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This paper considers a finite horizon stochastic production control problem, where the 
demand rate is a stochastic process described by bilinear stochastic differential equation. The 
closed-fonn solution for optimal feedback policy is_ given. 

1. Introduction 

Set hi and Thompson [ 1 ], [2] considered stochastic production- inventory 
model with quadratic loss function defined in terms of the deviation of 
production and inventory levels from their rated or factory - optimal values. 
They assumed that the control and state variables are the production rate and 
the inventory level respectively. These variables are related between them in the 
form of the Ito stochastic differential equation. Therefore the production rate 
and the inventory level are stochastic processes and the demand rate was 
assumed constant and known. The diffusion coefficient was also cqnstant so 
that the perturbation effect of the Wiener process was independent of the 
inventory level. Closed-form solutions for optimal feedback production policy 
for both finite and infinite horizon versions of the model without production 
nonnegativity constraint were obtained. 

The model considered in this. paper can be treated as an extension to the 
model p~;esented in [1], [2]. We assume here that the demand rate is not 
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constant but is a stochastic process described by means of the bilinear 
stochastic differential equation. Moreover, the perturbation effect of the Wiener 
process in the stocbastic differential equation, relating the production rate and 
the inventory level, is supposed to depend currently on the inventory level. We 
give the optimal feedback solution to our finite horizon problem without 
production nonnegativity constraint. 

2. Statement of the problem 

Consider the problem of determining the mm1mum cost production
-inventory schedule for a homogeneous commodity, over a fixed planning 
horizon [0, 1]. · 

Define the following quantities: 
xt = inventory level at time t (state variable) 
ut = pmduction rate at time t (control variable) 
Yt = demand rate at time t (uncontrolled state variable) 
z1 = factory- optimal (given) inventory rate at time t 
vt =factory-optimal (given) production rate at time t 

x 0 =initial inventory level 
y0 = initial demand rate 

(w1t> w2 t) =the standard 2-dimensional Wiener process 
u 1 , u 2 , e = the constant diffusion coefficients 

a = drift coefficient 
a = production cost coefficient ( > 0) 
b = inventory holding cost coefficient ( > 0) 
c = the penalty coefficient ( > 0) 
T = planning horizon. 

The conditions of the model: 

dxt = (ut - Yt)dt+(u 1 +ext)dw1 t> x 0 = x0 

dyt = Yt(adt+u2 dw2t) , y0 = y0 

1" 
minE {J [a (ut- vt)2 + b (xt-zYJ dt + ~ (x1" _:_ z7")2

} . 
0 ' 

(1) 

(2} 

(3) 

(1) is the balance equation in a differential form, and it expresses relation 
between inventory level, production rate, demand rate and random distur
bances. The latter are .represented by the term (u1 +Qxt)dww which can be 
interpreted as "sales returns'', "inventory spoilage" etc. (see [3], where Q = 0). 

(2) describes the behaviour of the ·demand process in the form of stochastic 
bilinear differential equation. 
·· - The description of the random economic processes such as price or demand 

fluct.uations in the forin of linear stochastic· equations (see Albouy [ 4], Aoki 
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[5]) is not adequate to the economic reality, since the trajectories of the linear 
stochastic processes (Ornstein- Uhlenbeck proc~sses) can vary from - oo to oo. 
For that reason the price fluctuations in Merton's portfolio selection model 
[6], were described by the bilinear stochastic process, with the trajectories 
varying from 0 to oo. 

Our motivation for modeling the demand process in the form of equation 
(2) can be summarized as follows: 

(i) the trajectories of eq. (2) vary between 0 and oo (assuming that y0 > 0). 
(ii) Many probabilistic aspects of b.ilinear processes were widely discussed 

in various publications, e.g. see [7] and papers cited there. 
(iii) The case, where an increment of the demand (in .time t) is proportional 

to the value of the demand (in time t) with the random coefficient of 
proportionality (ex dt + u 2 dw21), is very interesting from the economic point of 
v1ew. 

3. Solution to the problem 

The solution of the model (1), (2), (3) will be carried out via the development 
of the Hamilton-Jacobi- Bellman equation. Let W = W(t, x, y) denote the 
expected value of the control problem (1), (2), (3), so that W(t , x 0 , y 0 ) 

represents the value of the objective function (3) subject to the state equation 
(1), (2). Then it can be shown that W(t, x , y) satisfies the following Hamilton
Jacobi- Bellman equation (see [8]): 

u2 + 211U x + 112 x2 u 2 y2 
W.+ 1 o:: 1 o:: W +-2-W + 

t 2 XX 2 YY 

u 

with the boundary condition 

Wy = c(xy-zy)2
• (5) 

From (4) we have 

Substituting uopt into (4) yields the following Hamilton- Jacobi- Bellman 
equation 

u2 + 211U x + 112 x2 u2 y2 W,2 
w.+ 1 0: 1 0:: w +-2-w X UJ' + w + 

I 2 XX 2 JIJ- 4a-Y"x cxy y 



88 T. BANEK. 0 . GEDYMIN 

To solve (6) we let 

W(t, x, y) = cx11 xz.+a12 xy+a22 y2 +P1 x+f32 y+y. 

