
Control 
and Cyllemetks 
Vol. 16 (1987) No. 3-4 

Stability of linear programming problems in Banach spaces 

by 

NGUYEN DINH HOA 

Faculty of Mathematics and Mechanics 
University of Hanoi 
Hanoi, Viet-Nam 

In the present paper we investigate the stability of general linear programming problems in 
Banach spaces. We formulate a condition which is sufficient and "almost" necessary for the 
existence of optimal solutions and for the boundedness of the optimal sets of both linear 
programming problems, the primal and the dual one. lt turns out that the same condition is both 
necessary and sufficient for the stability of the linear programming problem in the sense that it has 
optimal solution under small perturbations. Moreover, we show that the optimal value and the 
optimal set depend continuously on perturbation parameters. 

Introduction 

For getting stability of mathematical programming problems, that is the 
existence ·of optimal solutions under small perturbations, the continuous 
dependence of the extremal value and the optimal set on perturbation 
parameters, or also the differential properties of the extremal value function as 
a function of the perturbation parameter, we need the so-called regularity 
conditions. These conditions can be either local or global ones. Precisely, in 
order to show that the problem is stable in some sense, one has to assume 
either a certain regularity condition is fulfilled at one of its optimal solutions 
[1, 5, 6, 7], or the system of constraints satisfies another regularity condition 
under perturbations [3, 4, 10, 2]. In general, these regularity conditions, local 
or global, are sufficient conditions for stability. For the case of finite-dimen
sional linear programming problems Robinson [10] has established a regula
rity condition which is both necessary and sufficient for stability. Precisely, this 
condition is equivalent to the solvability of two dual problems and the 
boundedness of their optimal solution sets, and then, to the solvability of the 
perturbed problems. Moreover, the optimal set map is shown to be "upper 
Lipschitz semicontinuous". Later, Asmanov [2] has obtained similar results 
with the regularity condition of other form. It turns out, as we can see at the 
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end 'of this paper, that the regularity conditions formulated by Robinson and 
by Asmanov, are equivalent. 

In this paper we will analyse stability of the general linear programming 
problem in Banach spaces. We will formulate two regularity conditions for the 
systems of constraints of the primal and the dual problem and then we will 
show that they are both necessary and sufficient for the stability of both 
problems. Since these conditions are shown to be equivalent to that of 
Robinson [8, ·1 0], some results for the finite-dimensional case are involved here 
as a special case. 

In section I we will show that the regularity conditions (RP) and (Rd) imply 
the existence of optimal solutions for both dual problems and, moreover, the 
optimal sets are bounded. In Section II we improve lightly one result of 
Robinson [8] on the stability of the linear system of inequalities. We will state 
and prove the main result of the paper (Theorem). Moreover, we will prove 
that the extremal value function is continuous and the optimal set map is upper 
semicontinuous under the formulated regularity condition. 

1. Regularity and boundedness of the optimal solution sets 

Let X and Y be two Banach spaces; e and K be two nonempty closed 
convex cones in X and Y, respectively. We can use e and K to induce two 
partial order on X and Y, respectively, by defining x1 ~cx2 if x2 -x1 ee and 
Y1 ~KY2 if Y2-Y1EK. 

Let A be a continuous linear operator from X into Y, A E !l' (X, Y); c* be 
a continuous linear functional on X, c* ex*; b be an element of Y. We consider 
the following general linear program: 

(&') 

and its dual problem: 

(.@) 

{

mtmmtze 

subject to 

( c*, x) 

Ax ~Kb 

X ~eO 

{

maximize 

subject to 

(y* , b) 

A* y* ~co C* 

y* ~ Ko O 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

where e o and K 0 are the conjugate cones of e and K in X* and Y*, 
respectively~ A* is the conjugate operator of A, A*e!l'(Y*, X*), 

e o = {x*eX*: (x*, x) ~ 0 'r;fx ee}, 

K 0 = { y* E Y*: < y*, y > = 0 'r;f y E K}. 
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Let us denote by ex0 and /30 the extremal value of the two problems (&') and 
(~), respectively. We set ex0 = + oo (/30 = - oo) if the problem (&') ((~) 

respectively) is infeasible. Let P and D denote the optimal solution sets of the 
problems (&') and (~), respectively. 

