
Control 
and Cybernetics 
Vol. 16 (1987) No. 3-4 

A Holder open mapping theorem and necessary 
conditions of optimality in problems with Holder data 

by 

PHAN QUOC KHANH 

NGUYEN TIDEN LUAN 

Institute of Mathematics 
Hanoi, Viet-Nam 

We introduce Holder subgradients for mappings of fmite dimensional spaces and prove an 
open mapping theorem for JocaUy Holder mappings. Using it we obtain necessary conditions for 
optimality in problems with Holder data in generalized multiplier rule forms. 

1. Introduction 

In recent years a great deal of attention has been devoted to nonsmooth 
and nonconvex problems. To consider such problems many concepts of 
differentiability in relaxed senses have been proposed: the generalized gradient 
of Clarke [2], the screen of Halkin [6], [7], the derivate container of Warga 
[15], the generalized derivative of Pourciau [13], the contingent derivative of 
Aubin [1], the shield of Dien [3] and the Holder subgradient of Khanh and 
Luan [12]. One of the main objectives of this direction of consideration is 
obtaining necessary conditions for optimality. For this purpose, open mapping 
theorems are often proved and applied, since each ..;u mcient condition for 
openness gives us an origin of necessary conditions for optimality. lnvestiga
tions along this line usually yield multiplier rules, see e.g. [1], [3], [6], [7], 
[13]. It should be noted that with the exception of screens and Holder 
subgradients, mentioned above notions are appropriate mainly to Lipschitz 
mappings. 

In [12] we used variational principle of Ekeland [5] and Holder sub
gradients to obtain optimality necessary conditions in problems with Holder 
data. But the form of these conditions is far from the multiplier rules. In present 
paper we prove open mapping theorems for locally Holder mappings and use 
them to obtain optimality necessary conditions for more general problems, but 
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in finite dimensional spaces. The conditions we get are nearer to the multiplier 
rules. · 

Two following facts should be added. Firstly, most of open mapping 
theorems have the form of affirming the openness of a mapping in a full sense 
under assumptions of openness in a weaker sense. In theorems based on 
concepts of differentiability the weaker openness means an openness of 
derivatives in relaxed sense. (For a survey and general open mapping theorems 
of this form see [10], [11].) However, open mapping theorems of this paper 
have another form. Secondly, although the screen is general (for instance, more 
general than the generalized gradient and the derivate container) and the open 
mapping theorems of Halkin in . [6], [7] may be applied to continuous 
mappings (not Lipschitz), they are appropriate only to problems with weakly 
Lipschitz data, not to problems with Holder data as shown by Theorem 4.2 in 
Section 4 below. 

2. Holder subgradieots 

Throughout the paper X is a finite dimensional space, Y is a m-dimensional 
one. For x0 EX we write B(x0 , b)= {xEX/IIx-x0 11 < b} and, for A c X, 
B(A, b) = Ux"AB(x, b). 

A functional!: X-+ R is said to be locally Holder of degree oc, 0 < oc ~ 1, at 
x0 if there is a neighborhood B(x0 , b) and K > 0 such that, for all x1, 
x2EB(x0 , b), 

lf(xl)-f(x2)1 ~ K ll x1 - x2lla. 

A functional f is called locally Holder in a subset A c X if f is locally Holder 
ar each x EA. If not otherwise specified, all oc mentioned in the paper satisfy 
O<oc~l. 

We call 
r ( . ) _

1
. f(x 0 +J..v) - f(x 0 ) · 

Ja x0 , V - lffi SUp •a 
.l.!O . A. 

a directional oc-Holder derivative of f at x0 and we denote 

rl( . ) _ 1. ·nrf(xo+A.v)-f(xo) 
Ja Xo, V - liD 1 . 

