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The paper deals with the method of time-optimal control computation for a linear,
time-invariant undisturbed. system, whose state-matrix is simple and has only real negative
eigenvalues. The fundamental matrix was found according to [3] and the proposed procedure
is based on the minimization of the norm representing the distance between the desired
final state and the state at the end of the last switching instant.

Introduction

Let us consider the linear, time-invariant system described by the state
equation

X (t)= Ax (t)+Bu (1), - (1)

where x, u are respectively n-dimensional state and r-dimensional control
vector, A, B are constant matrices with coresponding dimensions, ¢ is the
time.
We assume that:

— the state is unconstrained

x (t)eR" (2

— on the control vector components the following inequality constraints
are imposed

!ui (t)lgukmu k= 1,2,...,1", (3)

— the state matrix A is simple and all its eigenvalues are real negative
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Res <0
I=1,2, .0
Ims, =0 "
— the system (1) satisfies the condition of the normal time-optimal
control
det [by: Aby: A% byi ... 1 A" D] #£0, VYk=1,2,..,r 5

We have to find the time-optimal control u* (t) satisfying the constraints (3),
which transfers the system from the initial state x, at t =t, to the given
final state x, at t = t,, while minimizing the performance index

t 53 ¥ :
I= [ dt = minimum. (6)
to
The state-and the costate vectors x*(t), A*(t) corresponding to u*(f) must
satisfy the canonical equations

* (1) = Ax* () + Bu* (f)
1% (@)= —ATI* () :

and it is known, that the time-optimal control for the considered system
is of the bang-bang type

uf (t) = — U, sign (A*(2) by), (8)

and that the number of switching intervals is at most n.

With the exception of some low-order systems, where it 'is possible to
find the analytic expressions for u*(t), the numerical methods must be
applied in order to solve the above time-optimal problem. Several compu-
tational procedures, based on the numerical solution of the set of 2n
ordinary differential equations obtained from (7), have been developed. The
difficulties in applications of these procedures are due to the fact, that the
~ adjoint system is unstable (if the primary system is stable) and that the
initial and final conditions x,, x, are given for the state variables. Hence
the problem arises, whether it would be possible to apply the procedure
of determining the switching instants based on the known solution of the
equation (1)

(™)

x ()= @ (t—tg) x (t5)+ j!@[t—t]Bu (1) dz, 9)

fo

where @ (¢) denotes the fundamental matrix

P (t)="e™. (10)

Unfortunately the evaluation of the fundamental matrix by known methods
becomes tedious in the case where the state matrix A is of higher dimension.
On the other hand the computation of the fundamental matrix poses some
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essential problems shown by Moler and Van Loon [2] and by Laub [1].
But for the considered system with a simple state matrix 4 (i.e. having
only distinct eigenvalues) the fundamental matrix can be found by the
straightforward computation-according to the results presented in [3]. That
enables to formulate the procedure of determining the switching instants,
where the state vector is computed according to the formula (9).

Computation of the state-equation solution

It was proved in [3] that in the case where the state matrix A is simple,
the fundamental matrix of the system (1) can be expressed by the formula

el o Tell 1 oo
? ()= [f;u]-[‘j’" D[ [ [fi,.a-[f"] 1y
i e i | e
=200 I=1,2,um,
with

i1, 20000 §= 1L 2uwny 11,20

where P is the nonsingular modal matrix whose columns py, p;, .., p, are
eigenvectors of A4

P =[py p3 .- Pal- (13)
Hence with
pj= [Py P2j Pu_:']T (14)
we have
P =[p;l, (15)

P=1; 200 J=:25m

We find the coefficients f;; from (12) and that enables us to compute —
with desired accuracy — the trajectory x (¢f) in the general case, where all
the control vector’s components are functions of bounded variation on any
bounded interval of time. We choose the computational interval 4¢ and at
the sampling times

ty=dt, 1, =t +4t,..,1,=t,_+4t,
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replace the control components u, (t), g = 1,2,..,r by constant functions
on the particular intervals and find x (1) at t,, t,, ... from the formula in [5]

x(t)=@(41) x (r#_1)+D (4t)u (f,;-l), (16)
where

At
D(41)= | & (9 Bas, 17)
0
and the elements of the matrix D (4t) are

dig (41) = 21 IZ Ji 2B (1) by,
&=

i=1,2,.,n, q=1 Ziaoil®

In the case of the bang-bang control the particular control components
ug(t), g=1,2,..,r are constant on the intervals between the switching
instants. That simplifies the computation of x(f) because the sampling
intervals 4t can be chosen equal to the corresponding switching intervals.

