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In this paper, we give the conditions of the parameter convergence of three adaptive
control algorithms for plants with purely deterministic disturbances. These algorithms are
the direct and the indirect model reference adaptive control algorithm and the direct pole
placement adaptive control algorithm. We consider a general case in which the estimation
of unknown parameters is based on a model which is non-unique with respect to parameters.

1. Introduction

In the past few years a great deal of research has been devoted to the
issue of parameter convergence of adaptive control algorithms [1]-[3].
This interest is caused, first of all, by the fact that the algorithms
characterized by exponential convergence of estimated parameters to the real
ones are more robust with respect to time-variation in plant parameters,
the existence of unmodelled dynamics and so on [4]-[6]. The aim of this
paper is to investigate the parameter convergence of adaptive control
algorithms for plants with purely deterministic disturbances. The algorithms
that we consider are the following: the direct and the indirect model
reference adaptive control (MRAC) algorithm (the MRAC algorithms for
plant with purely deterministic disturbances have been considered by Goodwin
and Chan [7]) and the direct pole placement adaptive control (PPAC)
algorithm [8] (this algorithm is a generalization of the algorithm proposed
by Elliott [9]). The method of the convergence analysis we apply utilizes
recent results on peristency of excitation for plants with purely deterministic
disturbances [10] as well as the ideas used in the convergence analysis
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of adaptive control algorithms in the disturbance free case [1]. In contrast
to all previous works on this field, we consider a general case in which
the estimation of unknown parameters is based on a model which is non-
-unique with respect to parameters.

2. Parameter convergence of MRAC algorithms

In this section, we study the parameter convergence of the direct and
the indirect model reference adaptive control algorithm for plants with purely
deterministic disturbances. For clarity, we divide this section into several
parts. The structures of the MRAC algorithms are described in the first
four parts. The conditions of the parameter convergence of the MRAC
algorithms are given and established in the next part. The remarks compose
the last part.

Statement of the problem of MRAC

Let us consider a single-input, single-output, discrete-time plant described
by the equation

A@ DY y=q""") m+d, (1)

where u, and y, are the plant input and output, A(g~') and B(q™"') are
the polynomials (of the backward shift operator g~') of the form

A(@Y=14a,q7 '+ .. +a, g™, ay, # 0, )
B(q_1)=bo+b1 q"+...+b,,tq"“,b,,b¢0, 3)

and d, is a purely deterministic disturbance composed with sine waves
and/or, a bias, that is

dy = ‘Zl g: sin (@; k+@;). “) -

Let us denote by D{(g~ ') the polynomial of the least possible degree such
that

D(¢ ") d=0. &)

Note that the form of the disturbances d;, implies that all zeros of the
polynomial D (g~ ') are single and lie strictly on the unmit circle |g|= L
Assume that:
(MR1) the polynomials 4 (¢~ ') and B(g~"') are relatively prime,
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(MR2) the polynomial B(q™') is asymptotically stable (that is, all zeros
of B(g™") lie strictly outside the unit disc |g~*| < 1),

(MR3) upper bounds i1, and 71, of the degrees n, and n, are known,

(MR4) the plant delay d is known,

(MRS5) the polynomial D (g~ ') can be factorized as D(g~ ") =D, (¢”")-
.D, (g "):deg D, 2 n,y,deg D, £ n,;, where D, (¢ ') is a polynomial with
known coefficients and D, (¢”') is a polynomial with unknown ones,

(MR6) an upper bound 71,, of the degree of the polynomial D, (¢79) is
known.

The assumption (MRS5) denotes that the frequencies of some sine compo-
nents are known a priori while those of the others ones are unknown.
Thus, we consider slightly more general case than the one considered in
[7] where all frequencies ; are assumed to be unknown. We believe
that the assumption on the knowledge of w; is well-founded in many
cases. For example, if the disturbance {d,} is periodic of known period
K then we have D(q”')=D,;(qg"")=1—g X It should be also pointed
out that the utilization of the knowledge of the frequencies w; enables
to decrease the number of estimated parameters and, as it can be shown
by simulation, to improve the transient period of the adaptive system.
The assumption (MR2) is necessary since the control law described in the
sequel cancels all zeros of the plant. The knowledge of the upper bounds
i, M, and 7y, and the delay d will be utilized for defining parameter
vectors (the vectors 0Ff and 0F in the sequel) characterizing the plant (1)
The assumption (MR1) is not necessary for the design, but in view of the
other assumptions it does not decrease generality.

Further. let us assume that we are given a reference model whose output
¥k determines for us a desired trajectory of the plant output. Let this model
be described by

AM@™ Y yi=q B (@ i, (6
where 1} is a bounded external command input and A¥(g™') is a monic and
asymptotically stable polynomial.

The objective of the control is to determine an appropriate bounded
input sequence {u;} in such a way that

Jim (4= = 0. )

Model reference control strategy for known-plams

Below, we describe an appropriate control strategy for the case of known
polynomial A (g~'), B(¢~') and D (¢~ 7).