It is easy to show the following relation: if x is a feasible solution for (&'): 
Ax ~ b, x ~ 0 and y* is a feasible soluti?n for (~): A* y* ~ c*, y* ~ 0 then 

( c*, x) ~ ( y*, b) (1.7) 

We consider also two linear systems of inequalities associated wit~ both 
problems (&') and (~): 

{

(c*, x) ~ex 

Ax ~ b and (9"11) 

x~O 
{

(y*, b)~ /3 
A* y* ~ c* 

y* ~ 0 

Let Pa. and Dll denote the solution sets of two systems (9" J and (9"11), 
respectively. 

When the problem (&') has optimal solutions, its optimal solution set 
P coincides with the solution set of(9"a.) with ex= ex0 i.e. P = Pa.o· Moreover; we 
have 

PROPOSITION 1.1. Suppose that X is reflexive. The problem (&') has optimal 
solutions, i.e. P =I= 0, and the optimal solution set P is bounded if and only if 
there exists a number ex such that the system (.9' a.) is solvable and the solution 
set P a. is bounded. 

Proof. By the observation above we need only to prove that the existence of 
such a number ex implies that the problem (&') has optimal solutions and the 
optimal set P is bounded. The solvability of the system (9" J implies 
ex~ ex0 = inf { (c*, x): Ax ~ b, x ~ 0}. Moreover, cx0 > - oo because, if it were 
not the case, the set P a. is not bounded. Hence, the problem (&') is equivalent to 
the following problem: 

{
minimize ( c*, x) 

subject to x E P a. 

It is easy to show that Pa. is convex and closed, therefore, it is weakly closed. 
The weakly continuous linear functional c* on X need attain a minimum in the 
weakly closed and bounded set Pa.. Since Pa. is bounded, the optimal solution 
set is, of course, bounded. 8 

By the same way we can formulate and prove an analogous proposition for 
the dual problem (~)-

DEFINITION. The system of constraints of the problem (&') is said to be regular 

AC+K-R+ b = Y 
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· The system of constraints of the problem (~) is said to be regular if 

(RJ 

where R + is the set of nonnegative numbers. 

REMARK. We notice that the regularity condition presented here is similar to 
that of Zowe and Kurcyusz [11], but the latter is a local condition at some 
feasible point. Fortunately, we deal with the linear case of the programming 
proble~ and, therefore, we can establish a global condition which ensure that 
the constraints "behave well" at every feasible point. 

The following theorem states that the regularity is "almost" necessary and 
sufficient for the boundedness of the optimal solution sets of the problems (&') 
and (~). 

THEOREM 1.2. 
(a) The optimal solution set D of the dual problem (~) is bounded if the 

condition (RP) is satisfied. 
(b) The optimal solution set P of the problem (&') is bounded. if the 

cop-dition (Ra) is satisfied. 
Conversely, if D is bounded then cl{AC+K-R+ b} = Y 

if p is bounded then cl {-A* K0 + C0 + R + c} = X 

Proof. (a) We consider the product space X x R, with ll(x, ~) 11 = max { llxll, 
lW and define a set-valued map Q from X x R into Y by setting 

if XE C, ~ ~ 0 
otherwise. 

Q is called the augmented operator associated with the linear system of 
ineq~alhies (1.2) (1.3). The graph of Q is a closed convex cone, i.e. Q is a closed 
convex process. The condition (RP) implies that OE Y is an internal point of the 
range of Q. Hence the map Q is locally surjective at 0 E Y: there exists a number 
(! > 0 such that QBxxR ::::> eBr where BxxR is the unit ball in X x Rand BY is 
the unit ball in Y. This means that for every yE Y with 11 yll :::;; e there exist an 
xEC with llxll:::;; 1 and a number~. 0:::;; ~:::;; 1 such that yEAx-~b+K or, 
equivalently, y = Ax+~b+k where kEK. We have llkll :::;; IIAII + llbll +e. 

