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This paper deals with application of two optimal control methods: the dynamic pro­
gramming and the discrete maximum principle to a problem. of optimal operation choice 
in assembly systems with a robot. Discrete stochastic processes are used to model dynamics 
of such systems. It is shown that both methods give the same resultant optimal algorithm 
and are in this sense equivalent for the problem. 

1. Introduction 

Modern industrial systems require more and more flexibility. This need 
leads usually to a use of industrial robots. There are two possible approaches 
to meet the requirements of flexibility in such systems. One is to change 
a software for every new type of production (with the use of robotic systems 
no or only slight changes of fixtures and transport system are necessary). The . 
other is to introduce a flexible software itself, batch production oriented, 
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120, 3133 AT Vleardingen, The Netherlands. 
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which is equipped with facilities to react to changes in production. The 
latter approach is usually also flexible with regard to a random behavior of the 
process under control [5, 10, 11, 17]. The approach presented in this paper 
applies to optimization of robotic cells rather than of the overall flexible 
manufacturing system (FMS). The problem of design of a whole robotic 
FMS by means of two level approach, based on results of optimization of 
robotic cells on a lower level was presented in [ 17]. Here we concentrate 
on the optimization on the lower level of the robotic assembly cell . 

Several approaches have been presented for su.ch systems. One is to use 
two cameras [3]. The first camera is used for an analysis . _of a scene 
of the robotic cell and the second for a comparison with a technical 
design of a desired product given in three views. As a result the robot 
"chooses" assembly operations. In [ 4] a heuristic system of a plan generation 
is introduced using an actualized state of the assembly process. Another 
approach is presented in [6]. First a position of an element to be 
assembled is determined by use of an additional device (reorienting box) 
and then the element is either · grasped by the robot or reoriented in the 
box until required position is obtained. In all above systems the current 
state of the assembly process depends only on the previous state, operation 
executed and random features of the process. (Explanation of this dependence 
may be found in [13] where a water pump assembly is studied). The above 
dependence shows that the current operation to be executed by the robot 
should be chosen based on the information about the current state of the 
assembly process. This leads to distinguishing three . cases of the assembly 
system. In the first case the robot ''is given" an exact information about 
the state, i.e. , either is "informed" by an operator [12] or is equipped with 
a perfect state recognizer [2, 21]. The second case refers to a situation when 
the robot "is given" an information about measurements of characteristic 
features of the current state and "uses" this information directly to choose the 
assembly operation [14, 15]. In the third case the robot "uses" the same 
information as in the second case but in another way. First, "recognizes" the 
current state (not perfect recognition) and based on the recognized state 
"chooses" the operation to be executed [7, 13]. 

This paper deals with the second case, i.e. , direct operation choice 
algorithms are under consideration. Assembly systems can be formalized in 
terms of discrete-time, discrete-state prqcesses, namely controlled Markov 
chains. Therefore a method to choose operations which can be applied 
directly is the dynamic programming (:DPM). The main interest of the 
paper is to find if another classical method of optimization of discrete 
dynamic processes, namely the discrete maximum principle (DMPM), can be 
l.,ed to der ive opet a~:,Jn c:Ooice algorithm (OCA) for assembly processes, 
and if so, what are conditions of equivalence for obtained algorithms. 
It is well known that for different dynamic processes, :different algorithms 
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can be obtained by DPM or DMPM of different computational complexity. 
First results of comparison of DPM and DMPM are given in · [16]. 

A problem of two-state, two-operation and one-measurement process was 
considered and the equivalence of r~sultant algorithms was shown. This 
paper considers a generalization of the above problem to an assembly 
process of a finite number of states, finite number of possible operations 
to be executed by the robot and more than one feature of the state to 
be measured. 

