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The paper deals with the method of t}me-optimal control computation for a linear, 
time-invariant undisturbed. system, whose state-matrix is simple and has only real negative 
eigenvalues. The fundamentar matrix was found according to [3] and the proposed procedure 
is based on the minimization of the nQrm representing the distance between the desired 
final state and the state at the end of the last switching instant. 

Introduction 

Let us consider the linear, time-invariant system described by the state 
equation 

x (t) = Ax (t) + Bu (t), (1) 

where x, u are respectively n-dimensional state and r-dimensional control 
vector, A, B are constant matrices with coresponding dimensions, t is the 
time. 
We assume that: 

- the state is unconstrained 

X (t)ER" (2) 

- on the control vector components the following inequality constraints 
are imposed 

iudt)i ~ Ukmax k = 1, 2, ... , r, (3) 

- the state matrix A is simple and all its eigenvalues are real negative 
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Re s1 < 0 
Im s1 = 0 

I= 1, 2, ... , n, 

J PELCZEWSKI 

- · the system (1) satisfies the condition of the normal time-optimal 
control 

det[bk;Abk;A2 bk; .... ..... ;A"- 1 bk]¥=0, Vk=1,2, ... ,r (5) 

We have to find the time-optimal control u* (t) satisfying the constraints (3), 
which transfers the system from the initial state x0 at t = t0 to the gtven 
final state x1 at t = t1 , while minimizing the performance index '· 

t! .,, , · I 

I= f dt =minimum. (6) 
to 

The state-and the costate ve<;tors x* (t), A* (t) corresponding to u* (t) must 
satisfy the canonical equation's ' ' ,. 

.X* (t) .= Ax* (t)+ Bu* (t)} (
7
) 

.A.*(t)=-ATJc*(t) ' 

and it is known, that the time-optimal control for the considered system 
is of the bang-bang type 

u:(t)= -Uksign(.lc*(t)bk), (8) 

and that the number of switching intervals is at most n. 
With the exception of some low-order systems, · where tt JS possible to 

find the analytic expressions for u* (t), the numerical methods must be 
applied in order to solve the above time-optimal problem. Several compu
tational procedures, based on the numerical solution of the set of 2n 
ordinary differential equations obtained from (7), have been developed. The 
difficulties-in applications of these procedures are due to the fact, that the 
adjoint system is unstable (if the primary system is · stable) and that the 
initial and final conditions x0 , x 1 are given for the state variables: Hence 

' the problem arises, whether· it would be ·possible to apply the procedure 
of determining the switching instants based on the known solution of the 
equation (1) 

t 

x (t) = tP (t-t0 ) x (t0)+ J tP (t-r) Bu (r) dr, (9) 
to 

where tP (t) denotes the fundamental matrix 

(10) 

Unfortunately the evaluation of the fundamental matrix by known methods 
becomes tedious in the case where the state matrix A is of higher dimension. 
On the other hand the computation of the fundamental matrix poses some 
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essential problems shown by Moler and Van Loon [2] and by Laub [1]. 
But for the considered system with a simple state matrix A (i.e. having 
only distinct eigenvalues) the fundamental _ matrix can be found by the 
straightforward computation-according to the'results presented in [3]. That 
enables to formulate the procedure of determining the switching instants, 
where the state vector is computed according to the formula (9). 

Computation of the state-equation solution 

It was proved in [3] that in the case where the state matrix A is simple, 
the fundamental matrix of the system (1) can be expressed by the formula 

I[> (t) = 

with 

i= 1,2, ... ,n, I = 1,2, ... ,n, 

r - Pu cof Piz 
Jiil- det P ' 

i=l,2, ... ,n, j=l,2, .. . ,n, l=1,2, ... ,n 

(11) 

(12) 

·where P is the nonsingular modal matrix whose columns p1 , p2 , ... , Pn are 
eigenvectors of A 

P=[PlP2··· PJ - (13) 

Hence with 

(14) 

we have 

(15) 

i= 1,2, ... ,n, j= 1,2, ... ,n 

We find the coefficients fii1 from (12) and that enables us to compute
with desired accuracy- the trajectory x (t) in the general case, where all 
the control vector's components are functions of bounded variation on any 
bounded interval of time. We choose the computational interval Lit and at 
the sampling times 
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replace the control components uq ( t ), q = 1 , 2, ... , r by constant functions 
on the particular intervals and find x (t) at t 1 , t 2 , ... from the formula in [5] 