After multiplication of the plant equation (1) by D(g")=D;(g™ ")
.D; (q”") we obtain
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A* @ Yy =q""B*@ "), (8)

where
W=D@ " yu =Dy (q "), ©
A*(@ ) =A@ ") Dy(¢ "), B*(@")=Bl@ ") D, (@ ). (10)

Let the polynomials P*(¢q~') and H*(q™ ') of degrees d—1 and n,+n,—1
(ng = nyy+ny,) be the solution of the polynomial equation

AM(@ ) =A*(@@ ) D1 (@ ) P* (g N+q ‘H*(@@™"). (11)
From (8) and (11) we get
AM@ Y ye=q ' [H*(@ ") n+K* (g™ ") uf], (12)
where
K*(g')=B*(@g" ") P*(q™"). (13)

Hence, we see that the control objective will be satisfied if we apply the
following control law

H*@ Y n+K*@q ) ul = BY(q™ ") u, (14a)
Dy (@) uy=uf. (14b)

Indeed, (12), (14) and (6) result in AM™(g™") (y,—)%) = 0. Therefore, in view
of the asymptotic stability of A™(q~') the property (7) holds. Moreover,
one can easily check that the system (1), (14) is exponentially stable,
so that {u,} is bounded provided {u}} is bounded.

When the polynomials 4 (¢~'), B(¢~') and D, (¢ !) are unknown we
can apply an adaptive control strategy. Roughly speaking, such strategy
consists in recursive estimation of parameters characterizing the process to
be controlled and in application of the time-varying control law

A @Y i+ Re (@) uf = B¥ (g V) i, (15a)
Dy (g™ ") w = uf, (15b)

whose parameters Ry, Ay, .., Kok, Kyx, ... (these are the coefficients of B, (g~ *)
and R, (q™")) are determined by the use of the estimated parameters as if
these parameters were correct. Most of the known estimation algorithms
need the following representation for the unknown parameter vector 6* e R™

w=xi0% w=R, xeRv, (16)..

where v, and x; are some variables which depend in a known way on |
the plant input and output and play the role of the data.
Two kinds of adaptive control algorithms based on two types of such

. Iepresentations are described below.
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Indirect MRAC algorithm

Denoting
vie = ¥, (17)
X =[—yf-1 —}’{-n“.—agz Uf—g .. “{—d—u—,—mzjr, (18)
and
0f = [at af .. 4§, +4,, 0 . O b .. b,,w,,.u 0..0]7, dim 6f 2 ng;,  (19)

hd

ﬁa+ﬁd2 nb+ﬂ¢2+l

we can rewrite the equation (8) in the following equivalent form
Vik = x,—i 9?{. (20)

The MRAC algorithm based on the estimation of the parameter vector ¥
from the model (20) is called ‘indirect’, which indicates simply that the
parameters of the desired control law are not estimated explicitly.

It should be pointed here that in general the representation (20) is not
unique with respect to parameters. Indeed, the set @; of vectors 0; such
that vy = x% 0; for every realization of {u,} has the form

8, = {0;=[a, .. g+, bo .. brem,1": A (@™ ") = A*(¢" ") L(g™ M)},
and B(qg~')=B*(q ") L(g" ") for some polynomial

L@ hH=14+4+ .. +l,q7™} (21)

where n; = fiyy —ny, +min (n,—n,, M, —n,). The set @; is a hyperplane of
dimension n, passing through the point 6f.

Now, let {8} = {[@1x .- Gx + 3% Dok - b +mu]?} denote- the sequence of
the estimated parameter vectors generated by a recursive estimation al-
gorithm. The scheme of the computations of the regulator parameters
can be described in details as follows. First, we determine the polynomials
A@ Y =14auq '+ .. +8p+muq ™ ™ and B (g™ ") =box+buq '+ ..+
+bg s @™ ™2 Further. we find the “polynomials B (¢!) and A, (¢7Y)
of degrees d—1 and n,+n;—1 such that A"(q ‘)—A,‘{q YD, (g Y-
‘B (¢"")+q *H,(q""). Finally, we compute K, (q™")=B, (¢ 1) B.(¢™").

Direct MRAC algorithm

The direct MRAC algorithm is based on the direct estimation of the
regulator parameters, ie. of the coefficients of the polynomials H*(gq™ ')
and K*(g~'). An appropriate model for estimating these parameters is given
by the equation (12). Indeed, denoting
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va=A"@ ) »e (22)
Xgk = [Vk=a Va-a=1  Vh-d-m-m+1 “{— "{- 24—1@—@;+1]T (23)
= D BY o B g1 0 OKS o Ky 0=y 0. 017, dim 0 & 1, (24)

(here we use the notation fi; = ny; +1,;;) we can rewrife this equation in
the following equivalent form

Vae = Xy 0F. (25)