In Section 2 a mathematical formalization of assembly · processes in 
terms of controlled Markov chain with incomplete information about the 
state is presented and the optimal OCA derivation problem is formulated. 
In Section 3 a detailed solution of the above problem using the DPM 
is presented and in Section 4 results of applying the DMPM are briefly 
discussed by transforming the original model of the process. In Section 5 
equivalence of numerical algorithms derived by DPM and DMPM is shown. 
Finally, in Section 6 an example of controlling a machine tool by a robot 
is described and formalized, and results of application of the optimal OCA 
are given. 

2. Problem formulation 

Let us formulate mathematically a problem of OCA derivation for 
a robot in discrete production processes. A process . stage consists of a 
measurement of a current state characteristic features, a choice of an operation 
and its execution by a robot. The execution of a following operation yields 
a change of a current state in respect to a previous state and random 
features of the assembly process. The state is defined to reflect the maih 
features of the production system, i.e., component elements to be assembled, 
assembly tools, machines served · by the robot, and relevant fixtures · etc. 
These states form a finite set of states. All . necessary and possible robot 
operations to control the process are forming a finite set of operations. 
With respect to states of the assembly process different features can be 
measured, e.g., geometrical dimensions of component parts, acting forces and 
torques etc. At present many of such systems ·consist of TV cameras 
providing 2D or 3D vision of a whole assembly scene or its chosen 
part [7]. Characteristic features of the current state should be chosen very 
carefully because they 'strongly influence the process performance quality [14]. 

The assembly process is to be controlled over a finite time horizon 
of N process stages. Let us use the following notations: 
n = 0, 1, ... , N -1 - the index of the current process stage, 
j E {1, , ... , M} .:::= S ~ the current process state (given by its index), 
S - the set of process state indices, 
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ke {1, ... , r} = K -the currently executed operation (given by its index), 
K- the set of indices of possible operations to be executed by the robot, 
x EX c R'" -the current measurement of characteristic features of the state, 
R'" - the m dimensional Euclidean space. 
The first lower iirdex will denote the stage index. A bold bn will denote 
a random variable taking at the stage n its realizations bn from an appropriate 
set and b" = (b0 , ... , bn), bnEBn+1 = n B. 

n+ 1 

The behavior of the assembly process is governed by the set of transition 
probabilities 

P Un+1 = Jljn = i, kn = k) = P7J, (1) 

where Jn is the state of the process and kn the operation' executed. 
Initial probabilities of the state j 0 at the stage n = 0 are 

P Go ,;, j) = Pi, (2) 

The measurement Xn of the state Jn is given by conditional probability 
density function vector 

fn (Xn = xljn = j, jn-1, ... , jo) = f (xU), jES, (3) 

where fn is the conditional density function of xn given ~he sequence J,.. 
The OCA should take into account the past history of the assembly 

process and has a general form 

Hn :XnxKn-1-+K, i.e., k=Hn(Xn;kn-d · (4) 

Execution of each, of operation by the robot leads to a change of the state. 
Let us introduce a cost function en whose value indicates a local loss 
incurred by execution of an operation k in a stage n leading to a transition 
to ·a. state j in a next ·stage n + 1. Because of the random character of the 
process, the following performance index is taken into account · 

, N-1 

QN = E L Cn Un+ 1, kn), 
x • .I. n= o 

(5) 

where c" (j, k) ~ 0,' j E S, k E K, n ;,:: 0 •... , N -1. A problem of deriving the 
optimal OCA can be stated as follows: 
Problem Pl. Find the OCA for stages n = 0, ... , N -1 as to minimize (5). 
when the process is given by U-3). 