X (t ... ) = c[J (At) X (t ... - d + D (At) u (t ... _ 1), (16) 

where 

At 

D Cdt) = J c[J (9) B d9, (17) 
0 

and the elements of the matrix D (At) are 

diq (At)= ± ± hi! (e'1Ll
1 -1) bjq 

j= 1 I= 1 SI . 

i=l,2, ... ,n, q=1,2, ... ,r 

In the case of the bang-bang control the particular control components 
uq (t), q = 1, 2, ... , r are constant on the intervals between the switching 
instants. That simplifies the computation of x (t) because the sampling 
intervals At can be chosen equal to the corresponding switching intervals. 

Time-optimal control of the single-input system 

In the single-input system the control is a scalar u (t) and with U kmax = U max 

the constraint (3) reduces to 

(19) 

We assume that the number of switching intervals is equal to n and 
denote by tf, t~, ... , t: the switching instants of the time-optimal bang-bang 
control, given by 

u* (t) = 

0, Vt<t0 

aUmm VtE[tci, tt) 
- aU max. Vt E [tf , t~) 

( -l)n- 1 aU max. Vt E (t:_ 1, t:) 
0, Vt ~ t: 

(20) 

In the formula (20) is a the sign of u* (t) in the first interval · [tci, tt). 
According to (16) the state vector at switching instants will be 

x* (tt) = (/> (Att) X (to)+ D (Att) aUmax "I 
~* (t~) = ~ (A~fl) x* (tf)+ D (A~~) ( -1) aUmax . 

x* (t!) = ~(At:) x* (t:- 1)+ D (At:) ( -Jt- 1 aU max 

(21) 
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where 

L1t(=tf-t0 I 
,1~~ = ~Q- ~i 

LJt~ = t~ - t~- 1 

(22) 

At t = t: the time-optimally controlled system arrives to the given final 
state x* (t~) = x 1 . It means, that the euclidean norm in R" representing the 
distance of the state x*(t~) from x 1 -

(23) 

is at t = t: equal to ·zero. 
But if the switching instants (or at least one of them) differ from the _. 
optimal ones, then generally tn =I= t~ and at t = tn will be x (tn) =I= x 1 implying 
llxr'"'-x (tn) ll =I= 0. Hence the numerical procedure can be based on the mini
mization of the norm (23) for t = t, and must enable us to find the switching 
instants according to the imposed accuracy of the final result, defined by 

(24) 

where e is a given sufficiently small positive number. The switching instants 
corresponding to the bang-bang control satisfying the condition (24) will be 
accepted as optimal: 

t9 ~t;, g=I,II, .. ,n. 

In order to obtain the above solution we proceed in the following way: 
First we have to find the unknown value of (J. In some cases it can 
be possible to evaluate (J directly for the given initial and final states- after 
considerations based on the system's properties. But generally we will fix (J 

definitely, comparing the results obtained for its possible values. For the 
first computation we can choose (J according to system's response on the 
constant input signal. With u (t) = (JU max = const we find for both (J = + 1 

and (J = -l the trajectories x (t) starting from x 0 . Then we accept the value 
of (J corresponding to that of the above two trajectories whose minimal 
distance dmin (at t = td) from the final state 

(25) 

is smaller. 
We choose approximatively the initial switching instants. It can be done 
arbitrarily or from the formulae 



12 J PELCZEWSKI 

(26) 

tj = t}-1 + f3 (t~-t}-1) 
2 ~j ~ n-1 

where a and {3-constant coeffiCients, which could be chosen a E [0, 8, 1, 8], 
fJE [0, 4, 0, 8]. 
For the bang-bang control with above switching instants we find the 
state vector and the norm (23) at t = t~. If N (t~) > e we apply the compu
tational procedure minimizing this norm as function of switching instants
-arriving finally to the result satisfying the condition (24) for the imposed 
value of s. Next we compute (applying the analogous procedure) the switching 
instants satisfying the condition (24), in the case of the opposite value of (J. 

Comparing the obtained results we fix definitely the right (J. 

REMARK. The above procedure was presented under assumption that the 
number of switching intervals is equal to n. If in some particular cases 
this number is v < n, we will find it in the final result of the computation. 