Time-optimal control of the single-input system

In the single-input system the control is a scalar u (z) and with Upmax = Unan
the constraint (3) reduces to

() < Uax. (19)

We assume that the number of switching intervals is equal to n and
denote by tf, tfj, .., tx the switching instants of the time-optimal bang-bang
control, given by

0, Vi<t,
o'Umaxs Vt € [tﬂ t tl*)
u* (t) = =0 Uy, V€ [t* L E (20)

{"l)n UUmax: VIE[f,, 1» I*)
0, Vvi=ty

In the formula (20) is ¢ the sign of w*(t) in the first interval [tJ, t¥).
According to (16) the state vector at switching instants will be
X*(tf) = @ (4tF) x (to)+ D (41F) 6 U oy

x* (1) = Q’(Atn) x*@f)+D (Afu) (=1)oU,y 21)

x$(t:)= @(ﬂ[:) x*{-ta- I)+D(At:)(_l)u aUmax
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where
At = t"‘-t0
At* = t* —t

At t=1t¥* the time-optimally controlled system arrives to the given final
state x* (t¥) = x,. It means, that the euclidean norm in R" representing the
distance of the state x*(t7) from x;

N () = lx,—x* )] = 2 (i —xF (e3))? 23)

is at t =1tF equal to zero.

But if the switching instants (or at least one of them) differ from the
optimal ones, then generally ¢, # t¥ and at ¢ = ¢, will be x (t,) # x, implying
[x;—x (t,)l #0. Hence the numerical procedure can be based on the mini-
mization of the norm (23) for ¢ = t, and must enable us to find the switching
instants according to the imposed accuracy of the final result, defined by

N (ty) = lIx;—x @)l <, (24)

where ¢ is a given sufficiently small positive number. The switching instants
corresponding to the bang-bang control satisfying the condition (24) will be
accepted as optimal:

'y

g=ty, g=L1I,.,n

In order to obtain the above solution we proceed in the following way:
First we have to find the unknown value of ¢. In some cases it can
be possible to evaluate ¢ directly for the given initial and final states — after
considerations based on the system’s properties. But generally we will fix ¢
definitely, comparing the results obtained for its possible values. For the
first computation we can choose ¢ according to system’s response on the
constant input signal. With u (t) = 6U,,,x = const we find for both o= +I
and o = —|1 the trajectories x (f) starting from x,. Then we accept the value
of o corresponding to that of the above two trajectories whose minimal
distance d,, (at t =t,) from the final state

dmin = !nin ”xf_x (td)“ (25)

is smaller.
We choose approximatively the initial switching instants. It can be done
arbitrarily or from the formulae
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t,= ot
ty= P,
th=t+B (6—t)

tw=ty+pB (tn—11) (26)

t;=ti-1+B ta—1tj-1)
s

where o and f-constant coefficients, which could be chosen a0, 8, 1, 8],
pel0,4,0,8].

For the bang-bang control with above switching instants we find the
state vector and the norm (23) at t =1, If N (t,)> ¢ we apply the compu-
tational procedure minimizing this norm as function of switching instants-
-arriving finally to the result satisfying the condition (24) for the imposed
value of &. Next we compute (applying the analogous procedure) the switching
instants satisfying the condition (24), in the case of the opposite value of o.
Comparing the obtained results we fix definitely the right o.

Remark. The above procedure was presented under assumption that the
number of switching intervals is equal to n. If in some particular cases
this number is v < n, we will find it in the final result of the computation.

Time-optimal control of the multi-input system

According to the assumption (5) the considered multi-input system is
controllable with respect to each of the control vector’s components. Hence
for all particular r single-input systems we can apply the above described
procedure and obtain the switching instants corresponding to imposed
values g, k=1,2,..,r in the conditions-like (24) — of desired accuracy.
Because these particular results are needed for the approximative choice
of initial data for further computation we can fix the values of ¢,
appropriately bigger than ¢ — given for the multiple input system.

Next we find the optimal bang-bang control in the case where two input
signals are active (e.g. u,, u,— corresponding to shortest final times t,,,
t. With t,, < t,). For this computation the final switching time — the same
for the both control signals—can be chosen equal to 7yt,,, where 7 is
a constant coefficient, which could be put ye[0,6, 0,97. The other switching
instants can be approximately evaluated, according to the relations obtained
for the considered single-input systems. The value ¢, representing the
desired accuracy for this two-input system can be fixed bigger than e
The results obtained by minimization of the norm |x,—x(t,)]| as function
of two switching instants sets enable us to choose the initial data for the
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computation in the case where three input signals are active. According
to the consecutive results we proceed analogously in the cases where the
number of active control signals will be increased-up to r, finding finally the
switching instants for our multiple-input system with the accuracy cor-
responding to ¢ in the condition (24).