.l.!O Aa 
Let4>a be the set of all continuous functionals <p on X , which are positively 

homogeneous of degree oc (i.e., qJ (A.x) = A. a qJ (x) for A. > 0), qJ (-x) = - qJ (x), and 
bounded in the sense of qJ (x) ~M llxlla. Let us define for <p, t/1 E </Ja the 
operations 

(<p+t/J)(x) = <p(x)+t/J(x), 

(y<p )(x) = y<p (x) for yE R , 
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lcp (x) 
llcpll" =sup-!! ll". 

x#O X 

Then it is clear that (4J", II·IIJ is a normed space. 

61 -

DEFINlTION 2.1 [12]. a-Holder subgradient off at x, or shortly a-subgradient, 
denoted by oJ(x), is the set of all cpE4J" such that cp(v) ~J;.(:x; v) for all vEX. If 
oJ (x) =/= 4J We say that f is (X-SUbdifferentiable at X. 

Let 4J be an arbitrary class of functionals on X. We recall that a set L1 c X 
is said to be 4J-convex if L1 has the form {xEX/cp;(x) ~ 'JI;, ({J;Ei/>, 'JI;ER}. A set 
L1 is called 4J-closed if x" E L1 and cp (x")-+ cp (x) for all cp E 4J imply x e Li. In 
particular, if 4J = 4Ja and for each x EX we define a functional on 4Ja: x ( cp) 
= cp (x), then x is a linear functional. We call the weakest topology on 4J" such 
that all x eX are continuous X -topology. If U c 4J" is compact in X -topology, 
we say that U is compact. Since X is also a class of functionals on 4J", we cari 
speak about the X-convexity and the X -closedness. 

In [12] we' obtained the following properties of a-Holder subgradients. 
1. oJ(x) is a X-convex and closed subset of 4J". If f is locally Holderof 

degree a at x with constant K, then llcpll" ~ K for all cpEoJ(x) and oJ(x) is 
X-compact. 

2. If f is locally Holder and a-subdifferentiable at x, then for all vEX 

f"(x; v) = max{cp(v)/cpEoaf(x)}~ C(v; oJ(x)). 

3. If f is locally Holder and a-subdifferentiable at x, and if Q is a X-convex 
subset in c/J", then 8J (x) c Q if and only if 

fa.(x; v) ~ sup{cp(v)/ cpEQ} for all veX. 

4. If f and g are locally Holder and a-subdifferentiable at x then 

oa(f+g)(x) c Co,(oJ(x)+ o"g(x)), 

where Co, stands for X-convex hulls. 
5. If x 0 is a local minimum off, then f is a-subdifferentiable at x 0 and 

0 E <\ f (\" o). 
The following properties of 4J"-convexity proved in [9] will also be used 

later. 
6. For Q c 4J" we have 

Co,Q ='{cpe4J"/cp(v) ~ supt/t(v), \fvEX}. 

7. We have, for Q c 4J" and vEX, 

sup { cp (v)/cp E Q} = sup { cp (v)/ cp E Co.x Q}. 

Now let F: X-+ Y be a mappin·g. We define the property of being locally 
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Holder in the same way as for functionals and do not recall it It is obvious that 
F = (J\ ... ,fm) is locally Holder at x if and only if so do t, { = 1, ... , m. 

DEFINITION 2.2. a-Holder subgradient ofF at x, denoted by a, F(x), is the set 
of all (.J E c/J':,. = c/Ja. X ... X c/Ja. (m times) SUCh that (.J :;= ((.}

1, ... , {)m), (.Ji E a,Ji (x) 
'!f: a~ F (x). If a a. F (x) =I= 0 we say that F is a-subdifferentiable at x. 

PROPOSITION 2.1. Let F: X---+ Y be locally Holder and a-subdifferentiable at 
x0 . If a"( -F)(x0 ) =I= 0 and is contained in -aa.F(x0 ), and g: Y---+ R is 
continuously differentiable at F (x0), then 

agJ . a" (gF)(x0 ) c Cox l'i= 1 al F (xo) a~ F (xo). 

Proof. For the sake of simplicity we shall write aag_ instead of aag·l ( ). Let 
y' y' F x0 

veX. We have 

ag 1 . . 
= lim sup l'i"= 1 "§~ )." U' (x0 + ...l.v)-!' (x0)] 

J..!O y . 