After computing all the derivatives of W, we substitute them into (6) and 
after collecting terms we get 

(J2 

tXu X2 + a12 xy+ li22 Y2 + Pt X+ tJ2 y +y +-f 2<Xu + 

+ 2ea 1 1X11 x +a~ <X22 y
2

- L (2a11 x + <X12 y + {31)
2 + QIX 11 x

2 

- y(2a11 x+a12 y+ {3 1)+ay (a12 x+2a22 y+ {32)+ 

+b(x-z)2 +v(2a11 x+a12 y+f31) = 0. (7) 

Since (7) must hold for any value of x and y, then by comparing the coefficients 
in (7) we have 

where 

2 
IXu 2 all= - -b-e 1Xu , 
a 

IX11 (T) = C 

a22 (T) = 0 

y(T) = cz}. 

el = t[ae2 -J(aq2
)
2 +4ab J 

e2 = Hae 2 +J(ae2
)
2 +4ab J 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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(15) 

(16) 

[ 

.. T ~ (s) J . T [ sIX (s) · J /31 (t)= -2cz1;exp ·"-J-1-1 -ds -2Jexp J-1
-
1 -ds · 

r a r r a 

.. .. ·.[bzs - a 11 (s) vs- eu1 a11 (s)] ds (17) 

T s { ( · a (s)) } · · /32 (t) = - f exp (fa dr) Pds) 1 + 1~ ~ Pds) v (s) ds (18) 

y (() = cz?- f[13~~s) ~ ui a11 (s)- bz?-P1 (s)v (s)] ds. (19) 

Thus the optimal control may be expressed using (14}-{19) in the form 

~~pt = - .~ :- Vt = ~,;a(21X11 X+ IX 12 Y + fJ 1) +V, = 

a 11 (t) a 12 (t) P1 (t) = --.a-x-~y-~+v,. 
--,. 

' . : ·, - ' , 

4. Remarks 
' ~-

The production rate u in the model presented in this paper was not 
restricted to be nonnegative. The inventory level was allowed to be negative, i.e. 
backlogging of demand ·was permitted. The stochastic production planning 
problem With constant demand, considered' by Sethi and Thompson '[1], [2], 
was extended by Bensoussan, Sethi, Vickson and Derzko [3] to include the 
constraint that production rate ·must be nonnegative. Unfortunately, a closed
-form solution for optimal feedback policy was not obtained explicitly. The 
authors showed that an optimal feedback solution exists for the problem, and 
this solution was characterized. A policy iteration procedure was used to 
obtain computational solutions to the related problems with upper bounds on 
the production rate. As the stochastic production - inventory control problem 
with stochastic demand, presented in this paper is much more complicated 
than that considered in [3], it goes without saying that obtaining a closed-form 
solution for optimal feedback production policy for our problem with added 
production rate nonnegativity constraint, is a very difficult task. It seems that 
for the time being, the solution to such a problem has to be sought by means of 
numerical methods. 
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Stochastyczne zadanie sterowania systemem produkcja-magazyn z losowym 
popytem 

W pracy rozpatrzono stochastyczne zadanie sterow8nia produ.kcjll ze skonczonym horyzon
tem sterowani8 i popytem opisanym przez liniowe stoch8styczne rownanie romiczlcowe. Podano 
analityczne rozwillZ3nie tego zadani8 w post8ci optym81nego sterow8ni8 ze sprz~eniem zwrotnym. 

CTOXa~KaJI 3a,l{8'1a ynpaBJJeRRII CRCTeMoii DpoR3BO,UCTBO-CKJIAA C9 

CJI}'"I3ilu.IM · cnpocOM. 

B pa6oTe paccMOTpeH8 CTOxaCTH'feciC8JI 38.11.8'18 ynpaBneHHJI npoH3BO.D.CTBOM c xoHe'IHbiM 

·ropH30HTOM YDpaB1leHHJI R Cllp<>COM, OUH.ChlBaeMbiM JlHHeHHblM CTOXaCTH'ICCICHM .D.HcPcPepeH

IUI81lbHLlM yp8BHeHHeM." )1;8eTCll aHaJJHTH'ICCICOC peWeHHC :no"ii: 38.11.8'lH B .BH.D.e ODTHM81lbHOfO 

. ynpaBJtCHBJI C 00p8"FHOH CBll3b10. 