Time-optimal control of the multi-input system 

According to the assumption (5) the considered multi-input system is 
controllable with respect to each of the control vector's components. Hence 
for all particular r single-input systems we can apply the above described 
procedure and obtain the switching instants corresponding to imposed 
values ek, k = 1, 2, ... , r in the conditions-like (24)- of desired accuracy . 
. Because these particular results are needed for the approximative choice 
of initial data for further computation we can fix the values of ek 
appropriately bigger than e - given for the multiple input system. 
Next we find the optimal bang-bang control in the case where two input 
signals are active (e.g. U0 , ub- corresponding to shortest final times tna• 
tnb with tna < tnb). For this computation the final switching time- the same 
for the both control signals- can be chosen equal to ytna• where y is 
a constant coefficient, which could be put yE [0,6, 0,9]. The other switching 
instants can be approximately evaluated, according to the relations obtained 
for the considered single-input syst~ms. The value eab representing the 
desired accuracy fOJ:- this two-input system can be fixed bigger than e. 
The results obtained by minimization of the norm llx 1 - x (tn)ll as function 
of two switching instants sets enable us to choose the initial data for the 
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computation in the case where three input signals are active. According 
to the consecutive results we proceed analogously in the cases where the 
number of active control signals will be increased-up to r, finding finally the 
switching instants for our multiple-input system with the accuracy cor
responding to s in the condition (24). 

Example 

The system described by the state-equation (1), where 

[

-1 0 0 21 [0301 A= 0 -4 3 3 B = 0 0 2. 0 0 -3 0 2 4 1 
0 0 0 -2 5 1 3 

has to be transferred in the shortest time from the initial state at t0 = 0 

x 0 = [20 -10 40 -30Y, 

to the final state x 1 = 0. On the control components the constraints of the 
form (3) are imposed, with U lmax = 1,5, U zmax = 7, U 3 max = 8. The final 
accuracy is given by the value s = 0.1·10- 2 in (24). With eigenvalues 
s1 = -1, s2 = -2, s3 = -3, s4 = -4 of the state matrix A we find from (11) 

[ [ 

1 o o o] [e-t ] I lo o o ol re-t] I 
<P (t) = ~ ~ ~ ~ : = :: i ~ ~ ~ ~ : = :: l 

0 0 0 0 e- 41 I 0 0 0 0 e- 41 1 

i [~ n -~1 r:=::1 i[r!·s ~ -:01,5] [:_=::1 l 
I 0 0 0 0 e- 41 

1 0 1 0 e- 41 
or 

l 
I I I e- 1 
I 0 1 0 1 2e- 1

- 2e- 21 

0 I -4t 13 . -3t_3 -4t 115 -2t_1 5 -4t1 <P ( ) _ 1e 1 e e 1 , e , e 
t - 0 I 0 I e- 3t I 0 

I 1 I -0 I 0 I . 0 I e- 21 _ 

For the three single-input systems with uk = (J'k Ukmax = const, k = 1, 2, 3 and 
both (J'k = + 1, (J'k = -1 we find the trajectories x (t) and the values of 
dkmin and tdkmin 
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Table I 

uk ak dkmin tdkmin 

u1 = a1 U1max a = +1 3.58 1.45 

u2 = 0, u3 = 0 a = -1 9.165 

U2 = a2 U2max a2 = + 1 15.54 0.9 
u1 = 0, u3 = 0 a,= -1 19.96 0.35 

ll3 = a3 U3max a, = + 1 11.47 0.7 

u1 = 0, u2 = 0 a = -1 22.72 0.50 

For the above single-input systems the initial sets of switching instants 
were chosen according to (26) with a.= 1.5, fJ = 0,6 

Table li 

uk (t) t; t;, t!!! t!v 

U 1 = + 1,5, a 1 = 1 
L305 1.827 2.036 2.175 

u2 = u3 = 0 

u2 = ± 7, a2 = 1 
0.810 1.134 1.264 I 1.350 

u 1 = u3 = 0 

U3 = ± 8, a3 = 1 0.630 0,882 0983 1.050 
u 1 = u2 = 0 

Minimizing the norm N from (24) with e1 = 0.2 as function of switching 
instants we find for the three single-input systems the following results: 
For u1 (t)= ±L5, a 1 =1, u2 =u3 =0: 
t11 = 1.128440, tm = 2.244316, t 1111 = 2.547527, t1v1 = 2.653167, x1 (t1vd = 

