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In this paper, we give the conditions of the parameter convergence of three adaptive 
control algorithms fo'r plants with purely deterministic disturbances. These algorithms are 
the direct and the indirect model reference adaptive control algorithm and the direct pole 
placement adaptive control algorithm. We consider a general case in which the estimation 
of unknown parameters is based on· a model which is non-unique with respect to parameters. 

1. Introduction 

In the past few years a great deal of research has been devoted to the 
issue of parameter convergence of adaptive control algorithms [1]-[3]. 
This interest is caused, first of all, by the fact that the algorithms 
characterized by exponential convergence of estimated parameters to the real 
ones are more robust with respect to time-variation in plant parameters, 
the existence of unmodelled dynamics and so on [4]-[6]. The aim of this 
paper is to investigate the parameter convergence of adaptive control 
algorithms for plants with purely deterministic disturbances. The algorithms 
that we consider are the following: the direct and the indirect model 
reference adaptive control (MRAC) algorithm (the MRAC algorithms for 
plant with purely deterministic disturbances have been considered by Goodwin 
and Chan [7]) and the direct pole placement adaptive control (PPAC) 
algorithm [8] (this algorithm is a generalization of the algorithm proposed 
by Elliott [9]). The method. of the convergence analysis we apply utilizes . 
recent results on peristency of excitation for plants with purely deterministic 
disturbances [10] as . well as the ideas used in the convergence analysis 
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of adaptive control algorithms in the disturbance free case [1]. In contrast 
to all previous works on this field, we consider a general case in which 
the estimation of unknown parameters is based on a model which is non­
-unique with respect to parameters. 

2. Parameter convergence of MRAC algorithms 

In this section, we study the parameter convergence ·of the dire.ct and 
the indirect model reference adaptive control algorithm for plants with purely 
deterministic disturbances. For clarity, we divide this section into several 
parts. The structures of the MRAC algorithms are desc!ibed in the first 
four parts. The conditions of the parameter convergence of the MRAC 
algorithms are given and established in the next part. The remarks compose 
the last part. 

Statement of the problem of MRAC 

Let us consider a single-input, single-output, discrete-time plant described 
by the equation 

(1) 

where uk and Yk are the plant input and output, A (q- 1
) and B (q- 1

) are 
the polynomials (of the backward shift operator q- 1

) of the form 

A ( -1) 1 -1 -n 0 q . = +at q + ... +an q a, an .=1= , 
a a " 

(2) 

(3) 

and . dk is a purely deterministic disturbance composed with sine waves 
.and/or, a bias, that is 

m 

dk = L 9; sin (w; k+q>J 
i= 1 

Let us denote by D{q- 1
) the polynomial of the least possible degree such 

that 

(5) 

Note that ·the form of the disturbances dk implies that all zeros of the 
polynomial D (q- 1

) are single and lie strictly on the unit circle lql = 1. 
Assume that: 
(MRl) the polynomials A (q- 1

) and B (q- 1
) are relatively prime, 



. ··· ..... 

Parameter convergence of adaptive control 47 

(MR2) the polynomial B (q- 1
) is asymptotically stable (that is, all zeros 

of B (q- 1
) lie strictly outside the unit disc iq- 1

1 ~ 1), 
(MR3) upper bounds ifa and ifb of the degrees na and nb are known, 
(MR4) the plant delay d is known, 

. (MR5) the polynomial D (q- 1
) can be factorized as D (q- 1

) = D 1 (q- 1
). 

·D2 (q- 1 ):degD1~nd1•degD2 ~n~2 where Ddq- 1) is a polynomial with 
known coefficients and D2 (q- 1

) is a polynomial with unknown ones, 
(MR6) an upper bound ifd2 of the degree of the polynomial D 2 (q-q) is 

known. 
The assumption (MR5) denotes that the frequencies of some sine compo­

nents are known a priori while those of the others ones are unknown. 
Thus, we consider slightly more general case than the one considered in 
[7] where all frequencies wi are assumed to be unknown. We believe 
that the assumption on the knowledge of wi is well-founded in many 
cases. For example, if the disturbance {dk} is periodic of known period 
K then we have D(q- 1)=Ddq- 1)= 1-q-K. It should be also pointed 
out that the utilization of the knowledge of the frequencies wi enables 
to decrease the number of estimated parameters and, as it can be shown 
by simulation, to improve the transient period of the adaptive system. 
The assumption (MR2) is necessary since the control law described in the 
sequel cancels all zeros of the plant. The knowledge ·of the upper bounds 
ifa, ifb and ifd2 and the delay d wilJ be utilized for defining parameter 
vectors (the vectors er and e; in the sequel) characterizing the plant (1). 
The assumption (MRl) is not necessary for the design, but in view of the 
other assumptions it does not decrease generality. 

Further. let us assume that we are given a reference model whose output 
yi; determines for us a desired trajectory of the plant output. Let this model 
be described by 

(6) 

where u;; is a bounded external command input and A M (q- 1) is a monic and 
asymptotically stable polynomial. 

The objective of the control is to determine an appropriate bounded 
input sequence { ud in such a way that 

(7) 

Model reference control strategy for known plants 

Below, we describe an appropriate control strategy for the case of known 
polynomial A (q- 1), B (q- 1) and D (q- 1). 

