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A model for burning of a solid material in contact with gaseous oxidizer is considered. 
Oxidation is assumed to be concentrated on the surface of the reacting solid, driven 
by a vigorous Arrhenius surface reaction. The reaction contributes to a surface recession. 
Hence, a free boundary problem arises because of the dependence of the depletion rate 
of reaction surface upon the reaction itself rather than upon the temperature profile and 
oxidizer distribution. The model formulated covers diffusive phenomena of the coupled heat 
and mass transfer. One-dimensional geometry of the process is assumed. 

Introduction 

This paper is concerned with a model for the burning of a solid 
material in contact with a gaseous oxidizer. In the literature one c1 n find 
a variety of models describing such a phenomenon, which give rise to one 
or more driving mechanisms of the burning process. In fact, depending on 
the type of materials one deals with, the process can be described with 
reasonable accuracy by one of the most popular approximations (internal 
gasification, surface oxidation or gas-phase reaction), ·see [2] and references 
therein. 

Here we are interested· in a model where the oxidation is assumed to 
take place on the surface of a solid material, driven by . a vigorous 
Arrhenius surface reaction. The effect of the reaction is then a surface 
recession. This gives rise to a free boundary problem, since the depletion 
rate of this surface depends on the reaction itself and cannot be prescribed 
independently of the temperature profile and the oxidizer amount. Moreover 
we must specify some other characteristics of the process regarding the 
mechanisms of heat and mass transport in both the solid and the surroun
ding gas. We assume that both the heat and the mass transport (for the 
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oxidizer concentration) in the surrounding gas obey to a diffusion equation. 
The solid is assumed to be impervious to the gas. The heat conduction 
inside the solid is assumed to be much faster than in the gas, so that we 
can assume that the temperature is everywhere the same inside the solid 
and equal to the surface temperature. Some mechanism of heat exchange 
on the solid boundary other than the reaction surface has to be assumed, 
for instance an adiabatic condition. 

We describe the equations in an idealized situation. The geometry of the 
problem is the simplest one, namely a slab of solid of ·finite thickness, 
a half-space full of gas on one side of the slab, some simple heat exchange 
condition on the other side of the slab. The x-axis is directed normally 
to the surface of reaction. At time t = 0, we assume that the origin x = 0 
and the surface .of reaction coincide. The penetrating front is then located 
in x = s (t) and moves toward the solid. e (t) represents the temperature 
of the burning material, v (x, t) represents the normalized temperature in the 
gas mixture and u (x, t) a normalized concentration of oxidant. 

Thus, the mathematical model can be stated as follows: 
(P.) Find (T, u, v, s, 8) such that: T> 0, sEC1 [0, T], 8EC1 [0, t], uE 
E C2

•
1 (Dy) n C 1

•
0 (Dy), V E C2

•
1 (Dy) n C1

•
0 (Dy), where. Dy = {(x' t): -00 < X < 

< s (t), 0 < t < T}, and the following equations are satisfied: 

V1 = Vxx• in Dy; (1.1) 
v (x, 0) = tj!(x), - oo < x < 0; (1.2) 

U1 = Uxx• in Dy; (1.3) 
u(x,O) = q>(x), -oo<x<O; (1.4) 

s (0) = 0; (1.5) 
V (s (t), t) = e (t), 0 < t < T; (1.6) 

a· ux (s (t), t) = - (y + u (s(t), t)) · s (t) (1.7) 

0 (t) = h (vx (s (t), t), s (t), s (t)), 0 < t < T; (1.8) 

s (t) = f (u (s (t), t)). G (8 (t)), 0 < t < T; (1.9) 

where a and y are positive constants and the data satisfy the assumptions: 

t/1 E C1 
( - 00' 0], and t/1' bounded; (H.l) 

q> E C2 
(- 00, 0], <p bounded; (H.2) 

f is a Lipschitz continuous 1 non decreasing function on R, with 
f (0) = 0; (H.3) 

G is Lipschitz continuous w.r.t. e for 8 > 0; (H.4) 

h is Lipschitz continuous w.r.t. all its arguments. (H.5) 

1 f may not be Lip84:hltz continuous in 0 in some applications, e.g. f (u) = czl, with 
IXE(O, 1). This does not change our results, since we can bound u away from 0 on the 
free boundary by means of a priori estimate, see [4]. Here we omit this generaliiaiion 
for sake of simplicity. 
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Condition (1.9) is a generalization of the Arrhenius reaction law, the 
typical form of the function G being G (9) = c1 exp ( -c2/9). Condition (1.8) 
is a generic form for the energy balance in the solid which can account 
for a variety of heat exchange mechanisms on the non reacting surface 
of the solid. (1.6) represents the continuity of the temperature on the reacting 
surface and (1.7) is the mass conservation on it. Note that the r.h.s. of 
(1.7) is the sum of the transported mass u (s (t), t) s, and the burned 
oxidizer ys. 