3. Appli~tion of the dynamic programming 

Before we solve the Problem P1 · let us introduce three equations (6), 
(7), (8) which are derived on the basis of the Bayes • ~ule: 
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M 

f (x[j) L pfi q~- 1 

q~ = P (j = jlxn = Xn, kn) = ___ ,_·=-1---
An 

with the initial condition ' -" 

i _ p (j ~· .1 _ ) _ f (xli) Po qo = o - J Xo - x - , 
Ao 

where An is the sum of the numerator over j E S. 
Further on 

M 
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(6) 

fn (xi.Xn-1; kn- d = L f (xlj) PUn= jiXn-1 = Xn-1, kn- t), (7) 
j= 1 

and 
M 

P (j .,- - k- ) "\' k i n=JXn-1 =Xn-1• n-1 = £.... Piiqn-1· 
i= 1 

Define a value function 

Then for the last stage 

V1 (.XN-1• kN-2) = min {£ [cN-1 (j, k)IXn-1 = Xn-1• kn-1J} = 
keK j, x" 

where equation (8) was used in the last '<is*ivation. 

Let us introduce two vectors 

qn = (q~, q;, ... ' q~), 

where each component q~ is defined by the equation (6) and 

where for the last stage 

k_(k k k) an= an,1• an,2• ... , an,M' 

M 

at-1.i= L cN-1U,k)p~. 
j= 1 

For the last stage we have finally 

V1 (x,y-t>kN _2)=min {at-1 q~-d. 
keK 

(8) 

(9) 

(10) 
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where qT denotes the transposition of q. The minimization (10) gives the 
optimal OCA on . the last stage, i.e., the dependence of k* on the value 
of qN- 1 . That yields the optimal function 

at*-1 = a~- 1 (x), 

which will be used for calculations on the previous stage. 
For two last stages, and analogously for all other stages (substituting 

appropriately n in a place of 2), we have 

V2 (.XN-2• kN-3) = min { E [cN-2 UN-1• k)lxN-2 = XN-2• kN-2]+ 
j N - It X N- 1 

+ E [V1 (x, .XN-2• kN-2)ixN-2 = .XN-2• kN-2]} = 
X 

M 

= min { L cN - 2 (j, k) P UN-1 =jixN-2• kN-2)+ 
keK j= 1 

+ J v1 (x, XN-1' kN-2) fN-1 (xixN-2• kN-2) dx }. 
X 

Using (8) and (7) we obtain 

M M 

V2 (.XN- 2 ,kN- 3)=min{I cN~2(j,k) L P~iq~ - 2+ 
keK j = l i=1 

M 

+ J vl (x, XN-1 • kN-2) L f (x[j) p UN-1 = j lxN-2 = XN-2• "N-2) dx}_. 
X j=l 

Using (8) again we obtain 

M M 

+J L L Vt(x,.XN-l•kN-2)Pfif(x[j)q~-2dx}. (11) 
Xj=li=l . 

Substituting (10) and (6) into the definitions of V1 ( ) and q{.., _ 1 , respectively, 
we obtain 

V2 (xN-z,kN- 3 )=min l f f CN- 2(j,k)pfiq~- 2+ 
keK j=l i = l - ' 

M 
' • {" k i } =mm L.. aN-2,i qN-2 , 

kE 1<. i = 1 
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so finally 

where 

and 

M 

a~,i= L (cn(j,k)+g~+l,iP7i), 
j= 1 

71 

(12) 

. (13a) 

(13b) 

is a Riemann integral. Existence of the last integral is guaranteed by the 
Riemann integral definition since values a:,i (x) are bounded for n = 0, ... , N -1, 
j E S and all x EX. To get the final form of (12) two identical terms in the 
numerator and the denominator were reduced. 

The minimization (12) gives the optimal OCA on the stage N- 2, 
i.e., dependence of k* on the value of qN - 2 . That yields the optimal function 

a~>~':_2 = aX-2 (x), 

which is then used for calculations on stage N- 3. 
Optimal operations k~ are determined in the same way for other stages 

as functions of q11 • For the on-line control, based on the current measure­
ment xn, previously executed operation k~- 1> and stored value of qn- 1> the 
value of qn is determined using (6). Then comparison of this value with. 
stored sets of qn (obtained from (12)) gives the optimal operation to be 
executed on the stage n. To the end Jet us denote the optimal OCA 
(12-13) as OCAl. 