After multjplication of the plant equation (1) by D (q- 1) = D1 (q- 1
) 

·D2 (q- 1) we obtain 
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(8) 

where 

y{ = D1 (q- 1
) Yb u{ = D1 (q- 1

) ub (9) 

A*(q-1)=A(q-t)D2(q-1),B*(q-1)=B(q-t)D2(q-t). (10) 

Let the polynomials P*(q- 1) and H*(q- 1
) of degrees d-1 and na+n4 -1 

(n4 = nd 1 + nd be the solution of the polynomial equation 

AM(q-l) = A*(q-1) D1 (q-1)P*(q - 1)+q-d H*(q-1). . (11) 

From (8) and (11) we get 

AM (q-1) Yk = q-d [H* (q-1) Y~c+ K* (q-1) u{],- (12) 

where 

(13) 

Hence, we see that the control objective will be satisfied if we apply the 
following control law 

H* (q- 1) Y~c+ K* (q- 1) u{ =BM (q- 1) uk> (14a) 

D 1 (q- 1) uk = u{. (14b) 

Indeed, (12), (14) and (6) result in AM (q- 1)(yk- yk) = 0. Therefore, in view 
of the asymptotic stability of AM (q- 1

) the property (7) holds. Moreover, 
one can easily check that the system (1), (14) is exponentially stable, 
so that {u~c} is bounded provided {u;;} is bounded. 

When the polynomials A(q- 1
), B(q- 1

) and D2 (q- 1) are unknown we 
can apply an adaptive control strategy. Roughly speaking, such strategy 
consists in recursive estimation of parameters characterizing the process to 
be controlled and in application of the time-varying control law 

Hdq- 1)Y~c+Kk(q- 1)u{ = BM(q- 1)u;;, 

D1 (q- 1) uk = u{, 

(15a) 

(15b) 

whose parameters li0 k, hu, ... , k0k, k1"' ... (these ate the coefficients of Hdq- 1
) 

and Kdq- 1
)) are determined by the use of the estimated parameters as if 

these parameters were correct. Most of the known estimation algorithms 
need the following representation for the · unknown parameter vector 8* E R"8 

(16) .•. 

where Vtc and Xtc are some variables which depend in a known way on 
the plant input and output and play the role of the data. 

Two kinds of adaptive control algorithms based on two types of such 
·' representations are 9escribed bel.ow. 
1~ t -- ~·· .... ·' '" ,. • ~ 
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Indirect MRAC algorithm 

Denoting 

V;k = y{, 

X;k = [-Y£- 1 .. . - Y£- ;r.-;;;,2 u{- d ... u£- d-n;, -n;, 2Y, 
and 

we can rewrite the equation (8) in the following equivalent form 
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(17) 

(18) 

' (20) 

The MRAC algorithm based on the estimation of the parameter vector Ot 
from the model (20) is called 'indirect', which indicates simply that the 
parameters of the desired control law are not estimated explicitly. 
, . It should be pointed here that in general the representation (20) is not 
uhique with respect to parameters. Indeed, the set E>; of vectors D; such 
that v;k = x'lc D; for every realization of {uk} has the form 

E>; = {0; = [a1 ... an.+n;,2 b0 ... Eiib+iid 2Y: A (q- 1
) = A* (q- 1

) L(q - 1
)}, 

and B (q- 1
) = B*(q- 1

) L(q- 1
) for some polynomial 

(21) 
' .,, 

where n1 =ifa2 -nd2 +min(ifa-na,ifb-nb). The set E>; is a hyperplane of 
dimension nl passing through the point or 

Now, let {O;k} = {[alk ... a;r.+n;, 2k bok .. . biib+n;,2kY} denoted he sequence of 
the estimated parameter vectors generated by a recursive estimation al­
gorithm. The scheme of the computations of the regulator parameters 
can be described in details as follows. First, we determine the polynomials 
Adtt"' 1

) = 1 +alkq - 1 + ... +an.+n;,2k q-n.-n;,2 and Bdq- 1
) = bok+Dlkq - 1 + ... + 

+biib+iidzkq-iib-iidz. Further, we find the .. polynomials ft(q- 1) and fldq- 1) 

of degrees d - 1 and na+nd - 1 such that AM(q- 1) = Adq- 1)Dl (q- 1)· 

·ft(q- 1)+q-dHdq - 1
). Finally, we compute Kdq- 1) = Bdq- 1)i{(q- 1 ) . 

Direct MRAC algorithm 

The direct MRAC algorithm is based on the direct estimation of the 
regulator parameters, i.e. of the coefficients of the polynomials H* (q- 1) 

and K*(q- 1
). An appropriate model for-estimating these parameters is given 

by the equation (12). Indeed, denoting 
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vdk =AM (q-1) Yk• (22) 

xdk = [yk-d Yk-d-1 ··· Yk-d-;;;,-n;,+ 1 u{_d ··· u{-2d-n;,-n;,2+ 1Y, (23) 

e; = [h~ h! .. . h!.+nr 1 0 ... 0 k~ ... k!b+nd2+d-1 0 ... oy, dime: ~ n8d• (24) 

(here we use the notation ifd = nd1 + ifd2) we can rewrite this equation in 
the following equivalent form 

(25) 

As before, the representation (25) is non-unique with respect to parameters. 
One can show that the set @d of the parameter vectors lid such that 

. v dk = x;f, lid for every realization of { uk} has the form 
· ~ ~ ~ ~ . T · M -1 

@d= [0d=[ho- ... h;;;,+n;,-1k0 ... kiii,+n;,2+d-1] :A (q )= 

= A*(q-1) D2 (q-1)L(q-1)+q-d fj (q-1) and K (q-1) = 

= B* (q- 1) D2 (q- 1) L(q- 1) for some polynomial 

L( -1)-1+/ -1+ +1 -n1+d-1} q - . 1 q ··· n1+d-1 q (26) 

where n1 = ifd2-nd2+min (ifa-na, ifb-nb). The set ed is a hyperplane of 
dimension n, passing through the point e:. 