Example

The system described by the state-equation (1), where

1'% 0 3 030
| o-a 3 3 002
A=1 6 0-3 0 B=1,41
0 0 0 -2 51 3

has to be transferred in the shortest time from the initial state at 1, =0
xo=[20 —10 40 —307%,

to the final state x, = 0. On the control components the constraints of the

form (3) are imposed, with U= 15, Usmx=7, Uspms =8 The final

accuracy is given by the value ¢=0.1.10"2 in (24). With eigenvalues
sy =—1,8,= —2, s3= —3, 5, = —4 of the state matrix A we find from (11)

[ |
1000] [e*]1Joooo] [e]
o= 0000 e ifooo 1} Jexf
0000| le>|!Joooof Je ||
0000] Le*litoooof Le*] |
- |
fJooo o] [e*] f2-2 0 o et
oo 3 =3| |e*] ijo 150 —15] e
001 of [e*] oo 0o o g ™
000 o] Le*f] iflo 1 0 o "B
or
) I i
e“: 0 ! 0 | e t—2e %
0 ™% 3¢ ¥ —3e % |1,5¢™ % — 1 5¢™ %
PO=1 glo 1 e | b
Loiol o | e

For the three single-input systems with u, = o}, U, e = const, k= 1,2, 3 and
both ¢,= +1, g, = —1 we find the trajectories x(r) and the values of
Aymin and g min
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Table 1

Uy oy dimin tdkmin
;=03 Uymax g =+1 3.58 1.45
u =0, u3=0 oy, =—1 9.165
U; =0, UZmax g; = +1 15.5'4 0_9
u =0, u3=0 g, = —1 19.96 0.35
Uy =0y Uamx Gy = -1 11.47 0.7
uy =0, u;=0 gy =—1 2272 0.50

For the above single-input systems the initial sets of switching instants
were chosen according to (26) with « = 1.5, f =0.6

Table II
uy (1) t Iy i Iy

u; = + 1,5, gy = 1

e 1.305 1.827 2036 2175
Ha=Lh =l 0.810 1134 1.264 1350
uy =u; =0

uy = 18, oy =1 0.630 0.882 0.983 1.050
Uy = Uy = 0

Minimizing the norm N from (24) with & = 0.2 as function of switching
instants we find for the three single-input systems the following results:
For u; (t)= +15, o, =1, u;=u;=0:

ty = 1128440, 1y, = 2244316, tyy = 2.547527, tyyy = 2.653167, x; (tyy1) =
= —07252744 - 107",  x; (tryy) = 0.1518576, x5 (t1yy) = 0.2894551 - 102,
X4 (tyy1) = —0.1294738 . 1071, N (t;y,) = 0.1688105.

For u, (t)= %7, 6,=1, uy =u; =0:

tip = 1.328270, ty, = 2.013882, tyy, = 2.371399, t1y, = 2482855, Xy (tyys) =
= —0.2380848 - 107", x, (t;y2) = 0.5296028 - 107", x; (t;y2) = 0.5902600 1071,
X4 (tiy2) = —0.17698108, N (t,y,) = 0.1953283.

For u;(1)= +8, a3=1, u; =u, =0:

iy = 1036907, tuy = 1.618649, tiy = 1.939305, tivs = 2.036321, X, (Liv3) =
= —03559242-107",  x; (f1y3) = 0.6684756 - 107",  x3 (tyy3) = 0.1454541,
X4 (tyys) = —0.1057484, N (t;y3) = 0.1951283.

In order to check the choice of particular ¢ we compute the switching
instants for the above three single-input systems with opposite values of .
0y, 03. )

For uy = +15, 0= —1, u, =uy;=0:

tyy = 1,080000, ¢t = 2481783, tyy = 2.945350, tyy, = 3.085350, x, (t;yy) =
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= —0.1237813,  x; (t;y;) = 05512518 107", x5 (f1y;) = 0.1202387 .10 %,
X4 (tvy) = 0.1337598, N (t;y4) = 0.1907796.

For u;= 17, 65 =—1, uy=u; =0:

Sty = 1302201, ty, = 2423386, ty, = 2.837964, iy, = 2.955946, x, (tyy2) =
= 0.1222067, x;, (t;yz) = 0.3676271-107", x; (t;y2) = —0.1146388, x, (t;v2) =
= 0.5634868 - 10!, N (t;y,) = 0.1805636.

For uy= 18, 03=-1, u;=u,=0:

i3 = 0.7527493, ty; = 1.851073, ty3 = 2.317695, tyys = 2459695, x, (tiys) =
= —0.2518293-107", x, (t;ys) = —0.1552670, x; (t;y3) = 0.3724819-107 1,
X4 (tiva) = 0.1173010, N (t1y3) = 0.1997222. '

We compare the obtained results and conclude, that the rlght values are
6,=106,=1 0y=1

The two shortest final times are ty3; and t,,,. We choosc with y=0,8
the initial sets of switching instants in the case where both control signals
u,, uy are active and u; = 0:

, 1.036907
tivas = 0.8-2.036321 = 1.629, t;3 = 1.629 ‘m‘r% 0.83,
’ 1.328270
t = 1'629—2‘48"—333? = (.871 and analogously we find

ths = 1.295, tyy > 1.551, ty, & 1321, ty, = 1.556.