{ 
. . ag . } 

~ l'i'!= 1 max t:p' (v)/ t:p' E oyi a~ F (x0 ) 

{ 
ag . } = max t/J(v)/IIJEE'i=1 ayia~F (x0) 

~ max { t/1 (v)N E Cox l'i'~ 1 ::i a~ F (xo)}. 

By property 3 above the proof is finished. • 
PROPOSITION 2.2. If F and - F are locally Holder and a -subdifferentiable at x, 
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then two following conditions are equivalent 
(i) 811 (-F)(x) c -8"F(x); 

(ii) J:(x; -v)+J:~ (x; v);?; 0 for i = 1, ... , m and for all veX. 
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Proof. To show (i) ~ (ii) we see that 8"( -F)(x) ·c -o"F(x) means that 
8" (-Ji)(x) c - oJi (x) for i = 1, ... , m. By the mentioned property 3 we have, 
for all veX and i = 1, ... , m, 

( -f\(x; v) ~ max {fJi(v)jfJi(v)j(Jie -oJi(x)} 

= max {Oi( -v)/OieoJi(x)}. 

Then !1 (x; - v) ;?; (-Ji)a (x; v) = - !1~ (x; v). 
The proof of (ii) ~ (i) is similar. • 

PROPOSITION 2.3. If F and - F are locally Holder and a-subdifferentiable at x, 
then three following conditions are equivalent 

(i) 8(-F)(x) = -8
11
F(x); 

(ii) Jj(x; -v)+Jj!(x; v) = 0 for all veX, i = 1, ... ,m; 
(iii)f;~(x;v)=min{Oi(v)/Oie8J;(x)} for all veX and i=1, ... ,m. 

Proof. The proposition follows from Proposition 2.2 and property 2 of 
a-subgradients. • 

3. Holder open mapping theorems 

In the theory of extremal problems there are two ways to get neces·sary 
conditions for extrema. In the first one the objective functional and each 
constraint functional of the problem are approximated independently and 
necessary conditions are derived as relations between those aproximations. 
This direction of investigation is very traditional and so developed that in 
a certain sense it is almost complete. The second way of study is based upon 
approximation of all functionals involved in the problem together, i.e., they are 
considered a unique system. In this case open mapping theorems are often 
needed, since a point corresponding to a local extremum must not be assigned 
to an interior point of the image of a neighborhood through a mapping chosen 
properly characterizing the problem. This line of consideration is rather new 
but has been very extensively developed recently (see [4], [6], [7], [8], "[13], 
[14]). Most of known open mapping theorems may be applied only to 
Lipschitz mappings. In this section we shall prove an open mapping theorem 
for locally Holder mappings basing on a-subdifferentiability. 

DEFINITION 3.1. A multifunction r: X-+ 2r is called zero-separable on C for 
C c X if for each ee Y. llell = 1. there exists xeC such that (e. y) < 0 for all 
yE r (x), ( ·, ·) being the scalar product. If C = X we say that r is zero 
separable. 
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Let F: X-+ y be et-subdifferentiable at Xo. Then by a .. F(xo)(.) we denote 
the multifunction 

o"F(x0 )(v) = {O(v)j0Eo"F(x0 )}. 

PRoPOSITION 3.1. If F: X-+ Y is a-subdifferentiable at x 0 and satisfies the 
following conditions 

(i) 8,.(-F)(x0) = -o,.F(x0 ); 

(ii) f;(x 0 ; v)fjt (x0 ; v) > 0 for all vEX and i = 1, ... , m; 
(iii) there exists <p0 Ea" F (x0) such that the mapping x-+ <p0 (x) is surjective, 

then a" F (x0) ( ·) is zero-separable. 

Proof. e, llell = 1, one can find by (iii) a vEX such that <p0 (v) = -e. It follows 
from (i) and Proposition 2.3 that for all ' t/1 = (t/11, .. ~, t/Jm) Ea <X F (xo) we have 

fj! (x0 ; v) ~ ljli (v) ~ fi (x0 ; v). 