Finally, note that denoting the sequence of estimated parameter vectors 
by {lidk} the regulator equation (15a) can be rewritten in the following 
compact form 

T (}~ BM( -1) r xdk+d dk- = q uk. (27) 

Parameter convergence of MRAC algorithms 

In this section, we give conditions of convergence of the estimated 
parameters for the direct and indirect MRAC algorithms described previously. 
As an example of an identifier we shall consider a recursive estimation 
algorithm derived recently in [11]. Assuming that the estimation the of 
unknown parameter vector (}* is based on the model (16) the formulas 
describing this algorithm are the following 

(28a) 

(28b) 

R _ r, _ Tk- 1 xk x{ Tk- 1 
k - k- 1 1 T r . , 

+x" 1 k-1 xk 
(28c) 
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Note that if q-t = 0 then the algorithm (28) is equivalent to the standard 
exponentially weighted recursive least squares algorithm with the forgetting 
factor A.. An application of the weighted least squares algorithm is limited, 
however, to the case when the parametrization (16) is unique. Indeed, 
it can be shown that the non-unique parametrization leads to unboundedness 
of gain matrix rk. On the other hand, the choice Q- 1 > 0 ensures rk < 0 Vk 
irrespectively of the fact whether the parametrization (16) is unique or not [11]. 
This is why we have assumed Q- 1 > 0 in (28). Now, let us consider the 
issue of the parameter convergence of the algorithm (28). It is obvious 
that if the parametrization (16) is non-unique it has no possibility to ensure 
the convergence of Ok to 0*. Indeed, non-uniquenes denotes that there 
exists a vector 0 =f. 0* such that vk = x{ 0 V {ud. Thus, the choice {}0 = 0 
in (28a) leads to {Jk = 8 independently of the realization of input sequence. 
It appears, however, that it is possible to ensure the convergence of the 
estimate {Jk to one of the element of a set e defined as 

e = {OeR"o:vk= x[O V {uk}}. (29) 

Indeed, we have the following result [11]: 

LEMMA 2.1. Consider the algorithm (28). If there exists a positive integer N 
and a positive real Q such that 

j+N 

L h T xk x[ h ~ gh T h for all sufficiently large (for a.s.l.) j and V hE :£ (30) 
k=j 

where ;1;· is a linear subspace of Rno defined as 

:'1: = {heR"6 :hT(0*-0)=0 VOeEJ} (31) 

then {Jk converges exponentially and li m {Jk E e. 
Note that in the adaptive contrbf algorithms described in the previous 

parts of this section the vector xd as well as the vector xi depend on 
the reference trajectory { uk} only (neglecting the initial conditions of the 
algorithms). Thus the expression of the convergence condition of {Jik and 
{jdk in terms of {z4} is of greater interest. We shall do that below. 
Firstly, we shall introduce the notion of persistently exciting (PE) and 
persistently spanning (PS) signals. 

DEFINITION 2.1. We say that the vector sequence {vk} is PS iff there exist 
a positive 'integer N and a positive real number such that 

j+N 

L vk v[ ~ (]I for a.s.l. j. 
k=j 
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We say also that the scalar sequence gk} is PE with richness m iff the 
vector sequence {[~k ~k+ 1 ... ~k+m - 1Y} is PS. 

Now we can state the following result for the indirect MRAC algorithm. 

THEOREM 2.1. Consider the indirect MRAC system described by (1H5), 
(15), (17), (18), and (28) (with xb {Jk, and vk replaced by xib {Jib and vik 
in (28)). Assume that bok =f. 0 V k ;i 0 (bok denotes here the (na + nd2 + 1) th 
component of {jik)· If the filtered sequence {BM(q- 1)D(q- 1)uk} is PE with 
richness nd2 + na + nb + 1 + max (na ~ na' nb- nb) then the estimated parameter 
vector {jik converges exponentially and 

lim {jik = ei. 
k-+oo 

(32) 

The proof of Theorem 3.1 as well as the proofs of further theorems 
are based on four lemmas given below. The proofs of the first two lemmas -
are simple and are omitted. The proofs of the remaining two ones can be 
found in [10]. 

LEMMA 2.2. Let vk, wk E Rm. If { vk} is PS and lim (Pk- wk) = 0 then { wd 
k-+oo 

is PS. 

LEMMA 2.3. Let wk = Gvk where wk, vk E Rm and G is m x m nonsingular 
matrix. If { vk} is PS then { wk} is PS. 

LEMMA 2.4. Let C (q- 1
) wk = vk where wb vk E Rm and C (q- 1

) is a polynomial 
of the backward shift operator. If { vk} is PS then { wk} is PS. 

LEMMA 2.5. Assume that dk and D (q-' 1) have the same meaning as in the 
first part of this section. Consider the sequence of vectors wk = [dk- 1 ... 

... dk_lldjvfV where vkERm and nd=degD(q- 1
). If {vk} is bounded and 

{D (q- 1) vk} is PS then {wk} is PS. 

Proof of Theorem 2.1. It can be shown by generalization of the stability 
results of [13] that the assumption bok = 0 V k imply the boundedness of 
the input and the output of the plant and the fulfilment of the control 
objective (7). We shall utilize these properties later. 