With this condition, and under our assumptions we can state an existence 
and uniqueness result: 

THEOREM 1.1. Problem (P.) has a unique local solution for any set of data 
satisfying assumption H. 

Let us sketch the proof of the Theorem. The first step is to transform 
the problem by introducing a new dependent variable 

s(!) 

z(x,t)= -s (u((,t)+y)d(. (1.10) 
X 

Then we construct a fixed point machinery for the free boundary x = s (t) 
in the following way: start by fixing s (t) in some Banach space, solve the 
problem for z (x, t) in - oo < x < s (t), t > 0, and define the function 
F (t) = f (zx (s (t), t)-y). Then solve an auxiliary free boundary problem (see 
next section), which is given by the ''v's equations", and finally compare 
this free boundary with the previously fixed s (t). 

By means of (1.10), the problem transforms in the equivalent problem (P'), 
where equations (1.3), (1.4), (1.7), (1.9) are replaced by 

z(x,O)=<fj(x), -oo<x<O; 

z (s (t), t) = 0, 0 < t < T; 

s (t) = f (zx (s (t), t)- y) · G (9 (t)), 0 < t < T; 
where 

0 

<P(x)= -S (cp(()+y)dc;. 
X 

(1.3') 

(1.4') 

(1.7') 

(1.9') 

(1.11) 

We start our proof in the next section by investigating the "v problem". 

2. An atridliary problem 

In this section we investigate the following free boundary problem: 
(P.A.) Find (T,v,s,O) such that: T>O, sEC1 [0,T], 9EC1 [0.t], vE 

2 1 1 0 -
EC ' (DT) n C · (DT), where DT = {(x, t): - oo < x < s (t), 0 < t < T} and the 
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following equations are satisfied: 

v (x, 0) = t/1 (x), -00 <X< 0; 

s(O)=O; 

v (s (t), t) = 8 (t), 0 < t < T; 

{) (t) = h (vx (s (t), t), s (t), s (t)), 0 < t < T; 

s (t) = F (t) · G (8 (t)), 0 < t < T, 

where 

t/J E C1 
(- 00, 0], and t/J' bounded; 

FE C0 [0, T'] for a sufficiently large T'; 
G is Lipschitz continuous w.r.t. 8 for 8 > 0; 

h is Lipschitz continuous w.r.t. all its arguments. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(A.l) 

(A.2) 
(A.3) 

(A.4) 

THEOREM 2.1. Problem (P.A.) has a unique local solution, continuously depen
dent on the data. 

Let us first give · a sketch of the proof. We will use a fixed point 
argument for the function 8 in a closed subset of C 1 [0, T]. This goes as 
follows: 

First define a set: 

X (T, B)= {8EC1 [0, T]: 1!8-80 llcl ;;S; B, with 80 = t/1 (0), 8 (0) = 80 }, (2.7) 

where T and B are constants to be fixed in the sequel; of course .'!l· is 
a closed subset of C 1'[0, T]. 

For any 8 E fll' we define s (t) by 
t 

s (t) = t/1 (0)+ J F (r)·G (8 (r)) dr . (2.8) 
0 

Next step is to solve the parabolic equation (2.1) with b.d. (2.2), (2.4) 
(witR the fixed 8) in the domain DT (s is given by (2.8)), namely 

V1 = vxx, - oo < x < s (t), 0 < t < T; 

v(x,O)=t/J(x), -oo<x<O; 

v (s (t), t) = 8 (t), 0 < t < T. 

(2.9) 

(2.10) 

(2.11) 

This is a classical, moving (not "free") boundary problem, and can be 
transformed into an integral equation problem by means of the fundamental 
solution · · 

-----------------------------------------------------------------------
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· 1 ( (x-~)2 ) 
T(x,t;~,r)= J exp - 4 (t-") · 

2 n (t-r) • 

Finally we look for a fixed point in ?I of the transformation 

[ 
.,tt: e~o · (2.12) 

8 (t) = t/1 (0)+ J h (vx (s (r), r), s (r), s (r)) dr . 
0 

The first part of the proof consists in showing that Jt maps f!£ into 
itself. We start with the integral representation of the solution of (2.9H2.11): 