To show the boundedness of the optimal solution set D of the problem(~) 
we rewrite 

D = DPo = {y*E Y*: A* y* ~ c*, y* ~ 0, (y*, b)~ /30 } 

Fixing y* E D, we will prove that the set D-y* is bounded. In fact, for every 
yE Y with 11 yll :::;; e we have: 

(y*-y*; y) = (y*-ji*, Ax-~b+k) 

= < y* - Y*, Ax) - ~ < y* - y*, b) + < y* - y*, k) 
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= (A* y*, x)- (A* ji*, x) -·~ [ ( y*, b) - /30] 

+~[(ji*, b)-/30]+(y*, k)-(ji*, k) 

~ ( c*- A* ji*, x) + ~ [ ( ji*, b)- /30]- ( ji*, k) 
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where y* is an arbitrary element of D. We get that by disregarding the 
nonpositive components in the right-hand side. The right-hand side now does 
not depend on y*. This means that the linear functionals 'of form y* - ji* with 
y* E D are uniformly bounded on the ball qB r· It implies, by linearity, that 
D- ji* is bounded on the norm of Y and, therefore, · D · is bounded. · 

(b) Similarly as in the part (a) we get a number [> such that for any fixed 
:X E P and any x* EX* with llx* 11 ~ [> the set { (x*, x - :X): x E P} is bounded. It 
implies, by linearity, that the set { (x* , x - x) : x E P} is bounded also for any 
x* EX*. Hence, P is weakly bounded and, therefore, is bounded in the norm of 
X since X is a Banach space. · 

The rest of the Theorem can be proved by the same reasoning as in E I 1]. • 

THEORFM 1.3. Let X and Y be reflexive. Assume that two conditions (RP) an~ 
(RJ) are .fi~lfilled. ·Then, the problems (&') and (.@) have optimal solutions. · 

Proof. We observe that the condition (RP) implies the existence of a feasible 
point :X for the primal problem (&') and, analogously, the condition (Rd) implies 
the existence of a feasible solution ji* for the dual problem (~). From the 
relation (1.7) we have: 

(c*, x> ~ a0 ~ Po ~ < y*, b) 

Take a number a ~ (c*, :X) and a number {3 ~ ·( ji*, b) . The systems (9"..) 
and (.c:t'11) are solvable. We ca n show, by the same way as in the proof of 
Theorem 1.2, that the solution sets P a. and Dfl for these systems are bounded. 
Hence, we can conclude by the force of Proposition 1.1, that both problems (&') 
and(~) have optimal solutions and, in addition, the optimal sets are bounded, 

2. Regularity and stability of linear programming problems 

Consider the perturbed problem of (&'): 

{
minimize ( c;, x ) 
subject to APx ~ bP 

x ~ O 

(2.1) 

(2.2) 

(2.3) 

where p is viewed as the perturbation parameter, which varies in a linear 
topological space Z and c; EX*, APE .9' (X, Y), bP~ Y , an.d cJ :...t c; AP ~ A, 
bP~ ·b as p-~0. · ·· ·- · · 
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We define the extremal value function 

(p = {inf{(c;, x): APx ~bP, x ~ 0} 
f ) + oo if the problem (giJ P) is infeasible 

Denoting by P (p) the optimal solution set fo~ the problem (giJ p) 

P(p) = {xeX: APx ~bP, x ~ 0, <c;, x) = f(p)} 

and setting P(O) = P we get a set-valued map from Z into X. ' . 
Under the term "stability" for the problem (.?1') we mean the continuity of 

the extremal value fu'nctionf (. ); the semicontinuity· of the set-valued map P (.) 
at p = 0 or, sometimes the weak sense, the existence of optimal solutions for 
problems (giJ p) with all p belonging to a neighbourhood of 0 e Z. 

Since stability of the optimization problem strongly depends on the 
behaviour of its system of constraints, before treating it, we recall some known 
results on the stability of linear systems of inequalities. 

Consider the linear system of inequalities (1.2) (1.3) 

(I) 

and 

{
Ax ~ b 

x~O 

the perturbed system (2.2) (2.3) 

Let us denote the solution sets of the systems (I) and (I P) by F and F (p), 
respectively. Setting F (0) = F, we get a set-valued map F (.) from Z into X. 