We shall only consider the case nb-nb ~ il0 -n0 in the sequel. The 
opposite case can be considered similarly. Denote 

Xik = [ -y£-n;,-n;12 +n.+nd2-1 ··· Y£-n;,-;;;12 u£-d ··· u£-d-iij,-n;12Y, (33) 

:Zik = [ -y£-n;,-n;J2+na-I ··· Y£-n;,-iid2 u£-d ··· u£-d-iib-iid2y. (34) 

Note that utilizing the equation (8) many times the first ila....:.. na + nd2- nd2 
CO!fiponents of the vector xik can be expressed in terms of the elements 
of the vector xik· Thus 
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(35) 

for a matrix Kil of the form Kil = [//// jiY. Note that 

ei = {8ER"0':(8-8tV Kil = 0}. (36) 

Indeed, in view of the definition of ei we have ei ~ {8ERnoi:(8-8tV Kil = 

= 0} c ei. But the set ei is a hyperplane of the same dimension as ei. 
This implies an equivalence ei = ei· Now, note that by (36) and Lemma 3.1, 
Theorem 3.1 will be established if we show that the vector sequence 
{ x;k} is PE. To this end let us observe that utilizing the equation 

A* (q- 1) y{ = q-d B* (q- 1) u{ +d{ (d{ = Ddq- 1) dk) (37) 

many times the first nd2 components of the vector X;k can be expressed 
in terms of the components of the vector ~ik and of the filtered distur­
bances d£-;;;,-;r,12 +n.+n42 _ 1, ... , d{_;;;,-n;

12
+n.· Therefore 

, d{_ n
0
-n42 +n.+nd2 -1 

_ [K;2 :Ki3] 
Xik = --~I- ~{~~--n~~":_ __ _ (38) 

~ik 

for some matrices K; 2 ER"42 xn42 and K;3 ERn42 x <n. +nb+ndz+1l. It can be easily 
checked that Ki 2 is uper-right triangular with unities on main diagonal. 

Thus tha matrix [ ~~ t ~i~] is nonsingular. Further, from the equation 

A (q- 1) D 1 (q - 1) y{ = q - d B (q- 1) D2 (q-.1) u{ we get 

B (q-1) D1 (q-1) ~ik = -q-n.-iidz B (q-1) 
A(q-1) 

=A; 

D(q- 1)Yk 
D(q- 1)Yk-1 

D (q- 1
) Yk-n.-iij,-iid 

(39) 

where A; is a Sylvester matrix for the polynomial A(q- 1
) and q-n.-iid2+n. -l x 

B (q- 1
). Recall that the assumption (MR1) implies the nonsingularity of A;. 

Now, we have consecutively the -following. By assumption on the persistency 
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of excitation of {BM (q- 1
) D (q- 1

) uk} and Lemma 2.4, the sequence {D(q- 1)yj;} 
is PE with richness n4 + nb + n;12 + 1. Hence, by Lemma 2.2, { D (q- 1

) y:;} is 
PE with the same richness na + nb + i!d2 + 1. Hence, by nonsingularity of A; 
and Lemmas 2.3 and 2.4, the vector sequence {~k} is PE. Hence, finally, 

. by boundedness of {,X;k}, identity (38) and Lemmas 2.5 .and 2.3, {.X;k} is 
PE too. This establishes Theorem 2.1. • 

For the direct MRAC algorithm the results analogous to Theorem 2.1 
is given below. 

THEOREM 2.2 Consider the direct MRAC system described by (1)-i5), (22), 
(23) and (28) (with xb Bk and vk replaced by xdk• Bdk and vdk in (28)). 
Assume that .s0k=i=-0Vk(s0 k denotes here the (na+nd+l)·th component ofedk). 
If the external input {uk} is bounded and the filtered sequence {BM (q - 1)· 
·D2 (q- 1

) u:;} is PE with richness iid+na+nb+d+max (iia-na, iib-nb) then 
the estimated parameter vector Bdk converges exponentially and 

(40) 

Proof. The proof of Theorem 2.2 proceeds along the same scheme as 
the proof of Theorem 2.1. As before, we shall only consider the case 
nb- nb ~ na- na. Denote 

. xdk = [- Yk-d-~+~~a-;;;,2 +n42 ... - Yk-d-~-;;;,+ 1 u{_d ... 

(41) 

(42) 

By arguments similar to those used in the proof of Theorem 2.1 we obtain 
consecutively 

(43) 

(44) . 

,idk 

B (q- ') D, (q- ') k., ~ A, D2 (q- ') ~:~:- •• - ;;;-'OJ (45) 

where K,11 , Kd 2 , Kd3 and Ad are matrices of appropriate dimensions and 
• Kdt> Kd 2 and Ad are nonsingular. Moreover, it can be shown by generali­

zation of the stability results of · [13] that the assumption s0 k =1=- 0 Vk implies 
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the boundedness of the input and the output and the property (7). Now, 
as in the proof of Theorem 2.1, we establish consecutively that {D2 (q- 1)· 

·[YkYk-1 ... Yk-d-n.-iib-iid+tJr}, {D2 (q- 1)~dk} and {x4k} are PE. The expo­
nential convergence of IJ4k is a direct consequence of the peristency of 
excitation of {x41}. 

Remarks 

REMARK 2.1. Theorems 2.1 and 2.2 are a generalization of the results of [1] 
where convergence of the MRAC algorithm has been studied for the case 

. ·of d = 1, na = na, nb = nb, nd = 1 (disturbance free and unique parametri­
zation case). To our mind, an investigation of the case with disturbances 
has required most of all an application of new ideas. 