0 t 

V (X, t) = s _T (x, t; ~' 0) t/J (~) d~+ s T (x, t; S (r), <) 0 ('r) S (r) dr+ 
-oo 0 · 

t t 

+ s T (x, t; S (r), r) V~; (s (!), r) dr- s T1; (x, t; S (r), r) 0 (r) dr . (2.13) 
0 • 0 

Equation (2.13) can be differentiated term by term w.r.t. x for x < s (t). 
Moreover we can perform integration by parts to obtain 

0 t 

Vx (X, t) = s T (X, t; ~, 0) t/J' (~) d~ + s Tx (x, t; S (r), r) Vx (s (r), -r) dr+ 
- 00 0 . 

t . 

+S r(x,t;s(r),r)O(r)dr. (2.14) 
0 

-Now we can pass to the limit in (2.14) using the jump relation for rx [F} 
0 

~ Vx (s (t), t) = f T (s (t) , t; ~' 0) t/J'(~) d~+ 
- oo 

t t 

+ f Tx (s (t), t; S (o), r) Vx (s (-r), r) d-r+ f T (s (t), t; S (-r), -r) {j (r) do. (2.15) 

0 - 0 

The first term of (2.15) is obviously bounded by a constant C1 times 
llt/l'llco, while the third term is bounded by a constant C3 times B 
times .jt. 

The kernel in the second term of the sum can be bounded as well by 
some constant C2 times (t--.)- 112

, because of the Lipscbitz continuity of 
the function s (t) as defined by (2.8): in fact we have 

llsllco ~ k (B, T) sup IF (t)l = K, (2.16) 
te[O, T'] 

where k (B, T) is the supremum of IGI in the set of all possible values of 0, 
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which depends on the parameter B and T 2
. 

Then from the integral representation (2.15) we get the inequality 

We can now apply Abet's integral techniques of [1] to obtain 

lvx (s (t), t}j ~ (Ct 111/t'll +C3 B jt}(l +2C2 jt}exp (nC2 t) ~ 

~ c4 (111/t'll +B ft), (2.18) 

where C4 depends on B an T, but remains bounded for B and T bounded. 
Now we are in a position to prove that ..11 (2£) c 2[ : in fact, 

1tr (t)l ~ !h (vx (s (t), s (t), s (t)})-h (vx (0, 0), 0, s (0))1 + 
+ ih (vx (0, 0), 0, s (0))1 ~Lip {ivx (s (t), t}l + 11/t' (0)1 + ls.(t)- s (0)1} + 

+Is (t)l+lh (1/t'(O) , 0, F (O)·G (1/t (0))1 ~ 

~Lip· {Cs+C4 (111/t'll +B ft)} = C(l+B ft), (2. 19) 

where Lip is the Lipschitz constant of h. 

From (2.19) we get the first result by choosing B greater than 2. C and 
T less than 1/B2

. 

Let us now prove the contractive character of .If : to do this, let et> 
02 be functions in .6£, and indicate with s1, s2 the corresponding boundaries 
defined via (2.8), vt> v2 the solutions of (2.9)-(2.11); then the difference 
of the corresponding transformed functions is given by: 

t 

(.41' 01) (t)-( ..,tl02) (t) = J {h1 (r)-h2 ('r)} dr, 
0 

where h;(t)=h(v;x(s;(t),t),si(t),si(t)) , i= 1, 2. 

Then 

I

d (J'I01) d (..1102) I . I 
dt (t)- dt (t) ~ L1p {lv1x (s 1 (t), t)- v2x (s2 (t), t) + (2.20) 

+1st (t)-sz (t)l+lst (t)-s2 (t)l}. 

The second term in the sum is dominated by t times the third term so 
we can neglect it for the ·moment. The third term can be estimated using (2.8), 
which gives 

2 Of course, k (B, T) is increasing in B, but we can make it less than some fixed 
quantity, say k' restricting the maximal time T. 
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ls1 (t)- s2 (t)l ~ Const. ·1101 - .02 llco ~ Const. · t ·1101 -02 llc<>. · (2.21) 

It remains to estimate lv1x (s1 (t), t)-v2x (s2 (t), t)l. To this aim we introduce 
the coordinate transformation y = x-s (t) and define V(y, t) = v (x, t), then 
we ,have 

lv1x (s1 (t), t}-:-Vzx (sz (t), t)l = IV1x (0, t)- Vzx (0, t)l = lwx (0, t)l, (2.22) 

where w (y, t) = V1 (y, t)- V2 (y,t)-(01 (t)-0 2 (t)}, and w solves the problem: 

wt = Wyy+s1 wy+(s1 -s2) v2y-(01 (t)-02 (t)), -00 < y < 0, 0 < t < T; (2.23) 

w(y,O)=O, -oo<y<O; w(O,t)=O, O<t<T. (2.24) 

Solution of problem (2.23), (2.24) ca:n be represented using the Green 
function for second quarter of the plane, which we indicate by G (x, t; ~, r). 