In [8] Robinson has proved that the condition 

beint(AC+K) (2.4) 

is necessary and sufficient for the stability of the system (I) in the sense that the 
perturbed systems (lP) are solvable for all p being close enough to 0 E Z, and 
moreover, the distance from any point x to the solution set of (I,) can be 
estimated with the help of a "measure of infeasibility". 

We notice that the condition (2.4) and the regularity condition (RP) are 
equivalent [8, 12]. 

Assumming, in addition, the boundedness of the solution sets F and F (p) 
we can improve the result of Robinson. 

PROPOSITION 2.1. Assume that the condition (2.4) is fulfilled and the solution 
sets F and F (p) of the systems (I) and (lp), respectively, are bounded. Then, the 
set-valued map F ( . ): Z-+ X is continuous at p = 0. 

Proof. Let Q and QP be the augmented operators associated with the systems 
(I) and (lp), respectively; Q- 1 and ,Q; 1 be the inverse operators and IIQII, IIQ; 1 11 
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. . . be the norms of Q and Q; 1 considered as the convex process (for the 
definitions see [8]). Set eP(x) = d(bP - APx, K). l!p(x) is a measure of the 
infeasibility of x with respect to the system (Ip). For every x E F, e P (x) 
~ (IIAP-AII + llbP-b ll) max(l , llxll ). Since F is bounded eP(x) uniformly con
verges to 0 on F as p -t 0. 11 Q; 1 11 is uniformly bounded for all p belonging to 
a neighbourhood of OeZ (see [8, Theorem 1]). Hence, we can choose 
a neighbourhood ofOeZ such that II Q; 1

11 eP(x) < 1 for all p belonging to this 
neighbourhood and for all xeF. We get now the · estimation (see [8, 
Theorem I]) 

d( F(p))~ II Q;
1

IIep(x) (1+ 11 11) 
x, ""'1 -IIQ; 1 IIep(x) x 

for all xeF. Then, d(F, F(p)) = sup d(x , F(p)) converges to 0 as p-.. 0. 
x e F 

We exchange now the roles of systems (I) and (lP). We treat the system (I) as 
a perturbed system of(IP). The system (IP) is regular if pis close enough to OeZ 
(see [8, Theorem I]). Then we have also the estimation 

~ IIQ - 1 il e(x) 
d(x,F)..., 1- II Q 1 II Q(x)(l+llx ll) (2.5) 

for all xeC such that II Q- 1 ile(x)< 1, where e(x)=d(b - Ax,K). 
In order to show that d (F (p) , F) -.. 0 asp -t 0 we need to prove the uniform 

boundedness of the solution sets F (p) for all p belonging to a neighbourhood of 
OeZ. 

In fact. we have F c rB'" We will prove that there exists a neighbourhood 
of 0 E Z such that for all p belonging to this neighbourhood F (p) c (r + 1) Bx. If 
it were not the case, we could pick out a sequence {Pn}, Pn -t 0 and a sequence 
{ x"}, x" E F (p") and 11 xn 11 = r + 1. The existence of such sequences follows from 
the convexity of the sets F (Pn) and the fact that there exists x~ E F {p") with 
llx~ ll ~ r+! because d(F, F(p)) -t 0. 

We have e (xJ ~ IIA - APJ llxnll + l!b - bPJ. Hence, Q (x") converges to zero 
as n -too. We can assume, therefore, that IIQ- 1

11 Q (xJ < 1 and get the 
estimation 

for all n large enough. Let n -.. oo, the right-hand side converges to zero. It 
implies, by force, that d (x", F) is convergent to zero as n -t oo, which is 
impossible because llxnll = r+ 1, while F c rBx. 

Since the sets F (p) are uniformly bounded for all p belonging to a neigh
bourhood of 0 E Z, we can show, similarly as above, that there exists 
a neighbourhood d/1 of 0 E Z such that for all p E d/1 and for all x E F (p), 
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IIQ- 1
11 {! (x) < 1. Hence, by (2.5) we get · 

~ IIQ- 1 11 q(x) 
d(x, F).._, 1-IIQ 111 l! (x) (r+2) 

for aU .xeF(p). It implies that d(F(p), F)-+ 0 as p-+ 0. 
Analogously, similar statements can be made and proved for the dual 

problem (~) with the perturbation (~ p). The regularity condition for the system 
(1.5) (1.6) is the following: 

c* E int (A* K 0
- C0

) 

and this is equivalent to (Rd). 
Now we are in position to deal with the stability of the linear programming 

problem (9'). 