. -1 . .. -2 
= -0.7252744 · 10 , x2 (t1vd = 0.1518576, x3 (t1vd = 0.2894551 · 10 , 

-1 . 
x 4 (tiVl) = -0.1294738 · 10 , N (t1v 1) = 0.1688105. 
For u2 (t)= ±7, a 2 =1, u1 =u3 =0: 
t 12 = 1.328270, t112 = 2,013882, tm2 = 2.371399, t~v2 = 2,482855, x 1 (t1vz) = 
= -0.2380848 · 10- 1

, x 2 (t1v2 ) = 0.5296028 -10- 1
, x 3 (t1v2) = 0.5902600 -10- 1

, 

x4 (t1v2) = -0.17698108, N (t1v2) = 0.1953283. .. 
For u3 (t) = ± 8. a 3 = 1, u 1 = u2 = 0: 
t 13 = 1.036907, t113 = 1.61S649, tll13 = 1.939305, t1v 3 = 2.036321, X 1 (liv 3 ) = 
= -0.3559242 -10- 1

, x 2 (t1v3 ) = 0.6684756-10- 1
, x 3 (t1v3) = 0.1454541 , 

x 4 (t1v3) = -0.1057484, N (t1v3) = 0.1951283. 
In order to check the choice of particular a we compute the switching 
instants for the above three single-input systems with opposite values of a 1, 

a2, a3. 
For u1 = ± L5, a 1 = -1, u2 = u3 = 0: 
t 11 = 1,080000, t111 = 2.481783, t1111 = 2.945350, tlVl = 3.085350, x 1 (t1vd = 
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= -0.1237813, x 2 (t1vt) = 0.5512518 -10-t, x3 (t1vt) = 0.1202387 -10-t, 
x4 (t1vt) = 0.1337598, N (tiVl) = 0.1907796. 
For u 2 = ±7, (J 2 = ·-1, ut= u3 = 0: 

.: t12 = 1.302201, t112 = 2.423386, t1112 = 2.837964, t1v2 = 2.955946, .X:t (t1v2) = 
. . . ··· ·· - t . 

= 0,1222067, x2 (t1v2) = 0.3676271·10 , x3 (t1v2) = -0.1146388, x4 (t1v2) = 

= 0.5634868 -10-t, N (t1v2) = 0.1805636. 
For u3 = ± 8, (J3 = -1, ut = u2 = 0: 
t 13 = 0.7527493, t113 = 1.851073, t1113 = 2.317695, t1v3 = 2.459695, x 1 .(t1v3) = 
= -0.2518293. w-t' x2 (tlv3) = -0.1552670, x3 (tlv3) = 0.3724819-10- t, 
x4 (t1v3) = 0.1173010, N (t1v3) = 0.1997222. 
We compare the obtained results and conclude, that the right values are 
(Jt = l, (J2 = 1, (J3 = 1. 
The two shortest final· times are t1v3 and tiV2. We choose with y = 0,8 
the initial sets of switching instants in the case where both control signals 
u2 , u3 are active and u1 = 0: 

1.036907 
tiv23 = 0,8 · 2.036321 ~ 1.629, ti3 = 1.629 

2
.
036321 

~ 0.83, 

' 1.
328270 

8 1 d 1 l fi d t12 = 1.629 
2
.4

82855 
~ 0. 7 an ana ogous y we m 

tii3 ~ 1.295, t 1113'~ 1.551, t112 ~ 1.321, t1112 ~ 1.556. 
The results obtained for 8 23 = 0.1 apd u2 (t) = ±7,. (J2 = 1, u3 (t) = ±8, 
(J3 = 1, ut = 0, are: 
t12 = 0.6975282, t112 = 1.222194, t1112 = 1.435299, t13 = 0,7643130, t 113 = 1.192512, 
t1113 = 1.457720, t1v2 = t1v3 = t1v23 = 1.511214, .. . ... 
X 1 (t1v23) = 0Jf940(){) ·10- 2, X2 (tiV23) = -0.5240560 ·10- 2, X 3 (t1v23) = 
= 0.7260203 -10- 2, x4 (tl~23) = 0.1238382 -10-l' N (tiV23) = 0.1532836 -10- 1

. 