Then 
. t 0 

w (x, t) = J J G (x, t; (, -r) [.?' (~, -r)+s1 (-r) wx (~, -r)] d~ d-r, (2.25) 
0 -oo 

where .? indicates the source term (s1 -s2) V2y-(01 (t)-02 (t)) in eq. (2.23), 
a~ . . 

t + 00 

wx(x,t)= s s rx(x,t;~,t)[.?(~,t)+.Sdr)wx(~,'t')]d~dt (2.26) 
0 -00 

where}(~) indicates the odd prolongation off(~) over 0 < s. Then 
t 

lwx (x, t)l ~ [2 {2 sup I.? R, t)l Jt + II.Sdfc<> J ·sup~, •)t d-r}. (2.27) 
~-; . ~.t t-'t' 

. 0 

From inequality (2.27) we have, by the same techniques we used in 
inequality (2.17), 

suplwx (x, t)l ~ Const. Jt sup I.? (x, -r)l. (2.28) 
·x x,.t 

It remains to estimate the term sup 1.?1 in (2.28). But, from the definition 
of.? we havt<_ 

(2.29) 

!v2xl is bounded because of (2.18) and the maximum principle, moreover 
the difference ls1 -s21 is bounded from above by a constant times 101-021 

because of the definition (2.8) of si. 
All this computation can be resumed in the following inequality 

lh1 (t)-h2 (t)l ~ Const. ·fi ll01 -02llc'[O, T]· (2.30) 

From (2.30) we get 

ll ..t101 - ..tt02 11C1 [0, T] ~A J101 -02Jlc 1[0, T]· 
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Finally we can choose T small enough in such a way that the constant 
2 is less than 1. This proves the local existence and uniqueness result. 

The remaining part of this section is devoted to prove that the solution 
of (P.A.) depends continuously on F (t). This fact will be crucial in proving 
the existence and uniqueness of a local solution to problem (P). 

·/Suppose that F1 , F2 are two continuous bounded functions, IF;I ~ H, 
on [0, T]. Then we define by (vi, 8i, si), i = 1, 2, the corresponding solution 
to problem (P.A.), with the same data. The computation done to prove 
(2.28) can be repeated, with no substantial .change, to obtain (in the following 
11·11 means C0 -norm) 

\ v~x (sl (t), t) - v2x h (t), t) \ ~ Const. Jt { lls1-s2ll + 1101- 0211}. (2.31) 

Now the term 1101- 011 can be dominated because of the Lipschitz 
continuity of the function h in (2.5), this gives an inequality of the form 

1101 - 02II ~ Const. {livlx (sl ( · ), ·)-v2x (s2 ( · ), ·) \\ + II.Sr - .5211 + lls1 - s2ll}. 
The term ll v1x (s1 (t), t)-v2x (s2 (t), t) ll is now replaced by means of (2.31), 
and the time T is chosen small enough in order to have 

(2.32) 

We repeat the same computation starting from equation (2.6), and, possibly 
after restricting the maximal time T, we obtain 

(2.33) 

and 
(2.34) 

From the last inequalities an uniform estimate for the difference v1 - v2 

is easily obtained· via the maximum principle. • 

3. Proof of Theorem 1.1 

Let ~ (A, T) = {sE C1 [0, T]: llsllct ~A, s (0) = 0, s (0) = v0 }, where A and 
T are constants to be determined. ~ is a closed subset of C1 [0, T]. We 
define a map !!/ : ~ ~ ~ in the following way: 

First solve the moving-boundary Cauchy-Dirichlet problem 

z (x, 0) = iP (x), - oo < x < 0; 

z (s (t), t) = 0, 0 < ~ < T; 

(3.1) 

(3.2) 

(3.3) 

where s IS any element of ~ and the datum <P. is the one defined in 
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(1.11). Then use the zx (s (t), t} to define F (t) = f (zx (s (t), t}- y). Finally solve 
the auxiliary problem (P.A.) with this F (t). Let ff (s) be the free boundary 
in the solution of (P.A.). 