THEOREM 2.2 Let X and Y be two reflexive Banach spaces. The dual problems 
(&') and (~) are stable in the sense that the perturbed problems (&' p) and (~ P) have 
optimal solutions for all p close enough to 0 E Z if and only if two conditio11s (Rp) 
and (Rd) are fulfilled. 

Proof. It is easy to see that the conditions (Rp) and (Rd) are necessary for the 
stability of both problems (&") and (~), because in the case of stability both 
systems of constraints (1.2) (1.3) and (1.5) (1.6) need be stable and, therefore, the 
conditions (RP) and (Rd) hold. 

Now we show that they are also sufficient. Indeed, (RP) and (Rd) imply that 
the following systems: 

are regular. By Theorem 1.3, the problems(&') and(~) have optimal solutions. 
Then, a0 > - oo and {10 < + oo . Take rx > rx0 and {J < {10 . The systems (SI' a) 
and (9'11) are regular ([8, Theorem II]). Hence, the perturbed systems 

and 

are regular for all p being close enough to OeZ. Let us denote by Pa(p) and 
D11 (p) the solution sets of these systems, respectively. Similarly as in the proof of 
Theorem 1.2, we can show that the sets Pa: (P) and Dfl (p) are bounded. 

Since the systems (SI'a) and (SI'~) are solvable and their solution sets are 
bounded, the perturbed problems (&'P) and (~p) have optimal solutions for all 
p close enough to Oe Z (Prop. 1.1). . 8 

We investigate now the continuity of the functional f (.) and the map P (. ). 
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THEOREM 2.3. Let X and Y be two reflexive Banach spaces. Assume that two 
conditions (RP) and (R4) are fulfrlled. Then, the functional f (.) is continuous at 
p = 0 and the set-valued map P ( . ) is upper semicontinuous at p = 0. 

Proof. From the proof of Theorem 2.2 we see that the problem (~) is 
equivalent to the following problem: 

{
minimize ( c*, x) 

subject to x E P2 

and the perturbed probiem (!31J P) is equivalent to 

{
minimize (c;~ x) 

subject to xePa.(p) 

Since the system (.9' J is regular and the solution sets Pa. and Pa.(p) are 
bounded, as we have noticed in the proof of Theorem 2.2, the set-valued map 
Pa (. ): Z- X is continuous at p = 0 by the force of Proposition 2.1. 

Take an arbitrary sequence {Pn} converging to zero. We need to show that 
lim f (p,) = a0 . Since the problem (9 PJ has optimal solutions for all n large 
n-oo 

enough, we can find an x" E P (p") such that 

(2.6) 

where e is an arbitrary positive number. Because the sequence {x"} is bounded, 
we can assume, without loss of generality, that it converges weakly to x. Then, 
(c;,, x") is convergent to (c*, x) because we have 

l<c;", xn)-(c*, x) = l<c;", xn)-(c*, xn)+(c*, xn)-(c*, x)l 

:::; llc; .. -c*ll llx,. ll+l(c*, xn)-(c\ x)l 

and the right-hand side converges to zero as n- oo. 
Now we show that x E P ,. We notice, first, that .x ~ 0 since x, ~ 0 for all 

nand the cone C, which is closed and convex, is weakly closed in consequence. 
Further, we verify that Ax:::; b. Writing (AP"x" - bPJ = (Av"x,-Ax") 
+(Ax"-bPJ and letting n -+ oo we get that (Ap .. xn-bp) weakly converges to 
Ax - b. Hence, b-AxeK or, equivalently, Ax:::; b, since (bP" -AP .. x")EK for 
all n and the cone K, which is closed and convex, is weakly closed. 

From (2.6) we get 

(2.7) 

Let .x be an optimal solution for the problem(.?/'). i.e. (c*. .i) = a0 . By the 
semicontinuity of the set-valued map P a ( .) at p = 0, we can find a sequence 
fx,1. such that x, E P, (p) and x,-+ .f. We have <c;.,. x,) ~ .f(p,). Letting 
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n ~ oo we get 
1Xo = (c*, x) ~ limsupf(pn) (2.7') 

Since e is an arbitrary positive number, it follows from (2.7) and (2.7') that 
lim f (p,J = cx0 • This proves the continuity of the functional f (.) at · ·p = 0. 