The results obtained for &,; =0.1 and u, (t)= %7, o, =1, u; ()= +8,
a5= 1, u, =\, are:

tiy = 0.6975282, t;; = 1.222194, t1y;, = 1435299, t;3 = 0.7643130, 153 = 1.192512,
tms = 1457720, tiys = tiys = Lyas = 1.511214, '

%y (tyzs) = 0.1194000 - 1072,  x; (fiy23) = —0.5240560 - 1072,  x3 (tryzs) =
= 0.7260203-1072, x4 (tiy23) = 0.1238382-107%, N (f;y,3) = 0.1532836-107*.
For the last computation in the case where all control signals are active
we choose — with y = 0.8 — the set of initial switching instants:

e I IR / 1.128440

vi =lys = tjws =1t =0.8-1.511214 = 1.2 1=

i v2 06:; vi23 =~ 1.209, t;; =1.209 ———— 3653167 =~ (.514,
s 5282 0.7643130

tin=1.200 — = - ol it .S

12 15“214 > 0.558, t;; = 1.209 1511314 = (0.611,

and analogously we find
thy & 1023, ty; = 1161, 13, = 0978, ty; = 1.148, 1= 0954, t},; = 1.166.

The results obtained for ¢ =001 and u, ()= +15, o;,=1, uy ()= +7,
2--I us(t)= +8, o3 =1 are:
., = 0.5590975, tff; = 1.10712, tffy, = 1.347534, 1}, = 0.6151865. 1, = 1.126013,
1 = 1316871, 1t =0.7521544, tf; =1 1104?6 th = 1351378, tf,=th.=
=iy =1 = 1380023,
xf ()= —0.3997028-10"2, x%(t})= —0.6423354-10"2, x%(t})= —0.2423406.
1072, x¥(th) = —0.1702905-10" 2} N () = 0.8124561-10"2.
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Conclusive remarks

The presented numerical procedure is easily implementable and enables to
find the time-optimal control for linear time-invariant systems in the case
where all eigenvalues of the state matrix A are real negative and the
fundamental matrix @ (t) is known. By appropriate choices of initial data
and of imposed accuracy for consecutive steps the cost and duration of
the computation can be reduced.

For systems, whose dimension of the state vector is high, the evaluation
of @ (t) poses essential problems. But if we confine ourselves to the typical
case where the matrix A is simple, we can apply for a given real system
the method from (3) and compute the elements of the fundamental matrix
effectively.
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Numeryczna metoda wyznaczania sterowania czasowo-optymalnego
dla pewnych ukladéw liniowych

W pracy podano metodg numeryczna wyznaczania sterowania czasowo-optymalnego dla
inwariantnego w czasie i nie poddanego dziataniu zakloceni zewnetrznych ukiadu liniowego,
ktérego macierz stanu ma wszystkie wartosci wlasne jednokrotne, rzeczywiste ujemne. Macierz
podstawowa znaleziono w sposéb podany w [3]. Proponowana metoda opicra si¢ na mini-
mizacji normy reprezentujacej odleglos¢ migdzy zadanym stanem koficowym a stanem, jaki
uklad osiaga po zakoficzeniu procesu przelaczania sterowania.
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Uuciennsiii MeTO/] pPeitiesns 32124 ONTHMAJIBHOIO MO ObICTPOAEHCTBHIO YNpaB-
JieHHs /I HEeKOTOPBLIX /THHeHHBIX CHCTeM

B craTee MpeacTaBIeH METOJ BLIYMCIEHHS ONTHMAJIBHOrO No ObICTpoAEHCTBUHIO yMpas-
JICHHUA KHBapHaHTHOﬁ 10 BpEMCHH JIHHEHHOH CHCTEMBI, HA KOTOPYHO HE BO'BI[eﬁCTBy}OT BHEILIHHE
BO3IMYIIICHH . Bce cobGeTBeHHBIE 3HAYEHHA MATPHLBI COCTOAHHA ITOH CHCTEMBI SBJISIOTCA
OJIHOKPATHBIMH H OTPHIATEIEHBIMH, Bazopas MATpHLa ONpencingeTCHa COrjiacHO METOooy npei-
crapaesHoMy B [3]. ITpeanaraemas BbIMHCIMTENIbHAS TIPOLEAYPAa OCHOBAHA HA MHHHMM3ALNA
HOPMBI, XapakKTepH3HMPYIOIeH PAcCTOSHHE MEKAY 3a/aHHONH UENbI0 W COCTOSHHEM CHCTEMBI,
NOCTe 34BEPUICHHA NpoUecca NEPSKIYEHHS YIPaBJACHHA.