REMARK 2.2. Since the parameter convergence of the direct and the indirect 
MRAC algorithm depends on the persistency of excitation of the appropriately 
filtered external input, the following result is of interest. The filtered variable 
{T(q- 1) ed (ekeR1 and T(q- 1) is a polynomial) is PE with richness m if 
{ek} is PE with richness m+nz where nz is a number of zeros of the 
polynomial T(q- 1) lying on the unit circle. It should be pointed out, however, 
that the richness m of the persistency of excitation of {ek} is sufficient for 
{T(q- 1Hk} to be PE with richness m in most cases. For example, if ek 
consists of entire [(m+ 1)/2] distinct sine waves with randomly chosen 
frequencies then { T (q - 1) ek} is PE with richness m almost surely. 

REMARK 2.3. Note that in the unique parametrization case both in the 
direct and the indirect MRAC algorithm a richness of the persistency of 
excitation of external input { uk} (strictly speaking, of the filtered external 
input) necessary for ensuring the parameter convergence is n42 lower than 
the number of estimated parameters. This difference is a consequence of 
the fact that the disturbance components of unknown frequencies caused 
an additional, useful from the convergence point of view, plant excitation. 

REMARK 2.4. If external input {uk} is not PE with sufficient richness then 
we can add an auxiliary signal { 'lk} additively to the regulator equation 
to ensure an additional plant excitation. It should be pointed out, however, 
that instead of the property (7) we have then only lim (e~ -:- ifk) = 0 where 

0 M - 1 - k-oo 
ek = Yk- yj; and A (q ) 11k = 11k· . 

REMARK 2.5. As we have been pointed out, in the proofs of Theorems 2.1 and 
2.2, the boundedness of the plant input and output and the property (7) 
hold if bok =I= 0 V k in the case of the indirect MRAC algorithm and if 
SOk =I= 0 V k in the case of the direct one. This condition can be guaranteed, 
for example, by introducing an appropriate projection to the estimation 
algorithm (28) (see [14]). 
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3. Parameter convergence of the direct PPAC algorithm for plants with 
purely deterministic disturbances 

In this section, we study parameter convergence of the direct adaptive 
pole placement control algorithm for plants with purely deterministic distur­
bances. This algorithm has been derived recently in [8] and is recalled 
shortly below. 

Structure of the algorithm 

As before, we assume that the plant to oe controlled is described by 
the equations (1)-{5). All assumptions required for the design are listed 
below: 

(PP1) the polynomials A (q- 1) and B (q- 1) are relatively prime, 
(PP2) upper bounds na and nb of na and nb such that min (na-na, nb-nb)=O 

are known; 
(PP3) a lower bound of the plant time delay is known, 
(PP4) the polynomial D (q- 1) occuring in the disturbance model (5) can 

be factorized as D ( q- 1) = D 1 ( q- 1) D 2 (q- 1): deg D 1 ~ nd 1, deg D 2 ~ nd2 where 
D1 (q- 1) is a polynomial with known coefficients and D2 (q- 1) is a polynomial 
with unknown ones, 

(PP5) an upper bound i1d2 of the degree of the polynomial D 2 (q - 1) 1s 
known, 

(PP6) the polynomial B (q- 1) and D 2 (q- 1) are relatively prime. 
Note that the assumptions on the asymptotic stability of the polynomiai 

B (q - 1) occurring in the MRAC designs are not necessary now. Thus, the 
PPAC algorithm can be applied for a considerably broader class of plants 
than the MRAC algorithms. On the other hand, however, an application 
of the PPAC algorithm requires more precise prior knowledge of the 
degrees of the polynomials A (q- 1 ) and B (q - 1 ) than the application of the 
MRAC ones (compare the assumptions (MR3) and (PP2)). Note also that 
since we do not assume that b0 -:1- 0, hence without loss of generality we 
can assume that the integer d in the equation (1) equals exactly the lower 
bound of the delay of the plant. ·· -

Firstly, we shall describe an appropriate pole placement control strategy 
for the case of known A(q- 1) , B(q- 1) and D 1 (q- 1). Let C(q- 1) be a monic 
and asymptotically stable polynomial of degree ne which represents the 
desired denumerator of the transfer function from the external input {uk} 
to the output {yk}. Consider the following control law for the system (1)-{5) 

H* (q - 1) Yk+ K* (q - 1) u{ = u;;, 

D1 (q- 1) uk = u{, 

(46a) 

(46b) 
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where H* (q- 1) an<l K* (q- 1) are polynomials of degrees na+ n,11 -1 and 
n,+d-1 respectively. Combining (1) and (46) we get 

[A (q-1) D1 (q-1) K* (q-1)+q-d B (q-1) H* (q-1)] Yk ~ 
\ . 

= q-4 B(q- 1) ul:+K*(q- 1) D1 (q- 1)d". (47) 

Thus, the control objective will be satisfied if the polynomials H* (q- 1) 

and K* (q- 1) fulfil 

A (q-1) D1 (q'- 1) K* (q-t)+q-d B (q-1)H* (q - 1) = C (q-1). (48) . 

Finally, note that the contr~l law (46) removes the known frequency 
components of the disturbance from the output. · 

When A(q- 1) and B(q- 1) are unknown we can apply the adaptive· 
control strategy which consists in recursive estimation of the coefficients of 
H*(q- 1) and K*(q- 1) and in application of the control law 

n.+1141 --t ift, + d-1 

u{ = u:;- L hik Y~r - 1- L kJk uf-1, (49a) 
i=O }= 1 

D1 (q- 1)u" = u{, (49b) 

where 11ik and k.Jk are the estimates of hf and kf (we recall that k~ = 1), 
An appropriate model for estimating the coefficients of H* (q- 1) and K* (q- 1) 

•- is given in the following theorem [8]. 