Therefore by (ii) <p~ (v) ljli (v) > 0 and then ei ljli (v) < 0. Thus (e, ljJ (v)) < 0 for all 
lj!Eo .. F(x0 ). .• 

LEMMA 3.1 [12]. Let Cc X be convex and compact. Letf: X-+ R be locally 
Holder of degree r:x and r:x-subdifferentiable at x 0 . If f (x0 ) ~ f (x) for all 
x E C n B (x0 , b) and for some b > 0, then 

min max <p(v-x0 ) ~ 0. 
VEC <peiJ,.f(xo) 

We recall that a multifunction r: X-+ 2r is said to be upper Hausdorff 
semicontinuous (u.H.s.c.) at x 0 if for all e > 0 there is a neighborhood V (x0 ) of 
x 0 such that r(x) c B(r(x0 ), e) for all xE V(x0 ) . 

THEOREM 3.1. Suppose that . U c X is open, that C c X is convex, that L is 
a suhspace of X, that x0 E U n C n L and that F: U-+ Y is locally Holder of 
deyree :x, 0 < :x < I , and satisfies the .following conditions: 

(a) there is a neighbourhood V (x0 ) c U of x0 such that 0 =I- a" (- F)(x) 
c -a .. F(x) for xE V(x0)nL; 

(b) the multifunctions x -+ a~ F (x ), i = 1, ... , m, are u.H.s.c. on L at x0 ; 

(c) o,. F(x0 )( ·) is zero-separable on C n L-x0 . 

Then F (x0 ) E int F (U n C). 

Proof. All properties involved in the theorem clearly remain the same when 
the norm of space Y is replaced by an equivalent norm. As on a finite 
dimensional space all the norms are equivalent we can assume that the norm of 
Y is continuously differentiable at every. nonzero point. 

Take B = B(x0 , r) c V(x0 ). Let Ci, j = 1, 2, ... , be convex and compact 
subsets of X such that (cf. Halkin [7]) 

x0 ECi cC u {x0 }, 
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cc Uf=l cj. 
:- If there is an integer j 0 such that' 

t ·(x0 )EintF(Bn CiJ, 
. ' 
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... · ..,• 

; . ·' (1) 

then we can easily complete the proof. Indeed, if F (x0 ) i int F (U n C), there "is 
a sequence { Yk} such that Yk :;i: F (x0 ), .h--+ F (x~) and Yk iF (U' n C). By (1) 
ykEF(U n Cio) for k large enough. So there exist xkE U n Cio such that 
xk :;i: x0, xk i C,.and yk· = ··F (xk). Hence, xk ~ C u {x0}, Which contradicts the .fact 
that XkECio cCu{x0 }. .. ' 

To show (1) we suppose to the contrary tha~ 

~ F(x0)iintF(B n Ci)', · j= 1, 2 ... .-

Fix an arbitrary j. We can find a sequence zk--+ F (x0), zk iF (B n Ci). Put 
e~c=llzk -F(x0) 11 and ~.k(x) . =llz~c-F(x)ll. Since BnCinL is a complete 
metric space, by Ekeland's variational principle there is vk E B n C in L such 
that 

Since vk E int B for k large enough . and the functional P (x) =;.- ~k (;X) 

+AIIx-vkll attains the m.inim~n;:t on B0Ci':L at vk, by U:mma ?·1, ~e 
have · · 

max <p(v-vk) ~ 0 for all vECJnL. (2) 

Taking assumption (a) and Proposition 2.1. into account . we . get, for sQme 
lk = (If, ... ' 1;:'), lllk 11 = 1, . 