4. Application of the discrete maximum principle 

The discrete maximum principle [8] cannot be applied directly to the, 
assembly process problem Pl. The reasons are: the discrete set of states S 
and the form of the performance index (5). To apply the discrete maximum 
principle ,t,o the Problem P1 let us first define a one-stage . expected cost 

. , M M 

, C11 (qn, kn) = £[en Un+ 1, kn)I:Xn = Xn, knJ = L Cn (j, k) L P~i q~. (14) 
. ';· j,.. , j=l i=l 

The last equations is derived on the basis of simple operations on a sum 
operator, ·Bayes rule, and definitions (1) and (6). The performan~e index (5) 
can be now rewritren in the following form 

N- 1 

QN = E L ell (qn, kn)· (15) 
xN n=O 
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Define a new state variable vector 

where the recursion (6) is treated as a state transformation, i.e., 

q~ = h~ (x,., q,._ 1 , k,._ t), i E S. 

The following problem can be now formulated: 

(16) 

Problem P2. Find the OCA for stages n = 0, ... , N -1 as to minimize (15) 
when the process is given by (16). 

The form of the state transformation (6) yields that q,. is the sufficient 
statistics of the state of the assembly process j,. [20]. Moreover, the 
performance index is easily to be seen as a rewritten equation (5), so the 
Problem P2 is identical to the Problem Pl [1]. Define an auxiliary variable 
vector 

where 

,/, _ (•I• 1 ,/,2 ,J,AI) J" 
o/n = 'f'n, o/11' ... , 'Pn ' 

.J,i = _ ac-,. (q,., k,.) ~ oh( .J,j 
'l'n- oi +L...ai'+'n+1· q, j= 1 q, 

Define the Hamiltonian 

H,.-1 = H,-1 (t/1!, x,., q,-1, k,.-1) = - c,-1 (q,.-1, k,._ I)+ 

(17) 

'+ h,. (x,., q,._ 1 , k,._ 1) t/1: (18) 

where t/1: is the value of t/1,. for the optimal operation k:. 
Problem P2 is solved if the maximum ov.er the set K of_ the expected 

values of the Hamiltonian is found for each stage n = 0, ... , N -1 [8, 19] 

max { E [H,. (t/1:+ 1 , x,.+ 1 , q,., k)lx,. = x,., k,.]}. 
keK x11 + t •···• xN 

To the end, the above OCA (16- 19) will be denoted as OCA2. 

5. Equivalence of OCAl and OCA2 

The equivalence of OCA1 and OCA2 will be shown in a sense of the 
identical form of these algorithms. The same form yields the same results, 
i.e., the same on-line operation choice as well as the same computational 
complexity. 

Let us first show the equivalence of both algorithms for the last stage. 
By definition t/JN = 0. From (18) we have 

HN-1 = -CN-1 (qN-1 , kN_I) , 

and so, by (14) 
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M M 

E[HN-dXN-t=XN-1•kN-1]=.,... I CN-1U,k) I P~jq~-1· (20) 
XN . j= 1 i = 1 

By maximizing this value over k E K we obtain the same result as for the 
dynamic programming (7) and so for the last stage OCA1 and OCA2 are 

. equivalent. Let us denote the maximum 0f the expected value (20) as EH~- 1 . 
For the stage N- 2 we have from (17) 

,f,i _ 8HN-1 
'PN-1- · 

8q~-1 

From (18) we have 
M M 

HN-2 = -CN-2 (qN-2• kl)i-2)- I CN-1 u, k*) I Pfl q~-1 = 
j=1 i=l 

and 

E [HN-2iXN-2 = XN-2• kN-2] = -CN-2 (qN-2• kN-2)-

- J EH~-1 fN-1 (xixN-2• kN-2) dx = cN-2 (qN-2• kN-2)­
x 

M M 

- J EH~-1 L f(x[j) L P~/- 2 q~-2. 
x· j=1 i=1 

where in the last derivation equations (7) and (8) were used. Define 

VN-n (x,, k,.-t) =EH!= E [H!Ix,. = x,, k,-1J. 