As before, the representation (25) is non-unique with respect to parameters.
One can show that the set €, of the parameter vectors §, such that
Va = X 0, for every realization of {u;} has the form

6,={0,=[ho ET,+JT¢— 1 ko ... kﬁ+i‘3+d—l}r:AM (@)=
=A*(@q ") D2 (g ") Lg )+q *A(g"") and R(¢"") =
=B*(q ') D,(q" ") L(g”") for some polynomial
L@ Y)=141l1 7"+ . +lyea-1 g "1} (26)

where n; = fiyy —ny, +min (7,—n,, i,—n,). The set @, is a hyperplane of
dimension n; passing through the point 63

Finally, note that denoting the Sequence of estimated parameter vectors
by {04} the regulator equation (15a) can be rewritten in the following
compact form

Xik+d gdk- = BM U 1) U (27)

Parameter convergence of MRAC algorithms

In this section, we give conditions of convergence of the estimated
parameters for the direct and indirect MRAC algorithms described previously.
As an example of an identifier we shall consider a recursive estimation
algorithm derived recently in [11]. Assuming that the estimation the of
unknown parameter vector 6* is based on the model (16) the formulas
describing this algorithm are the following

- Fi—y X (e—xy{ 6‘,‘ 1)
O=0-,+ T Toes , 05, (28a)

- [A-U-DRQ'ALO =@ V>0, <i<l, (8h

T
T T L L=IT30. (280)
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Note that if Q7' =0 then the algorithm (28) is equivalent to the standard
exponentially weighted recursive least squares algorithm with the forgetting
factor 4. An application of the weighted least squares algorithm is limited,
however, to the case when the parametrization (16) is unique. Indeed,
it can be shown that the non-unique parametrization leads to unboundedness
of gain matrix I,. On the other hand, the choice Q7' > 0 ensures I, <0 Vk
irrespectively of the fact whether the parametrization (16) is unique or not [11].
This is why we have assumed Q' >0 in (28). Now, let us consider the
issue of the parameter convergence of the algorithm (28). It is obvious
that if the parametrization (16) is non-unique it has no possibility to ensure
the convergence of 0, to 0* Indeed, non-uniquenes denotes that there
exists a vector 0 # 0* such that v, = xf 0 V {u,}. Thus, the choice §,=0
in (28a) leads to O, = 0 independently of the realization of input sequence.
It appears, however, that it is possible to ensure the convergence of the
estimate 0, to one of the element of a set @ defined as

O = {0eR™: v, = x{0 V {u}}. (29)
Indeed, we have the following result [11]:

LemMma 2.1, Consider the algorithm (23]. If there exists a positive integer N
and a positive real ¢ such that

J+N

Y hTxyxi h > gh"h for all sufficiently large (for asl)j and Yhex  (30)
k=j

where 4 is a linear subspace of R™ deﬁned as
A ={heR":h"(@*—0)=0 Y 0O} (31)

then O, converges exponentially and lim 0,€6.

Note that in the adaptive control algorithms described in the previous
parts of this section the vector x; as well as the vector x; depend on
the reference trajectory {uj} only (neglecting the initial conditions of the
algorithms). Thus the expression of the convergence condition of §, and
O in terms of {uj} is of greater interest. We shall do that below.
Firstly, we shall introduce the notion of persistently exciting (PE) and
persistently spanning (PS) signals. '

DerFINITION 2.1. We say that the vector sequence {v,} is PS iff there exist
a positive integer N and a positive real number such that
JtN '

Y. vevi 2ol for asl j.
K=j
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We say also that the scalar sequence {&,} is PE with richness m iff the

vector sequence {[&; &x+q . Cxam-117} is PS.
Now we can state the following result for the indirect MRAC algorithm.

TueoreM 2.1. Consider the indirect MRAC system described by (1)H5),
(15), (17), (18), and (28) (with x;, 0., and v, replaced by xyu, Oy, and vy
in (28)). Assume that bo, #0 Vk =0 (by, denotes here the (it,+iiyy+1) th
component of ;). If the filtered sequence {BM(q~')D (¢~ *)u}} is PE with
richness figy +n,+ny+ 1 +max (i, —n,, i,—n,) then the estimated parameter
vector B converges exponentially and

The proof of Theorem 3.1 as well as the proofs of further theorems
are based on four lemmas given below. The proofs of the first two lemmas
are simple and are omitted. The proofs of the remaining two ones can be
found in [10].

LeEmMMA 22. Let v, w,eR™ If {v,} is PS and lim (0,—wy) =0 then {w}
is PS.

LemMA 23. Let w, = Gu, where wy, v,eR™ and G is mxm nonsingular
matrix. If {v;} is PS then {w,} is PS.

LEMMA 24. Let C(q™ ") wy = v, where wy, v,eR™ and C (q™') is a polynomial
of the backward shift operator. If {v,} is PS then {w;} is PS.