THEOREM 3.1. Consider the plant (1H5). Let the polynomials H* (q- 1) and 
K*(q- 1) satisfy the equation (48). Then there exist polynomials V*(q- 1) and 
W*(q- 1) ofdegrees na+n4-1 and ff,+if42 -l respectively such that 

V*(q-1) C (q - 1) Y~<+d+W* (q-1) C (q-1} u{ = 

_ H*( -1) . K. "' ( -1) I . - q Yt-N;,.,-iij,~ii;j+ 1 + q . UJc-i;,-iij, - ii;i+ 1 (50) 

for every ·plant input seqtience {ut}. 
T-he equation (50) can be rewritten in the following form 

vl'k = xJ. o:, (51) 

if we ass\Ulle 

vp~c = ul- ;;;,-;;;,.,.ii;i-d+l' (52) 

. Xp~c = [-Yt - ii;,-iii,-ii;i-d+ 1 ··· -Yk-li;,-ii.-liiJt-N:.z-4+2 

-ul-;;;.-;r,-;r.-4 ... -uf-;;;.-li!i.-:iid-U+2 C (q-: 1) Ylc ... · 
. . 

... C(q- 1lY~r- ii.-a-.+ 1 C (q- 1) u{-4 ... C (q- 1) u{-;r,-;;;12 -d+ t]r, (53) 

0! -[h* h* · k* k* . · v* P - 0 ··· 1to+"4 t - I I · ·· . llb+d- 1 o· ··· 

··· vl+N:..-1 w~ ··· wl+iidrtF· (54) 
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The full adaptive . c.ontrol algorithm is descriped by the set of the 
equations (52), (53), (49), (28) with vk, xk, {Jk replaced by vPk' xPk' {Jpk in (28). 

REMARK 3.1: The PPAC , algorithm described above removes the knqwn 
frequency components of the disturbance {dk} from the plant output. 

Parameter convergence 

THEOREM 3.2. Consider the adaptive system (1)--{5), (28), (49), (52), (53) (with 
vk, xk> {jk replaced by vPk' Xpk> {jpk in (28)). If {uk}, {yk} and {uk} are 
bounded and .the sequence {D2 (q- 1)uk} is PE with richness 2na+2nb+ 
+2~nd 1 +nd2 +d-1 then the estimated parameters h0;, ... ,hn.+nd1 -1k>k1k> ... 

... , knb'+d- 1k converge exponentially to h~, ... , h:.+~ 1 - 1 , kf, ... , k:b+d- F 

Proof. The proof of Theorem 3.2 differs slightly froom the proofs' of 
Theorems 2.1 and 2.2. Namely, instead of the property (7) which has nd 
equivalent now we shall utilize the following properties of the estimation 
algorithm 

. 1. lim ({}k+ 1 _[Jk) = 0, (55) 
k-+oo 

2. the .. sequence {{Jk} is bounded. (56) 

(In 'fact; the properties (55) and · (56) have beeh als'o tised, implicitly in the 
proofs of Theorem 2.1 and 2.2, since they just imply the boundedness of the 
plant input and outp.ut and the ~onvergence property (7)). Note that (55) 
anq (56) denote that for large k the control law (49) is approximately 
time-invariant. To not lenghten the proof too much we shall act in the 
sequel as if the control iaw (49) we~e time-invariant exactly, that is as if · 

H(q - 1)Yk+K(q- 1)u{ = uk, . (57) 

for every k. It should be pointed that this simplification is possible owing 
to the assumption on the boundedness of {Yk}, {uk} and {it;;} ,(for details 
see [15], the proof of Lemma 3.3). · 

· Let xpk and X.1,k denote the column vectors which can be obtained from 
xpk by removing the components C(q- 1)yb .. . ,C(q- 1)Yk-iidz+ndz+l and the 
components C(q- 1)yk> ... , C(q - 1)Yk-iidz+ 1 respectively. Note that utilizing 
the equations A(q- 1)D(q- 1)[C(q- 1)yk]=q- dB(q - 1)D2 (q - 1)[C(q - 1)u{] . 
many times each of the components C (q- 1) Yb ... , C (q- 1) Yk - iidz+ndz of the 
vector Xpk can be expressed in terms .of its remaining Components, that is 
of the components of xpk· Therefore 

Xpk = Kp1 Xpk> (58) 

for a full rank matrix Kpt · We shall show that {xpk} is PS. Utilizing the 
.equation A (q -:- 1) D1 (q - 1)[C (q.~ 1) yk] = q-d B (q - 1)[C (q - 1) u{] + C (q - 1) d{ 
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each of the components C (q- 1) Yk-iidz+ndz; ... , C (q - 1 ) Yk-iidz can be expressed 
in terms of the components of the vector xpk and of C(q~ 1 )d{-;;;,2 + 11d2, ... 
... , C (q - 1) d{_;;;, 2 • Therefore 

C (q- 1) d{ -iidz +ndz' 

xpk=Kp21C{q- 1 )d{_;;;,2 (59) 

~pk 

for a square matrix KP2 • . It · can be shown by inspection 
nonsingular. Further, from (8), (10) and (57) we get 

that KP2 is 

C (q-1) D2 (q-1) Yk = q-d B (q-t) D2 (q-1) u;;, 
C ( q- 1) D 2 ( q - 1) u{ = A ( q - 1) D 2 ( q- t) uj; 

where C (q- 1) =A (q- 1) D1 (q- 1) K (q- 1)+q-d B (q- 1) fi (q- 1). 