We are going to prove the following properties of ff: 
(i) ff maps ~ into itself, i.e. s = ff (s)E~; (3.4) 

(ii) ff is a contractive map of ~- (3.5) 
In order to prove property (i), we start with an estimate on zx: 

lzx (s (t), t)l ~ Const. jjq>+yjj {1 +const.A jt) exp (n const. At), (3.6) 

which follows from the integral representation of the solution of (3.1)--(3.3), 
using the same computation leading to inequality (2.18). 

As a consequence of (3.6), we have that F(t)=f(zx(s(t),t}-y) is 
uniformly bounded by a constant which does not depend on A, if the 
maximal time T is small enough. Then, because of (2.16), the solution s 
of the auxiliary problem is uniformly bounded in the C 1-notm, and the 
constant A can be chosen larger than this upper bound, thus proving (i). 

To prove (ii), we have to compare lls1 -s2 11 for any two given s1 , s2 

in ~- Let us denote by z 1 and z2 the corresponding solutions to (3.1)--(3.3) 
and by F1 and F2 the corresponding functions Fdt) = f (z;x (s (t), t)-y). Then, 
because of inequality (2.33), we have 

IISi -s2llco ~ Const. I!Ft-F2IIcO, (3.7) 

We now have to dominate the r.h.s. of (3.7) in terms of lls 1 -s2llcl. 
To do this, we define Z; (y, t) = z; (x-s; (t) , t) and Z (y, t) = z1 (y, t)-z2 (y, t), 
then Z solves the problem 

Z1 = Zxx+st Zx+Z2x (st-52), 

with homogeneous initial and boundary .. conditions. 
We can again use the integral representation technique, to obtain 

which gives 

(3.8) 

llzxl (st (t), t)-zx2 (s2 (t), t)j j ~ Const. JT list - s2!ico, (3.10) 

where the constant is bounded when T tends to zero. 
Finally we use the Lipschitz continuity of the function f (u) to conclude 

that 

list -s2ll co ~ Const. JT 11-~r -s2llc0, 

which proves our theorem. 

(3.11) 

• 
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Zagadnienie ze swobodmt graniat 
w teorii spalania ciala stalego 

W artykule rozwaza si~ model spalania materialu stalego w kontakcie z gazowym 
utleniaczem. Zaklada si~, :le utlenianie nast~puje na powierzchni materialu i ma charakter 
burzliwej reakcji powierzchniowej Arrheniusa. W wyniku post~pujl!cej reakcji ma miejsce 
cofanie si'< jej frontu. Prowadzi to do modelu ze swobodnl! granicl!, poniewaz pr~dkosc 
przemieszczania si~ powierzchni reakcji zal~zy od calego jej przebiegu a nie tylko od 
rozkladu temperatury i iloS<:i utleniacza. Przedstawiony model ma charakter dyfuzyjny 
i opisuje sprz~i:ony transport ciepla i masy. Zakladany jest jednowymiarowy charakter 
geometryczny procesu. 

3a.r.a'la CO CBoOO.r.HOH rpaHHQeH B Te9pHH OKHr8HHH TBepJJ.OFO TeJia 

B CTaTbe paCCMaTpHBaeTCJI MO):{eJJb C:liCHfaHHJI TBepAOfO MaTepHaJJa B KOHTaKTe C ra30-
BbJM OKHCJJHTeJJeM. TipeAnOJJaraeTCJI, '!TO OK.HCJJeHHe npoHCXOAHT Ha nosepXHOCTH MaTepHaJJa 
H HOCHT xapaKTep 6ypHoii nosepxHOCTHOH peaKI.(HH AppeHHyca. Tio XOAY peaKI.IHH HMeeT 
MeCTO OTCynneH.He ee <flpOHTa. 3TO TI03BOJJ}IeT npHMeHHTb MO):{eJJb CO CB060AHOH rpaHHI.IeH, 
DOCKOJJbKY CKOpOCTb CMell.leHHJI TIOBepXHOCTH peaKl.lHH 3aBHCHT OT DOJJHOfO ee npoXOlK.lleHHJI, 
a He TOJJbKO OT pacnpe.lleJJeHH}I TeMneparypbl H KOJJH'!eCTBa OKHCJJHTeJJg. TipeACTaBJJeHHall 
MO.lleJJb HOCHT AH<P<fiY3HOHHbJii xapaKTep H ODHCb!BaeT conpglKeHHb!H nepeHOC Tenna H MaCCbl. 
Tipe.llDOJJaraeTCJI OAHOMepHbiH reoMeTpH'!eCKHH BH.ll Dpol.leCca. 