LEMMA 2.5. Assume that d, and D (q~') have the same meaning as in the
first part of this section. Consider the sequence of vectors wy = [dg-1..
....:i,‘_,,d|v,f]T where v,eR™ and ny=degD(q™'). If {v,} is bounded and
{D(q~ ") vy} is PS then {w,} is PS.

Proof of Theorem 2.1. It can be shown by generalization of the stability
results of [13] that the assumption by =0 Yk imply the boundedness of
the input and the output of the plant and the fulfilment of the control
objective (7). We shall utilize these properties later.

We shall only consider the case #,—n, = f,—n, in the sequel. The
opposite case can be considered similarly. Denote

X = [~ Yh-m-matnatna—1 -~ Vh-mo— W-a - Wh-a-m- 51" (33)
B = [—¥-m-matn=1 Wom=rgp =g ¥l-g-m-mal (34)

Note that utilizing the equation (8) many times the first i,—n,+ iy —ny;
components of the vector x; can be expressed in terms of the elements
of the vector Xxj. Thus
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X = Kig Xigs (35)
for a matrix K;; of the form K;, = [//// :EI]T. Note that

O; = {0eR™:(0—0¢)" K;; = 0}. (36)
Indeed, in view of the definition of @; we have 0, = {0eR™i:(0—6})" K,y =
=0} = @, But the set @, is a hyperplane of the same dimension as ©;.
This implies an equivalence @; = @;. Now, note that by (36) and Lemma 3.1,
Theorem 3.1 will be established if we show that the vector sequence

{Xu} is PE. To this end let us observe that utilizing the equation
A*@ Yyl =q"B*(@@ Yu[+d (A =Dy ")dy) (37)

many times the first n;, components of the vector x; can be expressed
in terms of the components of the vector X, and of the filtered distur-
bances df_z _m. tn+np—1s» H—5 i, +n, Therefore

i)
d-‘f—ﬂn""dz+ﬂa+ﬂdz“ 1

fik = [_KLZ_;IS:E:] ’d{—n‘,—n‘u +ng (38)

xik
for some matrices K;, €R™2""2 and K;3eR™2*"*m*72%1) It can be easily
checked that K;, is uper-right triangular with unities on main diagonal.

|
Thus the matrix [I—(‘E-E-K-jii is nonsingular. Further, from the equation

Al@ YD, (g )y = q‘l"B(q‘l)Dz () ul we get

i B Y |
B(@ ) Dy (@ ) Tu=|—q" "B (g iy
1 _ D —
A(q 1) (q )yk
| gAYy
(D (@Y y
D(g™") i1
= A (39)

LD (@) Yemn,- -
where A, is a Sylvester matrix for the polynomial 4 (g~ ') and g~ ™ %z *"~1 x

B(q™'). Recall that the assumption (MR1) implies the nonsingularity of A,.
Now, we have consecutively the following. By assumption on the persistency
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of excitation of {B¥(q~") D (¢~ ') u;} and Lemma 2.4, the sequence {D (g™ ")y;}
is PE with richness n,+n,+ny,+1. Hence, by Lemma 22, {D(g™") i} is
PE with the same richness n,+1i,+/;;+1. Hence, by nonsingularity of A;
and Lemmas 2.3 and 24, the vector sequence {X,} is PE. Hence, finally,
by boundedness of {X;}, identity (38) and Lemmas 2.5 and 23, {X;] is
PE too. This establishes Theorem 2.1. |

For the direct MRAC algorithm the results analogous to Theorem 2.1
is given below.

THeorReEM 2.2 Consider the direct MRAC system described by (1)H5), (22),
(23) and (28) (with xy, O, and v, replaced by Xy, Oy and vy in (28)).
Assume that Sp, # OVk (3o denotes here the (n,+ny+1)-th component of gdk).
If the external input {uj} is bounded and the filtered sequence {B™ (g~ 1)-
Dy (g™ ") uy} is PE with richness fy+n,+ny+d+max (i1,—n,. iy,—n,) then
the estimated parameter vector O, converges exponentially and

lim 0, €0,, (40)

k—a
Proof The proof of Theorem 2.2 proceeds along the same scheme as
the proof of Theorem 2.1. As before, we shall only consider the case
fiy—n, = i, —n,. Denote
Xax = [_yk—u—n:ﬂ,—u—,,zﬂﬂ o T Vk—d-m-m+1 U{—d
o 2;1-::—,,,—.7,,,“]7, (41)
Xa = [—yt—d-u—,ﬂ,—rﬂ oo T Vk—d-m-m+1 “{—d--- u{—Zd*ﬁ—iﬂ+l3T> “42)

By arguments similar to those used in the proof of Theorem 2.1 we obtain
consecutively

Xae = Kyy Xgis 43)
d{-d-iﬁﬂa-ﬁzﬂaz
_ Ko tksl?
xa=[—i‘2—r}@] Hos-min-marr | “4)
T || Hoemenmar _
fa
Vi
B(q™") Dy (g™ ") Fa= A4 D2 (g Y [ (45)

k~d—n,— G~ fz+1

where K;;, K;;, K43 and A,; are matrices of appropriate dimensions and
. Kai1. K4; and A, are nonsingular. Moreover, it can be shown by generali-
zation of the stability results of [13] that the assumption $,, # 0 Yk implies
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the boundedness of the input and the output and the property (7). Now,
as in the proof of Theorem 2.1, we establish consecutively that {D, (¢~ ')
D V=1 oo Yk—d—na~7,,—;.',,+1]r}, {Dz (@ " Xa) and {fak} are PE. The expo-
nential convergence of f, is a direct consequence of the peristency of
excitation of {Xz}.