(3) 

Because of (b) and the continuity of <p, letting k--+ + oo, (2), (3)· and px:operty 
7 of the <{>"-convexity together yield 

... ma~ <p(v-x0 ) ~ 0 for all vECinL, 
tpEii= tP'ii«F(xo) 

where p· = (P1
, : .. ~ {r) is some limit of the sequence {lk}. Since Cc U'f'= 1 Ci we 

have · 

inf max <p(v -x0 ) ~ 0. 
'" . ' veC"L qJEI<= t/1'<',/(Xo) 

(4) 

On the other hand, by the zero separability on C n L-x0 of o,. F (x0)( ·) 
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there is v E C n L such that 

E'l'= 1 P;cp;(v-x0 ) < 0 for all cpEoaF(x0 ) . 

This contradiction to (4) concludes the proof. • 
EXAMPLE 3.1. Let X= R2

, Y= R, U = C =X, L = {(x, y)EXjax+by = 0}, 
(a, b, c and d are real numbers) and 

. . 
F(x, y) = lax+bylasgn(ax+by)+lcx+dylasgn(cxtdy), 

where 0 < a < 1 and 1: ~~ ::/:- 0. Then, direct computations give 

Fa((O, 0); (u, v)) = lau+bvl«sgn(au+bv)+lcu+dvl"sgn(cu+dv), 

oaF(O, O)(u, v) = {lcu+dvlasgn(cu+dv)} for (u, v)EL 

(this is an one-point set in Y = R), 

oaF(x, y) = {cp0 } if (x, y)EL\ {(0, 0)}, 

where cp0 (u , v) = lau + bvla sgn (au + bv). Therefore it is easy to verify directly 
that all the hypotheses (a), (b) and (c) of Theorem 3.1 are satisfied and the 
conclusion 0 E int F (R2) holds. 

REMARK 3.1. Example 3.1 shows a case in which a,. F (x) ::j:. {0} for all x on 
a subspace L of X. The following example assures us that oaF (x) may be different 
from {0} densely around a point x0 . 

EXAMPLE 3.2. Let cp: [0, 1]---+ R be defined by 

{
lxl 112 if 0 ~ x ~ ! 

cp(x)= lx-11112 if !<a~l. 
We extend cp to the whole R by cp (-x) = - cp (x) and cp (x + 2) = cp (x). Now let 
f: R ---+ R be defined by the formula 

f(x) = E~ 0 to- n cp(lO" x). 

Then f satisfies the Holder condition 

lf(x)-f(y)l ~ J2Hlx-yl 112 

where H = E:=o 10-"12 = (1-10- 112
)-

1
• Direct calculations yield o11d(O) 

= { 00 }, where 00 (ti) = H lvl112 sgn v. So o11d (0){ · )is zero-separable. Moreover, 
we can define by direct computations 

ot1d(2k w-·~) = {cps}, for k, s = 1, 2, ... , 

01td((2k-1) to-s) = {1/ts}, for k, s = 1, 2, ... , 
•'· 
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where 

cp.= (H(s)+lo-•12)lvl 112 sgnv, 

t/1. = (H (s)-lo-•12) lvl 112 sgn v, 

H(s) = .E:'=s+ll0- "12
• 
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4. Necessary conditions of optimality in problems with Holder data 

To our knowledge almost all known necessary conditions for optimality are 
in force only for problems with convex or Lipschitz data. In [6], [7] Halkin 
proved open mapping theorems and necessary conditions for problems with 
continuous data. But as shown by the lines below these conditions are also 
appropriate only to cases near to Lipschitz ones. 

At first we recall a notion and a result of Halkin in [7]. Let U c: X be open 
and F: U -+ Y be a mapping. A set S of linear operators of X into Y is said to 

· be a screen for Fat x0 E U if for any e > 0 and any r > 0 there is a be(O, r] 
with B(x0 , c5) c: U and a continuously differentiable mapping G: B(x0 , <5)-+ Y 
such that for all xeB(x0 , <5) we have IIG(x)-F(x)ll::::;: eb and G'(x)EB(S, e). 

Consider the following optimization problem 
minimize 9o (x), 

91(x)::;;O fori=-J.t, . .. ,-1, 

91 (x) = 0 for i = 1, ... , n, 

xeQ, 

(P) 

where 91, i = - JL, . . . , n, are defined on an open subset U c: X, and a c: X is 
a convex subset. 