(21) 

(23) 

By substitution of equations (14) and (23) we get equations (11-12) obtained 
by the dynamic programming. Therefore the OCAl and O€A2 are equivalent 
for the stage N- 2. For the stage N- 3 and analogously for other stages 
we have from (22) and (17) 

· 8HN-2 
t/1~-2 = = 

oq~-2 
8 [cN-2 (qN-2• k~-2)+EH't:-1J 

8q~-z 
M M 

= 

8 [c(qN-2• k~-2)+ L cN-1 U, k~-1) L P~}- 'il~v-1] 
j= 1 I= 1 

Let us first calculate 8q~/8q~- 1 
M l f(x[j) L. Ptq~-1 . J 8 I= 1 . 

M M 

I ! (xli) I p~, q~- 1 
m=1 ' 1=1 · 

8q~-l 

--------------------------------------- --------------------
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M M , 

::;::· [f (xU) [ L Pfi f (xlm) L P~m q~-1-:-
m=1 1=1 

M M 

- L f (xlm) Pfm L Pfi q~-1]]/Cn-1, 
m=1 1=1 · · 

where 
M M 

Cn-1 = [L f(xlm) L p:C,.q~-1]2. · 
m=1 1= 1 

Therefore we have 

M 

C ,/,i c ·. " ( k* ) k~-2 N-2 'I' N-2 = - N-2 L. CN-2 m, N-2 Pim -
m=1 

M M 

- L cN-ds,k~-1) L p~- 1 f(xlm)· 
s=1 m=1 

M . M 

"[L P~~- 2 f(xlm) L P~~- 2 q~:_2-
m=1 1=1 

M M 

- L P~~- 2 f (x lm) L P~!- 2 q~-2], 
m=1 1=1 

so finally we have 
M ' 

r/1~-2 = - L CN-2 (m, k) Pfm, (24) 
m=1 

which has the same form as for the stage N- 2. From (18) we have . . 
M M 

H - . - ( k ) " u k* ) " k~- 2 i N - 3- -CN- 3 qN- 3• N-3 - L. CN- 2 , N-2 L. Pij qN- 2; 
j = 1 i = 1 

so 

HN-3 = -CN-3 (qN-3• kN-3)-EH~-2 · 
It was shown that the forms of OCA I and OCA2 are identical under the 
definition (23). Problem P2 is equivalent to Problem Pl. Therefore two 
presented methods applied to Problem Pl give same results and are 
equivalent. From above derivations i~ follows that OCAl and OCA2 are 
of equal computational complexity. 

6. Ex~mple - inspection in a machine tool cell 

It is impossible to construct a simple two-state illustrative assembly 
process. Therefore let us consider a machine tool cell where service as well . 
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as in~pection is due to an industrial · robot. The robot serves machine tool 
by grasping elements to be machined from the input belt conveyor. It fixes, 
them into machine tools and disposes the ready elements onto the output belt 
conveyor. The service program is deterministic and is based mainly on 
signals of machining programs completeness. It is possibe to use the idle 
time of the robot to inspect either machined parts or tools. During the 
process of machining the value of an appropriate force affecting the tool 
can be used to decide whether to proceed machining or to exchange the tool. 
Usually the force. is compared with a certain fixed value and on this base 
the decision is made [23]. However, a dynamic behavior of a deterioration 
process of the tool as well a measurement noise are not taken into account 
(see [9], [21] for description of the machine tool deterioration process 
dynamics and. randomness). 