Remarks

Remark 2.1. Theorems 2.1 and 2.2 are a generalization of the results of [1]
where convergence of the MRAC algorithm has been studied for the case
ofd=1, n,=n,, n,=m,, n;=1 (disturbance free and unique parametri-
zation case). To our mind, an investigation of the case with disturbances
has required most of all an application of new ideas.

REMARK 2.2. Since the parameter convergence of the direct and the indirect
MRAC algorithm depends on the persistency of excitation of the appropriately
filtered external input, the following result is of interest. The filtered variable
{T(@ ") &} (E&eR' and T(g™') is a polynomial) is PE with richness m if
{&} is PE with richness m+n, where n, is a number of zeros of the
polynomial T (¢~ ') lying on the unit circle. It should be pointed out, however,
that the richness m of the persistency of excitation of {&} is sufficient for
{T(g~ ") &} to be PE with richness m in most cases. For example, if &
consists of entire [(m+1)/2] distinct sine waves with randomly chosen
frequencies then {T'(¢™') &} is PE with richness m almost surely.

ReEmArRk 2.3. Note that in the unique parametrization case both in the
direct and the indirect MRAC algorithm a richness of the persistency of
excitation of external input {u}} (strictly speaking, of the filtered external
input) necessary for ensuring the parameter convergence is ng, lower than
the number of estimated parameters. This difference is a consequence of
the fact that the disturbance components of unknown frequencies caused
an additional, useful from the convergence point of view, plant excitation.

REMARK 24. If external input {u;} is not PE with sufficient richness then
we can add an auxiliary signal {n,} additively to the regulator equation
to ensure an additional plant excitation. It should be pointed out, however,
that instead of the property (7) we have then only l1m (ef — i) = 0 where
e = ye—yi and AM(g™") 7l = m.

REMARK 2.5. As we have been pointed out, in the proofs of Theorems 2.1 and
2.2, the boundedness of the plant input and output and the property (7)
hold if by, 0 Vk in the case of the indirect MRAC algorithm and if
Sok #0 Vk in the case of the direct one. This condition can be guaranteed,
for example, by introducing an appropriate projection to the estimation
algorithm (28) (see [14]).
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3. Parameter convergence of the direct PPAC algorithm for plants with
purely deterministic disturbances

In this section, we study parameter convergence of the direct adaptive
pole placement control algorithm for plants with purely deterministic distur-
bances. This algorithm has been derived recently in [8] and is recalled
shortly below.

Structure of the algorithm

As before, we assume that the plant to ve controlled is described by
the equations (1)~5). All assumptions required for the design are listed
below:

(PP1) the polynomials 4 (g~ ') and B (g~ ') are relatively prime

(PP2) upper bounds 7, and 7, of n, and n,, such that min (7, — n,, i,—n,)=0
are known,

(PP3) a lower bound of the plant time delay is known,

(PP4) the polynomial D (g~ ) occuring in the dlsturbance model (5) can
be factorized as D (g~ )= D; (g~ ') D, (¢~ '): deg D1 = nyy, deg D, L ng; wWhere
D, (g™ 1) is a polynomial with known coefficients and D, (q 1) is a polynomial
with unknown ones,

(PP5) an upper bound i;, of the degree of the polynomldl D, (q 1) is
known, ;

(PP6) the polynomial B(q~') and D, (¢~ ') are relatively prime. :

Note that the assumptions on the asymptotic stability of the polynomial
B(q™ ') occurring in the MRAC designs are not necessary now. Thus, the
PPAC algorithm can be applied for a considerably broader class of plants
than the MRAC algorithms. On the other hand, however, an application
of the PPAC algorithm requires more precise prior knowledge of the
degrees of the polynomials A4 (') and B (g™ ') than the application of the
MRAC ones (compare the assumptions (MR3) and (PP2)). Note also that
since we do not assume that b, # 0, hence without loss of generality we
can assume that the integer d in the equation (1) equals exactly the lower
bound of the delay of the plant. |

Firstly, we shall describe an appropriate pole placement control strategy
for the case of known A (¢~ '), B(g~ ') and D, (g !). Let C (g~ ') be a monic
and asymptotically stable polynomial of degree n, which represents the
desired denumerator of the transfer function from the external input {u;}
to the output {y,}. Consider the following control law for the system (1)~5)