The following interesting necessary condition in the multiplier rule form is 
due to Halkin: 

THEOREM 4.1 [7]. Assume that 9-,., ... , 9- 1 , 90 , gl> ... , g" are continuous in 
a nei9hborhood of x0 and admit compact screens S _ 11 , •• • , S" at x0 • If x0 solves 
problem (P) locally, then there exists a nonzero vector()._,., . .. , A.,.) such that 

(1) for some peE'/, -I'A.1S1 Wf have 

p(x0 - x) ~ 0 for all xeQ, 

(2) A.1 ::::;: 0 for i = -J,t, . . . , 0, and 
(3) A.191(x0) =<>fori= - J.t, .... , - 1. 

Moreover, if x0 E int Q, statement (1) can be replaced- by 

(1*) Oe.Ei=-~'A.1 S 1• 
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However, the condition that a mapping admits a compact screen is near to 
. that it is locally Lipschitz as we shall see below. 

DEFINITION 4.1. A mapping F: U--+ Y, U being open, is said to be weakly 
locally Lipschitz at x0 if there is a sequence b1 --+ 0 such that for all sequences 
X~:--+ X 0 , Z~:--+ x0 satisfying 0~: llx~:- zkll - 1 ~ N for some N > 0 we have 

THEOREM '4.2. If F: U --+ Y, U being open, admits a compact screenS at x0 then 
'' 

F is weakly locally Lipschitz at x0 . 

Proof. Since ,S is compact, IIAII ~M for some M> 0 and for all AeS. For 
any sk--+ 0 and rk--+ 0, there is bke(O, rk) with B(x0 , bk) c U and.a continuously 
differentiable mapping Gk: B(x0 , bJ--+ Y such that for all xeB(x0 , bJ we have 
IIGk(x) - F(x) ll ~ e1 bk and Gl,(x)eB(S, ek). For arbitrary xk, zkeB(x0 , bk) we 
have 

(5) 
k -+ 00 

In fact, s~ppose the contrary: that the(e exist subsequences, which are denoted 
by ti)e same notation to avoid double indices, such that 

lim llxk-zkll - 1 IIGk(xk)-Gk(zk)ll = + oo . 

Then for all k large enough 

II Gk(xJ-Gk(zJII > 3M ll xk-z~:ll. (6) 

Since G;.(z~)eB(S , ek) for each k, we have 

lim llz-zkii - 1· 11Gk(z)-Gk(zk)ll = IIG/.(zk)ll ~M +ek < 2M. 

So, for all z close enough to zk, II Gk(z) - Gk(zk)ll < 3M llz - zk ll, contra-
dicting (6): , 

Now let xk , zkeB(x0 ,bJ satisfy bk llxk-zkll-1 ~N. We have 

llxk-zk ii- 1 !11 Gk(xk)-Gk(zJ II - IIF(xJ-F(zk)ll! 

~ llxk-zk ll - 1 (IIGk (xk) - :F(xJII + II Gk(zk)-F (zk) ll) 

~ 2ekbk ll xk-zkll- 1 ~ 2ekN --+0. 

Hence a glance at (5) shows that F is weakly locally Lipschitz at x0 . · • 

Moreover, the following pr-oposition says that if F is not locally Lipschitz at 
x 0 then each compact screen for F at x0 approximates F not very well. 

PROPOSITION 4.1. If F: U ~ Y is not locally Lipschitz at x0 and admits 
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a compact screen S at x 0 , then, for any e" -+ 0, (j" -+ 0 and continuously 
differentiable mapping G" with Glc (x)eB(S, e.J for all xeB(x0 , b.J, we can find 
x .. , zk E B (xo, bJ such that T ' 

lim llx"-z"II- 1 (IIG"(x")-F(x")II+IIG"(z")- F(zJII) = +oo. 