q-n;.-n;,-;;;,-d+ 1 B (q-1) 

q - zn;.-;r,-2nd1 -;;;, 2 -d+2 B (q-1) 
- q-n;. - ;r,-;;;, A {q~ 1) D1 (q-1) 

Hence 

-q- n;.-2;;;,-;;;,-Hz A (q-1) Dt(q-1) luk-d = 
C (q- 1) Dz (q- 1) ~pk =I q-iidz C (q- 1) B (q- 1) 

q-n. - ;;;,+ 1 C (q-1) B {q-1) 
C (q :- 1) A (q-t) Dt (q-t) 

q - ;r,-n;f2 + t C (q-1) A (q-1) D1 (q-1) 

==A~ 

uj;_d 

u;;_d_ 1 

Uk-d-m+ 1 

(60a) 

J60b) 

(61) 

where Ap is a square matrix defined by the second identity in (61) and 
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m=2n11 +2nb+2nd1 +nd2 +d-1. We shall show that AP is nonsingular. To 
this . end, it is sufficient to show that the compon~nts of the polynomial 
vector in the middle · term of (61) are linearly independent over reals, or 
equivalently, that the polynomial equation 

[A (q,-1) D1 (q-1) W(q-1) +q-nd2 B (q- 1) V(q-1)] C (q - 1) = 

= q-n.. - n;,-iid [A (q-1) Dl (q-1) K (q-1)+ q-d+ 1 B (q-1) fj (q-')J (62) 

has no solution with respect to the polynomials V(q- 1), W(q- 1), H(q- 1) 

and K(q- 1) of degrees na+nd1_·1, nb+nd2 -1, na+nd1 -1 and nb+d-2 
respectively. We have the following:fV(q - 1) and W(q- 1) do not both equal 
zero then the first term of the polynomial on the left side of (62) is of 
degree non lower · than ffa + nb + nd- 1, but, on the other hand, each term 
of . the polynomial on the right side of (62) ·is of degree non greater 
than ff11 +ffb+nd. Therefore V(q- 1) = W(q- 1) = 0. Hence, in view of the 
restrictions deg K = nb+d-2 and deg fi = na+nd1 -1, il (q- 1) = K (q- 1) = o. 
Consequently, the matrix Apk is nonsingular. Now, applying Lemmas 2.2 
and 2.4 arid the assumptions of Theorem 3.2 · one establishes consecutively 
that {C(q- 1)D2 (q- 1)~pk}, {~pk} and, finally, {xpk} are PE. Thus, by 
Lemma 2.1 the sequence {t1pk} converges expoi1entially and lim t1pkE0P 

·k-+ 00 

where · 

ep = {11ER"8P:(e;-t1)T Kp1 = 0}. (63) 

Let us consider the set 
- {[~h ~h ~k ~ ~ . ~ ep = 0 ... ;;;,+ndl-1 1 ... kn;,+d:_l Vo .• . V;;;,+i;d-1 Wo ... 

~ •]T·fl ( - 1)- H*( - 1) 0 ( -1)-··· Wn;,+i;d2-1 · q - · .. q · '1\. q -

= K*(q - 1), A (q - 1) D1 (q - 1) V(q - 1) L(q - ()+ 

+B (q- 1) W(q- 1) L(q- 1) = q,..n.. - n;,-:-iid+ 1 for some polynomial 

L(q- 1)-1+[ q :.. 1+ · +[ q·-iid2+nd2} 
- 1 ·· · iid2-nd2 · (64) 

Using the arguments of the proof of Theorem 3.1 (see [8]) it can be 
shown that vt1PEBp and V {uk} the identity (50) holds. Therefore, ep c ep. 
On the other hand, e p and 01' are some hyperplanes of the same 
dimension nd2-nd2. Consequently, eP = ep. Hence; in light of (64) and 
lim t1pkE@P, Theorem 3.2 holds. • 
k~oo · 

ln the proof given above, similarly as in the proofs of Theorems 2.1 
and 2.2, for establishing that the external excitation causes the proper plant 
excitation one utilizes the assumption on the plant signal boundedness. 
Contrary to the MRAC algorithms, however, in the PPAC algorithm the 
sequences {Yk} and {uk} can be unbounded wheri the plant excitation condi-
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tion is not satisfied and the initial parameter error IJ0 = e- Bo is sufficiently 
large. Because of this we have had to insert the assumption on the 
boundedness of {y:} and {uk} directly into the text of Theorem 3.2. This 
assumption can be, however, omitted when instead of (49a) we apply a 
piece-wise constant parameter control law similar to that proposed in [16]. 
Namely, let us a.ssume that (49a) is replaced by 

H~ ( -1) .(}- ( - 1) f- r k- · (' 1) -1 ·- 0 1 · im q Yk+A;m q uk- uk> - zm, ... , z+ m , 1- , , ... (65) 

where m= 2na+2nb+2nd1 +nd2 +d-1. Now, combining (8), (10) and (65) we 
get (without assuming that ilk and Kk are time-invariant as in (57)) 

[ 
u(i + 1 )m- 1] 

C;m·(q - 1) D2 (q - 1) Xp(i+ t>m+a - t = Ap :. 
. u,m 

i = 0, 1, ... 

where cim = AD1 K;m+q-d Bflim· Hence, the sequence of vectors Xp(i+1)m+d-l> 
i=O, 1, ... (and consequently the sequence {xpk}) is PS. This implies h;k~ht 
and kik ~ kj . 