H*(q™") yi+K*(@™") uf = uj, (46a)
Di(g™ ") we=uf, (46b)
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where H*(q™!) and K*(¢~!) are polynomials of degrees i,+n, —1 and
f,+d—1 respectively. Combining (1) and (46) we get
[A(q@ YDy (@ )K*(@¢)+q ‘B HVH*@ N n=
=q ‘B@ Huu+K*(q ) D1 (@ Nd.  (47)

Thus, the control objective will be satisfied if the polynomials H*(q™')
and K*(q~') fulfil

A(@@ D@ HK*@ )+q 'B@ YH*(@ )=C(q ™). 48)
Finally, note that the control law (46) removes the known frequency
components of the disturbance from the output.
When A(q~') and B(q~!) are unknown we can apply the adaptive :

control strategy which consists in recursive estimation of the coefficients of
H*(¢q" ') and K*(g~!) and in application of the control law

2 Tig+ng —1 ip+d—1 1
“{ = U — Z Bu Ye-i— jzl k]k u{—j, (49a)
i=0 =
Dy (@) u = uf, (49b)

where h; and Ejk are the estimates of hf¥ and kf (we recall that k§ = 1).
An appropriate model for estimating the coefficients of H*(¢™') and K*(¢~ ")
is given in the following theorem [8].

THEOREM 3.1. Consider the plant (1)+5). Let the polynbmials H*(@™") and
K*(q™ ") satisfy the equation (48). Then there exist polynomials V*(q™') and
W*(q~ ') of degrees fi,+ii;—1 and fy+iiy;— 1 respectively such that
V@ ) C@ ) yrratWr@HClg Hul =
=H*(@™ " Vi-g-m-m+1+K* @ u{-i;—ﬁ—iﬁ+l (50)
for every plant input sequence {u}. '
The equation (50) can be rewritten in the following form

_ Vor = Xpi 07, (51)
if we assume
vpk = u{fﬁ—ﬁ-ﬁ~d+ls (52)
Xk = [—',Vk-rf,,~i?,—ﬁ-—d+l o T Vk- 2l 2091 —Tigy—d+ 2

~Uf g -y-g-d o — W 22442 C (@7 Y
wC@ Y Pe-m-mrs €@ Duf-g..Clg™") u{—i'i,-h};—d+ i 4 (33)
03 = T8 . bt KT Koy, 0 . |

U€+a..] Wg ot Wﬁ+§1_ 1}T. (54)
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The full adaptive control algorithm is described by the set of the
equations (52), (53), (49), (28) with v,, x,, 0, replaced by Vs Xpks 6, in (28).

pk
. ReMark 3.1: The PPAC algorithm described above removes the known
frequency components of the disturbance {d;} from the plant output.

Parameter convergence

THEOREM 3.2. Consider the adaptive system (1)<5), (28), (49), (52), (53) (with
Vio X, Oy replaced by vy, Xp, Oy in (28)). If {w), {»} and {u}} are
bounded and the sequence {D,(q ')u}} is PE with richness 2, ot 2+
+2n,,1+n,,2+d 1 then the estimated parameters hyy, ...,h,,n+,,“_1k,k1k,
,k,,b+,, 1k converge exponentially to h§, .., bk rp, —1, k¥, ., k¥ va-1.

Proof The proof of Theorem 3.2 differs slightly froom the proofs of
Theorems 2.1 and 2.2. Namely, instead of the property (7) which has no
equivalent now we shall utilize the following properties of the estimation
algorithm

i llm (9k+1 gk) = : ; (55)
2. the sequence {9,,} is bounded. ST (56)

(In fact, the properties (55) and (56) have been also used. implicitly in the
proofs of Theorem 2.1 and 2.2, since they just imply the boundedness of the
plant input and output and the convergence property (7)). Note that (55)
and (56) denote that for large k the control law (49) is approximately
time-invariant. To not lenghten the proof too much we shall act in the
sequel as if the control law (49) were time-invariant exactly, that is as if

A@ Yn+K@ Yl =uf, (57)

for every k. It should be pointed that this simplification is possible owing
to the assumption on the boundedness of {y,}, {u} and {uj} (for details
see [15], the proof of Lemma 3.3). 2

~Let X, and X,, denote the column vectors which can be obtained from
Xy by removing the components C(q™") yi, e, C (4™ ") Yk-myp+np+1 and the
components C (¢ ") yx, . C(@~ ") Yu-m,+1 respectively. Note that utilizing
the equations A (¢~ ") D@ ") [C(g Y nd=q"“Blg ") D2(¢")[C(q ") uf]
many times each of the components C (™) yx, ., C (") Yk—ipy+ns, Of the
vector x, can be expressed in terms of its remaining components, that is
of the components of X,. Therefore

Xpk = Kpl -fpk’ (58)

for a full rank matrix K,;. We shall show that {Xx} is PS. Utilizihg the
equation A(g-")Dy(@ NIC@ HYyl=q*B@ HIC Hufl+Cq " df
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each of the components C (™) yi—my+ngps > C (¢™") yx—#, can be expressed
in terms of the components of the vector X, and of C(g™") d{_,,n“n,
. C(q" ") d{_5,. Therefore