Proof. Since F is not locally Lipschitz at x 0 there are x", z" E B (x0, b") for any 
o" -+ 0 such that · 

lim llx"-z"II - 1 IIF(x")-F(ik)ll = +oo. 

Then, we have, by ·(5), , l · 

u.x" -z" ll - 1 (IIGdxJ- F (x")ll + IIG" (z")-F(z")ll) 

~ lli"-z~tii- 1 I IIG"(x")- G"(z")II-IIF(i")-F(z") ll i-+ + oo. 
This completes the pr9of. . • 

Having seen that Theorem 4.1 cannot be applied to problems with Holder 
data we are sure that two following theorems may be useful. 

THEOREM 4.3. Let, in problem (P), Q = X and g;, i = - Jl, ... , n, be locally ·. 
Holder of degree a, 0 < a < 1, and satisfy the following conditions in a 
neighborhood of x 0 :· 

(i) 0 # aa( -gJ(x) c - aagi(x); 
(ii) the multifunctions x-+ 8czg_;(x) are u.H.s.c. at x0 • 

If x 0 solves problem (P) locally, then there exists a vector f3 = (/3 - ~', ... 
.. ·, /3n). 11/311 = 1. such that 

Proof. Denote 

... 
OeCoxL'i= - ~' /3; 8czg;(x0 ). t · ' •·· · ' •: (7J 

M(x) = {ie{ -jl, ... , -1}/gi(x) = 0}, 

I 

'· : 

A={x/g;(x)<O for all ie{-Jl, ... , -1} \ M(x0)}, 

V=AnU. 

Then V is open and x0 E V. We define a mapping ·F: V-+ R~'+n + 1 by 

F (x) = (g - 1, (x), ... , g0 (x), ... , gn (x)). 

F clearly satisfies the assumptions (a) and (b) of Theorem 3.1 with C = L = X. 
On the other hand, F {x0 ) ~ int F (V). Were this false, there would exist e > 0 

such that · 

(L~', ... , t0 , 0, ... , O)eF(V} 
. ~ . . . 

(or ti (g;.(x~);e, gJxJ)~ ' ... '·' . 
"I _; ".. • • • • 

for i E {- Jl, ... , - 1, 0} \ M (x0 ), i.e.~ x0 were , not a local solution of (P). 
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By Theorem 3.1, a« F (x0 ) ( ·) must not be zero-separable. So there exists 
fJ = (fJ~"'' .. . , /3,), 11 /311 = 1, such that for each vEX, there is 81Eo«g1(x0), 

i = - f.J., .•. , n, with L:i= _"' /31 81(x) ~ 0. Then by virtue of property 6 of the 
q,cr-convexity we obtain (7). • 

In [12] the case Q =X was considered when X is a Banach space (infinite 
dimensional) and · we obtained the following necessary condition 

OECox U (ocrg1(x0)uo«lgj(x0 )1) (8) 
i = - JJ , ... ,o 
j=l, .. . ,m 

without the assumption (i). In general, none of inclusions (7) and (8) is stronger 
than the other. The advantage of (7) is that it has a form closer to the classical 
multiplier rules. 

The assumptions of Theorem 4.3 are not necessary to obtain (7) as 
explained by the following example. 

EXAMPLE 4.1. Consider the problem 

g0 (x) = lx-11112 + lx-21112 sgn(x-2)-+ min , 

g 1 (x) = lx-11112 -1 ~ 0. 

It is easy to see that the solution is x 0 = 1, g0 (x0 ) = - t. Direct calculations 
give: g01/2(l; V)= IVI112, ( - go)1/2(1; V)= - lvl 112, 0112g0(l) = {X-+ !axl1'2· 
·sgn(ax)/lal~ l}, o112(-g0)(1)=0. So the assumptions ofTheorem 4.3 are 
not satisfied. But 

OE cox(L8t12 go (1)+ o.o112 g1 (1)). 

