

and 

JJ.+Mir1 -1\l '" 1+(1+41rt-f1 IM)2 

Jl2 < 1 .or Jl > 
2 

. 

Now we consider the difference 

sup lu' (s (t), t)- u' (s' (t), 't)l = sup lP 1 (t)- P'1 (t)l. 

It contains integrals on the interval (0, t) and an integral on the interval (0, 1). 
The functions under integrals are lipschitzean, thus the corresponding differen
ces are products of some constants and the differences of arguments. These 
differences are equal to e. Thus, 

1 

IP1 (t)-P~ (t)l:::;;; cet+IJ{N1 (s(t), t; ~. O)-N1 (s'(t), t; ~. 0) q>(~)d~l:::;;; 
0 

There exists a such that 

lP 1 (t)- Pj (t)l <e. so lu' (s (t), t)- u 1 (s' (t), t)l <e. 

The integrals of such types occur also in P 2 (t), P 3 (t) and P 4 (t), so 
IPi(t)-Pj(t)l < e for j = 2, 3, 4. From (22), (23), (24) we obtain thaJ u!(s(t), t), 
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H (s (t), t), c,!. (s (t)~ t) are sums of the products P 1 (t) P~~: (t) (k = ~· 3, 4) and P 1 (t) 
(i = 1, ... , 4). We may see that · · 

• 0 

IP1 (t) P1 (t)-Pi(t) PI. (t)l = IP1(t) P1 (t)-Pi (t) P" (t)+ Pi{t) P1 (t)- Pi(t) Pl.(t)l 

~ eiPi{t)+P"(t)l, 

where Pi(t) and Pk(t) are smaller than ciecrt and ckecrt, respectively. Therefore, 
the above-mentioned sums of the products are smaller than the product .of ecr~ 
and the sum of some constants. We proceed similarly with cP1(t) (i = 1, ... , 4). 
Hence, there exists cr such that the products of crt and of the sum of some 
constants are smaller than 1. So that for such cr we have 

ju! (s (t), t)- u,!. (s' (t), t)l < e, IH (s (t))-H (s' (t))l < e, 

jc!(s (t), t)- c! (s' (t), t)j < e, therefore 11Th- Th' 11 ~ e. 
~ ' . . 

Using the Banach contraction theorem for er satisfying (••), (•••) and(****) we 
complete the proof of the existence and uniqueness of the local solution. • · 

We wish to thank Dr I. Pawlow for helpful discussions and suggestions. 
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Paraboliczne rownania rozniczkowe w zagadnieniacb krzepni~ia 
dwuskJadnikowego stopu 

W pracy rozwai:any jest jednowymiarowy problem ze swobodnym brzegiem, wyst~pujltCY 
w zagadnieniach krzepni~ia dwuskladnikowego stopu. Okreslana jest zawartosc jednego ze 
skladnikow mieszaniny w cieczy oraz w ciele. stalym. Udowodniono istnienie lokalnego rozwiltza
nia i jego jednoznacznosc. 

llapa6oJIH"'IeCKHe ~ucJ»cJ»epeuQHaJibllble ypaaueHHH B npo6JieMe 

3aCTbiBaHHH ABYXKOMDOHeHTHOrO CDJiaBa 

C :HOH pa60TC paCC)')KJlaeTCll Ja}la'la CO CB060JlHOR rpaHlii.{CH, ODHCbiBaJOJ.I.{all JaCTb!BaHHe 
JlBYXKOMDOHCHTHOfO CDJJaBa. 

0DpeJleJJliJOTCll KOHl\CHTpai.{HH lKHJlKOTO H Tsep}lOfO COCTOliHHH B 3TOM Dpol.{ecce. }l;oKaJaHa 
TeOpeMa 0 CYWeCTBOB3HHH Jt CJtnHCTBeHHOCTJt peWCHnH. 