Ca Y -m+ni
Xpe=Kp2 | Clg™1) -5,

X_— pk

(59)

for a square matrix K,,. It can be shown by inspection that K,, is
nonsingular. Further, from (8), (10) and (57) we get

Ca@ D@ HYm=q*Bl@g")Dr(g™ "), (60a)
Cla) D@ Hub =A@ HD2 g i (60b)
where C(¢™") =A@ ") Dy (q@ ) K@ ")+q *B(q"")H(q™ ") Hence
[ q~a—ﬁ—m—d+13(q—g
q:—ZvT,,-lTb—Zn“—rTu—d-l-ZB (q—l)

b RRl i F

—q "R 4 (") D, ()

gt -1y = _ - ro
C (q )DZ (q )xpk o q—ndzc (q—l) B(q._l) Ug—q

g C (g ) B(gY)
C (Q“) Al@ D@ "

g ”““C(q“)A(q")Dl (q“)

[
U—g-1

(61)

r
{Uk—d~m+1

where 4, is a square matrix defined by the second identity in (61) and
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m = 27+ 2, +2n,y + 7 +d—1. We shall show that A, is nonsingular. To
this end, it is sufficient to show that the components of the polynomial
vector in the middle term of (61) are linearly independent over reals, or
equivalently, that the polynomial equation

[A(@ YD (@YW Y+qg ™Bg YV HIC@ )=
=q " N[A(@ YD (@YK@ Y+q "' B(@HH@ ] (62

has no solution with respect to the polynomials V(¢~'), W(g™"), H(q™")
and K (g™ ') of degrees 7, +ndl—1 y+iy,—1, m,+n;y—1 and m,+d—2
respectively. We have the following: /7 (¢ ') and W(q“) do not both equal
zero then the first term of the polynomial on the left side of (62) is of
degree non lower than #,+7,+#;—1, but, on the other hand, each term
of the polynomial on the right side of (62) is of degree non greater
than 7, +#,+7,;. Therefore V(g ')= W(q ')=0. Hence, in view of the
restrictions deg K = ,+d—2 and deg H = i, +n; —1, H (g )= K (g V) =0.
Consequently, the matrix A, is nonsingular. Now, applying Lemmas 2.2
and 2.4 and the assumptions of Theorem 3.2 one establishes consecutively
that {C (g ) D, (@ ") T} {%n} and, finally, {X,} are PE. Thus, by
Lemma 2.1 the sequence {f,} converges exponentially and Jim 0 €O,

where -
0, = {0eR™:(0:—0)"K,, = 0}. (63)
Let us consider the set
6, = {[hy . hgsipe-1 Ty 5k i za Bo = Bt Wo -
e, dT A @)= B R @Y =
=K*(q™"), A ) D1@ ) V@ YL@ H+
+B@ YW@ YL(g Y)=q ™ ™ Tt for some polynomial
L@ Y =1+l g + o +lg,op, g ™ 2} (64)
Using the arguments of the proof of Theorem 3.1 (see [8]) it can be

shown that V0,6, and V {u;} the identity (50) holds. Therefore, ©,c< @,.

On the other hand @ and @, are some hyperplanes of the same
dimension 1y, —ny;. Consequently, ©,= 0, Hence, in light of (64) and
klgg ép,,e@,,, Theorem 3.2 holds. 2]

In the proof given above, similarly as in the proofs of Theorems 2.1
and 2.2, for establishing that the external excitation causes the proper plant
excitation one utilizes the assumption on the plant signal boundedness.
Contrary to the MRAC algorithms, however, in the PPAC algorithm the
sequences {y;} and {u,} can be unbounded when the plant excitation condi-
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tion is not satisfied and the initial parameter error f, = 0—0, is sufficiently
large. Because of this we have had to insert the assumption on the
boundedness of {y,} and {u} directly into the text of Theorem 3.2. This
assumption can be, however, omitted when instead of (49a) we apply a
piece-wise constant parameter control law similar to that proposed in [16].
Namely, let us assume that (49a) is replaced by

B, @ Yy+Rn @ Huf =i, k=im, .., ([i+1)m—1,i=0,1,.. (65)

where m = 2n,+2n,+2n4; +n,,+d—1. Now, combining (8), (10) and (65) we
get (without assuming that H, and K, are time-invariant as in (57))

= Sy B UG+ 1ym—-1
Cim(q™ ") D, (q—l) Xpi+ymea—1=Ap |} i=0,1,.
Uim

where C,,, = AD, K;,,+q *BH,,. Hence, the sequence of vectors Xt Dmebed— 1o
i=0,1,.. (and consequently the sequence {x,}) is PS. This implies hy — h
and k]k T k;k

Discussion of stability

Below, we shall discuss briefly the issue of the stability of the PPAC
algorithm considered in this section in the case of absence of the external
excitation.