Discussion of stability 

Below, we shall discuss briefly the issue of the stability of the PPAC 
algorithm considered in this section in the case of absence of the external 
excitation. 

First of all, note that the local stability result (local with respect to the 
initial values of the estimation algorithm (28)} follows, directly from the 
following property of the estimation algorithm (28). 

lle*-11ki1Q-1 ~ lle*-11oiiQ-1· (66) 

Indeed, note that the system (1), (49) with h;k = h{ and k;k = k{ is stable 
exponentially. Thus, by linearity of the equations (1) and (49) the system (1), 
(49) remains stable if lh;k-h{l ~ e and lk;k-k{l ~ e for a sufficiently small 
e Or, in view Of (66), if the initial parameters estimation etror 11e;- epO 11 is 
sufficiently small. Utilizing additionally the property (55) (that is_ the asymptotic 
time-invariantness of (49)} one can show easily that the PPAC system is 
Stable if epO belongs tO the region 

{11PERnov:the polynomial A (q- 1) D 1 (q- 1) K (q- 1)+q-d B (q- 1) fl (q- 1) 

is asymptotically stable for every {jP' = [ho ... W;r,+nd2-tY 
such that lie:; -IJpllv- 1 ~ lie;- epllv- 1}. 

The stronger result can be received if together with (55) and (66) one 
utilizes aJso the following property of the algorithm (28) 

lim (vpk-x[ ek) = 0 . 
k-> a:J 

(67) 
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Namely, using (55), (66) and (67) one can establish the following stabilizing 
property of the PPAC algorithm 

THEOREM 3.3. · Consider the adaptive system described by (1)-(5), (28) (49), 
(52), (53) (with vh xk, {Jk replaced by vpk> xpk> {Jpk in (28)). If there exists 
a closed subset rp of the set 

qJ = {~ = [ho ... wiii,+ii;l2-1y: the polynomials A (q- 1) D1 (q- 1) K (q- 1)+ 

+q-d B (q- 1) fl (q- 1) and A (q- 1) D1 (q- 1) W(q- 1)+B (q- 1) V(q- 1) 

have no common zeros in the region \q - 1 \ ~ 1}, (68) 

such that {JpkE(p for all sufficiently large k then {uk} and {yd are bounded. 

Theorem 3.3 implies that the PPAC system is stable if {Jro belongs to the 
region 

{OrER"ov:OEq> VO such that \\e;-0\\ 1rl ~ 1\8;-{}r\\Q- 1} . (69) 

For more detailed discussion on stability of the PPAC algorithm the reader 
is referred to [17]. 
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Zbieinosc adaptacyjnych algorytmow sterowania dla obiektow 
z czysto deterministycznymi zakloceniami 

W pracy podano warunki parametrycznej zbie:i:nosci trzech adaptacyjnych algorytmow 
sterowania dla obiektow z zakloceniami, ktore mog11 bye modelowane w postaci sumy 
sygnalow sinusoidalnych. Rozpatrzono nastt;:pujl!ce algorytmy: algorytm sterowania typu bez­
posredniego z modelem odniesienia, algorytm sterowania typu posredniego z modelem odnie­
sienia oraz algorytm st~rowania typu bezposredniego zapewniaj11cy przesuni.,:cie biegunow 
w zadane polozenie. W odro:i:nieniu od wczesniejszych prac dotycZilcych zbieznosci algo­
rytmow adaptacyjnych, w pracy rozwazany jest ogolny przypadek, gdy estamacja parametrow 
obiektu (regulatora) przeprowadzana jest na podstawie modelu, ktory jest niejednoznaczny 
wzgl.,:dem parametrow. 

Cxo~HMOCTb a~antuBHbiX a~ropHTMOB ynpao~euuu ~~H o6beKTOB eo cTporo 
~eTepMHHHp083HHbiMII DOMeXaMII 

B pa6oTe npwse,ueHhi ycnoBHll napaMeTpH'ICCKOH cxo,uHMOCTH Tpex a.uanTHBHhiX anro­
pHTMOB ynpaBJieHHll ,UJill ·06beKTOB C IIOMeXaMH , KOTOpb!e MoryT MO,UeJIHpOBaTbCR B BH,Ue 
cyMMbi CHHycoH,uaJihHhlX CHrHaJIOB. PaccMoTpeHbi cne,uywu~ne anropHTMhi: anropHTM ynpall­
JieHI1ll HeiiOCpeACTBeHHOfO THna C MOAeJibiO OTHeCeHHR, aJirOpHTM ynpaBJieHI1R nocpeACTBeH­
HOro TI1Tia C MO,UeJibiO OTHeCeHHR, a TaKJKe aJirOpHTM ynpaBJieHHll HenocpeACTBeHHOfO 
mna, o6ecne'II1Ba!OIIIHH C,UBHr llOJIIOCOB B 3a,!laHfiOe llOJIOJKeHHe. B OTJIH'IHe OT 6oJiee paHHblX 
pa60T, KaCaiOIIIHXCll CXO,llHMOCTH a.naiiTHBHbiX aJirOpHTMOB B pa6oTe pacCMaTpHBaeTCR 
06III11H CJiy'laH, KOfAa OUeHKa napaMeTpOB o6beKTa (peryJiliTOpa) npOBOAHTCR Ha OCHOBe 
MOAeJIH, KOTOpall liBJIReTCR HeO,UH03Ha'IHOH TIO OTHOIIIeHHIO K napaMeTpaM. 