THEOREM 4.4. Let, in problem (P), gi , i = - f.J., .• • , n, satisfy the conditions (i) 
and (ii) of Theorem 4.3. If x 0 is a local solution, then there is fJ = (fJ _11 , ••• , {3,.), 
11/311 = t, such that 

inf max ~(v-x0) ~ 0. 
vea .eeE~ ~- ,.{J;iJ.g;(:ro) 

Proof. Put V=UxR"+"+ 1 and define Q:V-+R~-'+"+ 1 by 

Q(x, w) = F(x)-w, 

F(x) = (g-,_.(x), ... , g0 (x), ... , g,.(x)). 

Set 

W = {w ={w- ,., ... , w,)ER~-'+"+ 1/g1 (x0)+w1 ~ 0 

for i = -p, ... , -1, w0 ~ 0 and w1 = 0 for i = 1, ... , n}. 

Denote C = Q x W. Then C is convex. 
If Q(x0 , O)EintQ(V n C), we see that 

F(xQ) = F(z0)-w 
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for some z0 in U n Q and some win W with w0 < 0. Therefore, z0 is a feasible 
point of problem (P) with 

i.e., x 0 is not a solution. Hence, 

Q(x0 , O)~intQ(V n C). 

To defme a .. Q (x , w) we have, for (x, w) close enough to (x0 , 0), 

Q~((x, w); (v, 1:)) = lim supr"[gi(x+A.v)-(wi+).,;J-(gi(x)-wi)] 
.4!0 

= 9ia(x; v) for i = -jl, ... , n. 

Consequently, o,.Q(x, w) = o"F(x), or equivalently, o~Q(x, w) = oagi(x), 
i = - Jl, ... , n. It follows that Q satisfies assumptions (a) and (b) of Theorem 3.1 
with L = X and then oa: Q (x0 , 0)( ·)must not be zero-separable on C- (x0 , 0). 
Hence there exists P = (P- ,., ... , p,) IIPII = 1, such that 

Since 0 e W, this implies that 

inf max ~ (v- x 0) ;;?; 0 . 
ven ~ex7 = - ,./llii.,gl(xo) • 

The authors express their sincere thanks to Professor S. Rolewicz fqr 
valuable remarks and advice. 
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Twierdzenie o otwartym przeksztalceniu Holdera i warunki konieczne optymal
noSci w zadaniach opisanych funkcjami spelniaj~cymi ·'Yarunek Holdera 

Wprowadzono subgradienty Holdera dla przeksztalcen w przestrzeniach skonczenie wymia
rowych i udowodniono twierdzenie 0 przeksztalceniu otwartyrn dla lokalnie holderowskich 
przeksztalcen. Zastosowanie tego twierdzenia pozwolilo na wprowadzenie warunk6w koniecznych 
w postaci uog61nionej reguly rnnoi nika dla zaqan opisanych funkcjami spelniaj(lcymi warunek 
Holdera. - - ' 

TeopeMa o6 oTKpLITOM reJILAepoaoM npeo6pa:~oaauHH u ueo6xo.r.HMLie yCJIQBRH 
ODTHMaJILHOCTR 8 13A8'13X ODHCLIBaeMLlX cJ-YJIK .... HMH YAOBJieTBOpHIO~H 

YCJIOBHe renL.r.epa 

Bse~eHLI cy6rpa.llHeHTbl reJib~epa .lJ,JlJI npeo6pa30BaHHii B KOHe'fliOMepHhiX npocrpauctsax 
H ~0Ka3aHa TeOpeMa o6 OTKphiTOM npeo6pa30BaHKH .lJ,JlJI JIOKaJII>HO reJib~epOBbiX npeo6pa30· 
BaHHH. IlpHMeHeHHe :lTOH TeOpeMhl D03BOJIWIO BBeCTH He06XO~Mble YCJIOBHll B B~e o6o6IUeH
HOfO npaBWia MHOliCBTeJill Mll 3a~a'l OIDfChiBaeMbiX <jlyHKUHRMH, y~OBJieTBOpli101UHMH ycJI~BHe 
renbJJ.epa. 