First of all, note that the local stability result (local with respect to the
initial values of the estimation algorithm (28)) follows directly from the
following property of the estimation algorithm (28).

16* =Byl g-1 < 116*~Bollg-1. (66)

Indeed, note that the system (1), (49) with hy = h¥ and k= k} is stable
exponentially. Thus, by linearity of the equations (1) and (49) the system (1),
(49) remains stable if |h,—h¥| <& and |ky—k¥| <e for a sufficiently small
¢ or, in view of (66), if the initial parameters estimation error ||0;’,‘—§p0|| is
sufficiently small. Utilizing additionally the property (55) (that is the asymptotic
time-invariantness of (49)) one can show easily that the PPAC system is
stable if 0,, belongs to the region

{0,eR™»:the polynomial 4 (") Dy (¢ )K (g H+q *B@ HH(q ™)
is asymptotically stable for every 6~p = [hy .. Wi angy—11"
such that [|0%—0,],-1 < 105—0,)4-1).

The stronger result can be received if together with (55) and (66) one
utilizes also the following property of the algorithm (28)

l](]—r’rolo (Vpk—x{ gk) = (), (67)



62 g D. JANECKI

Namely, using (55), (66) and (67) one can establish the following stabilizing
property of the PPAC algorithm

THEOREM 3.3. Consider the adaptive system descAribed by (1)H5), (28) (49),
(52), (53) (with v, X, O, replaced by v, X Opi in (28)). If there exists
a closed subset  of the set

@ = {0, =[ho .. Wg +7,-1]7:the polynomials A(¢~") Dy (q"") K@Y+
+q™B(g ) A@ Y and A(g YD, (@ YW@ H)+Bl@ H V@™
have no common zeros in the region |g~'| <1}, (68)

such that 0,€d for all sufficiently large k then {w} and {y:} are bounded.

Theorem 3.3 implies that the PPAC system is stable if @FO belongs to the
region

(0,eR™r:0ecp v such that [0%—0]o-1 < [05—0,]-1}. (69)

For more detailed discussion on stability of the PPAC algorithm the reader
is referred to [17].
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Zbieznos¢ adaptacyjnych algorytmoéw sterowania dla obiektow
z czysto deterministycznymi zakloceniami

W pracy podano warunki parametrycznej zbieznosci trzech adaptacyjnych algorytmow
sterowania dla obiektow z zakloceniami, ktére moga by¢ modelowane w postaci sumy
sygnaloéw sinusoidalnych. Rozpatrzono nastgpujace algorytmy: algorytm sterowania typu bez-
posredniego z modelem odniesienia, algorytm sterowania typu posredniego z modelem odnie-
sienia oraz algorytm st®rowania typu bezposredniego zapewniajacy przesunigcie biegunéw
w zadane polozenie. W odroznieniu od wczesniejszych prac dotyczacych zbieznosci algo-
rytmow adaptacyjnych, w pracy rozwazany jest ogolny przypadek, gdy estamacja parametrow
obiektu (regulatora) przeprowadzana jest na podstawie modelu, ktéry jest niejednoznaczny
wzgledem parametrow.

CX0MMOCTh 3/IaNTHBHLIX AJCOPUTMOB YIpaBJeHust isi 00LEKTOB CO CTPOro
JIeTePMEHHPOBAHKBIMI TOMEXAMHM

B pabote npuBeAeHB! YCJIOBHS NApaMETPHYECKOW CXOMMMOCTH TpeX aJanTHUBHBIX aJro-
PUTMOB ynpasiieHus il OOBEKTOB C IOMeXaMH, KOTOPbIE MOTYT MOIEIMPOBAThCS B BHIC
CYMMBI CHHYCOWJAJIbHBIX CHTHAJOB. PacCMOTpEHBI CIEAYIOLINE aJrOPUTMbI: aJTOPATM YHpaB-
JIEHNS HETIOCPEJCTBEHHOTO THIIA C MOJENIbIO OTHECEHMS, aJlTOPUTM YIIPaBJIECHUs MOCPEACTBEH-
HOTO THIA C MOJEJNbIO OTHECCHHS, & TakXkKe AJTOPUTM YIPABJICHUS HEMNOCPEACTBEHHOTO
THNa, 00eCeYnBAOIIMI CABUT MOIOCOB B 3aJaHHOE MOJIOXKeHHEe. B oTimune oT 6ojiee paHHBIX
paboT, Kacaloumxcs CXOAMMOCTH aJaNTUBHBIX aJrOpPUTMOB B paboTe paccMaTpHBAETCH
obIumii cityvaif, KOorja OUEHKa INapamMeTpoB oObekTa (peryisitopa) HPOBOIMTCS HA OCHOBE
MOJIeJTH, KOTOpast SBJISETCS HEONHO3HAYHOH MO OTHOLIEHHIO K MapaMeTpaM.