For the last computation in the case where all control signals are active 
we choose~ with y = 0.8- the set of initial switching instants: 

tivt = tiv2 = tiv3 = tivt23 = 0.8·1.511214 ~ 1.209, tit= 1.209 ;.~~:::~ ~ 0.514, 

' 0.6975282 0 7643130 
tl2 = 1.209 ~ 0,558, t;3 = 1.209 . ~ 0.611' 

1.511214 1.511214 
and analogously we find 

tiu ~ 1.023, ti111 ~ 1.161, ti12 ~ 0.978, ti112 ~ 1.148, ti1 ~ 0.954, ti113 ~ 1.166. 

The results obtained for 8 = 0.01 and u1 (t) = ± 1.5, (J 1 = 1, u2 (t) = ± 7, 
(J 2 = 1, u3 (t) = ±8, (J3 = 1 are: 
tiJ. = 0.5590975, t~t = 1.10712, t~11 = 1.347534, tf2 = 0.6151865. tf.2 = 1.126013, 
t~1 = 1.316871, tf3 = 0.7521544, tf.3 = 1.110476, tf.1 = 1.351378, tfvt = trv2 = 
= tfv3 = tfv = 1.389023, 
xi(tfv)= -0.3997028 -10- 2, xHtfv)= -0.6423354-10- 2, xHti'V)= -0.2413406· 
-10- 2, x: (tfv) = -0.1702905·10- 2~ N (tfv) = 0.8124561·10- 2. 
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Conclusive remarks 

The presented numerical procedure is easily implementable and enables to 
find the time-optimal control for linear time-invariant systems in the case 
where all eigenvalues of the state matrix A are real negative and the 
fundamental matrix (/_) (t) is known. By appropriate choices of initial data 
and of imposed accuracy for consecutive steps the cost and duration of 
the computation can be reduced. 
For systems, whose dimension of the state vector is high, the evaluation 
of (/_) (t) poses essential problems. But if we confine ourselves to the typical 
case where the matrix A is simple, we can apply for a given real system 
the method from (3) and compute the elements of the fundamental matrix 
effectively. 
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Numeryczna metoda wyznaczania-sterowania czasowo-optymalnego 
dla pewoych ukladow lioiowych 

w pracy podano metody numerycznq wyznaczania sterowania czasowo-optymalnego dla 
inwariantnego w czasie i nie poddanego dzialaniu zak16cen zewnytrznych ukladu liniowego, 
kt6rego macierz stanu ma wszystkie wartosci wlasne jednokrotne, rzeczywiste ujcmne. Macierz 
podstawowq znaleziono w spos6b podany w [3]. Proponowana metoda opiera si~ na mini
mizacji normy reprezentujqcej odleglosc mi~zy zadanym stanem koncowym a stanem, jaki 
uklad osiqga po zakonczeniu procesu przelqczania sterowania. 
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qHCJieHm.Ui MeTO)J. peuieHHH 18)1.8'111 OOTHMaJILHOr'O DO 6biCTpo)J.eHCTBHIO ynpaB
JieHHH )J.JIH ueKOTOpbiX JIHHeHHbiX CHCTeM 

B CTaTbe Ilpe,ll;CTaBJieH MeTO)l Bbl'IUCJieHIUI OIITUMaJibHOfO IIO fihiCTpo,ll;eHCTBUlO ynpaB

JieHUll UHBapHaHTHOH HO BpeMeHH JIHHeHHOH CHCTeMbi, Ha KOTOpyiO He B03,ll;eHCTBYIOT BHeiiiHHe 

B03MyiUeHHll. Bee COfiCTBeHHhle 3Ha'!eHHll MaTpHUbl COCTOliHHll :noif CHCTeMbl liBJilllOTCll 

O,ll;HOKpaTHbiMH U OTpHUaTeJihHbiMH. 6a30BaSI MaTpuu;a onpep;eJil!eTCSI COfJiaCHO MeTOAY npep;

CTaBJieHHOMY B (3]. Jlpep;naraeMall Bbi'IHCJIHTeJihHall: rrpou;ep;ypa OCHOBaHa Ha MHHHMH3aUHif 

HOpMbi, x.apaKTepH3HpyiOIUeif paCCTOl!HHe MCJK.AY 3a,ll;aHHOH UeJibiO 11 COCTOl!HHeM CHCTeMbi, 

rrocne 3aBepiiieHHll npouecca rrepeKJIIO'ICHH!I yrrpasneHH!I. 