Let us fix a certain time period 0t as a length of each stage n = 0, ... , N -1. 
There are two operations of the robot to be considered, · namely k = 1 -
"proceed machining" and k = 2 - "change tool", and two states of each tool, 
namely j = 1 ~"good state" and j = 2- "breakdown state" (tool blunted). 
Assume that a measurement of only one feature, namely acting force, is 
made at the beginning of each time period. Let us assume the following 
values of initial probabilities: p1 = 1 and p2 = 0, and of transition probabilities 
P~t = 0.8, P~2 = 0.2, · P~t = 0.0, Pi2 = 1.0, Pft = 1.0, Pf2 = 0.0, Pit= 0.9 
pi2 = 0.1. Conditional density functions are given in Fig. 1. Let us assume 
the local costs: c (1,1) = 1.0, c (2,1) = 5.0, c (1,2) ~ 10.0, c (2,2) = 21.1. 

f(x/j) 

0 X 

· For the time horizon of five stages the results are following: 
- for stages n = 0, 1, 2 and n = 4 the optimal o·peration is k = 1 (proceed1 
- for the stage n = 3 

k* =_{1 for q~ < 0.66 
2 for q~ ~ 0.66 

Change of the tool should be done only at the beginning of the third 
stage if q~ ~ 0.66. However, · measurements should be performed at each 
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stage for computation of q~. The optimal . operation for the first and the 
last stage is obviously "to proceed". 

7. Conclusions 

A lot of flexible industrial processes may be modeled as discrete 
stochastic processes. Such a description is chosen for a robotic assembly 
process with finite number of states and operations, where the information 
about the current state is incomplete. Two different methods have been 
applied to solve the underlying problem of optimal choice of a sequence 
of operations. It was shown that both the dynamic programming approach 
and discrete maximum principle approach lead to the same optimal operation 
choice algorithm. The resultant algorithm was applied to a simple two-state, 
two-operation, one-measurement problem. Results shows the great simplicity 
of the on-line algorithm . 
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Zastosowanie programowania · dyoamicznego i dyskretnej zasady 
maksimum do· zadania optymalnego wyboru operacji robota 
w procesie montazu 

Artykul dotyczy zastosowania dw6ch metod sterowania optymalnego: Programowania 
dynamicznego i dyskretnej zasady maksimum, do zadania optymalnego wyboru operacji 
w systemach montazowych z wykorzystaniem robot6w. Dynamika tych system6w opisana 
jest przy pomocy dyskretnych proces6w stochastycznych. Pokazano, :le obie metody daj& 
ten sam algorytm wynikowy i Sll w tym znaczeniu r6wnowazne dla rozpatrywanego zadania. 

fipHMeHeHHe .LU~HaMH'ICCKOf"O nporpaMMHpoBaHHH H ;ntCKpeTHOrO MCTO~a 
DpHHQHDa MaKCHMYMa K Ja~a'le ODTHMaJILHOrO BLIOOpa onepaQHH pofioTa 
R 11pol1CCCe MOHTa*a 

CTaThll KacaeTcll npnMeHeHHll .nayx MCTOAOB onTHMaJihHoro ynpaaJieHHll: .[(HHaMH'Iecxoro 
nporpaMMHpOBaHHll H ,[(HCKpeTHOfO llpHHl\HITa MaKCHMyMa, K 3a,[(a'!e OllTHMaJihHOfO Bhi60pa 
onepal\HH B MOHTalKHhiX CHCTeMaX, HCilOJJh3YIOil\HX po60Thl. )J,HHaMHKa 3THX CHCTeM OllHCaHa 
C llOMOil\hiO ,[(HCKpeTHhiX CTOXaCTH'IeCKHX llpol\eCCOB. llOKa3aHO, '!TO o6a MeTOAa .[(a!OT TOT 
JKe pe3yJihTHPYIOil\HH aJifOpHTM H B 3TOM CMhiCJie 3KBHBaJieHTHhl ,[(Jill paccMaTpHaaeMOH 
3a.[(a'IH. 
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