Now for showing that the set-valued map P (.) is upper semicontinuous at 
p = 0 we need only repeat the same reasoning as in the proof of the inequality 
(2.7) but for the sequence x" E P (p") i.e. xt( is an optimal solution for the 
perturbed problem (.9 PJ 

Now we consider, for instance, a special case when the problem (.9) is 
finite-dimensional with X = Rn, Y = R"', C = Rn, K is the nonnegative cone in 
R"' and A is a matrix m x n. Precisely, the problem (9J) in this case becomes 

The dual problem is 

{
minimize ( c, x) 

subject to Ax-b ~ 0 

{
minimize - ( b, y) 

subject to Ary-c = 0, y ~ 0 

The condition (R4) becomes 

AT ( - K 0 ) + 0 + R + c = R" 

It is exactly the condition that the convex cone generated by the vector c and 
the rows of A coincide with R". The condition (RP) becomes 

AR"+K-R+ b = R"' 

or, equivalently, cone {±at> ... , ±an, et> ... , e,., -b} = R"' where a1 , ..• ,an 
are the columms of A; e1 , .•• , e,. are the unit vectors. We obtain again the 
regularity conditions, which have been presented in [2]. 
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.· 
Stabilnosc zadan programowania liniowego w przestrzeoiach Banacha 

W pracy bada sit:; stabilnosc og6lnego zadania programowania liniowego w przestrzeniach 
Banacha. Sformulowano warunek, kt6ry jest koniecznym i ,prawie~ dostatecznym dla istnienia 
rozwi~zan optymalnych i dla ograniczonosci zbior6w optymalnych zar6wno w zadaniu pierwot
nym jak i dualnym. Okazuje sit:;, ze ten sam warunek jest zarazem konieczny i wystarczaj~cy dla 
stabilnosci zadania programowania liniowego w sensie posiadania rozwi!lZ<lnia optymalnego przy 
matych zaburzeniach. Pokazano takze, ic wartosc funkcji celu w rozwi!l.l3niu i zbi6r optymalny 
zalez~ w spos6b ci~tgty od parametr6w zaburzen. 

Y cTOHifiiBOCTb 3a~a'l .'IDHeiinoro nporpaMMHpoBaHHH B 6anaxoswx 
npocrpanCTBax 

B pa6oTe HCCJie,L(yeTcll ycTolf'IHBOCTb o6o6JI(eHHolf Ja,L(a'IH JIHHelfHoro nporpaMMHpoBaHHll . 
B 6aHaXOBbiX npOCTpaHCTBaX. <J>opMynHpyeTCll YCJIOBHe, KOTOpoe JlBJllleTCJI HeOOXO.IUIMblM 
H ,ITO'l"TH" ,L(OCTaTO'IHblM ,L(Jlll cyli(ecTBOBaHltsl OUTHMaJib!lhfX peUieHHH H OfpaHH'ICHHOCTH 
OITTHMaJibHbiX MHO)i(CCTB, KaK B HCXO,L(BOH TaK H .LlYaJibHOM 3aAa'iaX. 0Ka3biBaeTCJl, 'iTO 3TO )((C 
YCJ!OBHe liBJilleTCll O,L(HOBpeMCHHO He06XO)lHMbiM H ,L(OCTaTO'iHbiM ,L(Jlll yCTOH'IHBOCTH Ja)la'IH 
JIHHCMHOfO nporpaMMiipOBaHHll, B CMbiCJie cymeCTBOBaHHll OllTHMaJibHOrO pernCHH11 ITpH MaJibiX 
B03Myli(CHHliX. IloKaJaHO TaiOKe, '!TO 3Ha'leHHe <jlyHKUHH UeJ!H B pernemrn. H OllTliMaJibHOC 
MHOJI(eCTBO 3aBHCliT HenpepbiBHblM o6pa30M OT napaMeTpOB B03MYII(eHl!R. 




