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We consider the lexicographic linear goal programming model. The two most common 
solution techniques to this model are the. sequential process and the multiphase process. 
Both the methods produce, obviously, the same solution but the interior elements of the 
specific tableaus differ significantly. Markowski and Ignizio proposed an algorithm for trans
formation of the sequential tableau into the multiphase one and vice-versa. We present an · 
example which shows failure of this algorithm with respect to saving optimality (dual -
feasibility) of the transformed tableau while degeneracy occurs. 

1. Introduction 

In this note we deal with lexicographic linear ,goal programming, i.e., with 
the specific form of linear goal programming wherein one seeks the lexico
graphic minimum of an ordered set of goal deviations. This approach, 
also described as preemptive priority based goal programming, is widely 
used in multiobjective optimization. 

The lexicographic linear goal programming (LGP) problem is usually 
given as follows. 
· Find a vector x so as to lexicographically minimize 

subject to 

where 

a= [g 1 (n, p), g2 (n, p), ... , 9K (n, p)]T, 

L cii xi+n;-P; = b; for iEl, 
jeJ 

X ~0, n ~0, p ~ 0, 

J - set of decision variable indices, 

(1) 

(2) 

(3) 
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I - set of goal indices, 
xi- j-th decision variable, 
cii- coefficient of variable j in the i-th goal constraint, 
bi -target for goal i, 
ni -negative deviation for goal i, 
p; - positive deviation for goal i, 
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gk (n, p) -linear function of the deviation variables to· be minimized at 
priority k. · 

The two most common solution techniques for LGP problems are: 
sequential process (known as sequential linear GP or SLGP [2]) and the 
modified simplex procedure which is known as the multiphase process or 
MLGP [1]. Both the methods have the same conceptional basis. 

Due to lexicographic minimization, the optimal solution to the LGP 
problem is defined as follows: 
1) find S1 as the optimal set to the problem 

P1 : min {g 1 (n, p) subject to (2) and (3)}, 
2) for k = 2, 3, ... , K find Sk as the optimal set to the problem 

It: min {gdn, p) subject to (2), (3) and x E Sk- t}, 
3) any vector of the set S K is optimal to the LGP problem. 

Both the methods SLGP and MLGP are based on the above scheme. 
They differ only in techniques used for introducing the additional requirement 
xeSk- 1 into the problem Pk. 

In the SLGP approach the requirement X E sk- 1 is represented by the 
equality system 

gt (n, p) = a1 
92 (n, p) = a2 

9k- 1 (n, p) = ak- 1 

where ai denotes the optimal value to the problem P;. This method is 
very convenient when the standard simplex codes are used. On the other 
hand, sensitivity and parametric analysis is extremely difficult in the SLGP 
approach since a dual solution to the LGP problem is then not available. 

The MLGP method utilizes specifity of the simplex algorithm for intro
ducing the requirement xeSk-l· Namely, only variables having all the reduced 
costs (optimality indices [1]) I t,s• I 2 ,5 , ... , Ik-l,s equated to zero are allowed 
to be positive in the problem Pk. Such an approach is equivalent to the 
lexicographic simplex method [3]. The optimal MLGP tableau contains a 
dual optimal solution to the LGP problem, so that sensitivity and para
metric analysis can be easily carry out in the MLGP method. There are, 
however, difficulties with using standard simplex codes for implementation 
of this method. 
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Whether one employs the SLGP or MLGP method the final solutions 
to the LGP problem are, obviously, the same. However, the interior-eie
ments of the specific tableaus will differ considerably-:-Markowski and 
Ignizio [4] proposed some algorithm which allows to transform the SLGP 
tableau into the MLGP tableau. Such a transformation is very useful since 
it makes possible to utilize extremely efficient standard simplex codes for 
solving the problem via SLGP approach and next to perform sensitivity 
analysis using the MLGP tableau. Unfortunately; we have found out that 
the algorithm fails while degeneracy . occurs. Namely, (or some problems 
it transforms the optimal (final) SLGP tableau into a MLGP tableau 
which does not satisfy optimality conditions (i.e., generated dual solution 
is infeasible). In this note we present stich an example. ~ . 

2. The counterexample 

Consider the following LGP problem 
lexmin [(n1+n2),(n2+p2+n3)]r subject to 

x1+ _±n1-:-Pc= 1_ 

x, +x2+n2-P2 = 2 
x2+n3-p3 = 1 

x~O, n~O, p~O 

We solve this problem via the SLGP approach. First, the problem P1 

is solved, i.e., the achievement function a 1 = n1 +n2 is minimized. The initial 
simplex tableau appears in Table 1 (in the same form as in [ 4]). 

Table 1. Priority level one: initial tableau 

x, x2 P1 P2 P3 

n, 1 0 - 1 0 0 1 
nl 1 1 0 - 1 0 2 
n3 0 1 0 0 -1 1 

2 1 -1 - 1 0 3 

x1 enters the basis, replacing nto and thereby yielding the second tableau 
given in Table 2. 

Table 2. Priority level one: second tableau 

xl n, P1 P2 P3 

xl 0 1 -1 0 0 1 

n2 1 -'1 1 - 1 0 1 
n3 1 0 0 0 -1 1 

1 -2 1 -1 0 1 
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Now x 2 is chosen 'to enter the basis anq n2 leaves the basis. The iteration 
is performed to yield the tableau given i~ able 3. 

Table 3. Priority level one: third tab u 

nl llz Pt Pz P3 

XI 1 0 -1 0 0 1 
-1 . 

1 1 - 1 0 1 Xz 

113 1 , -1 -1 1 -1 0 

-1 -1 0 0 0 0 

The last tableau is optimal to the problem P1 (priority level one). The 
solution is: x = (1, l)T, n = (0, O)T, p = (0, Of and a1 = 0. 

Next we solv~ the- problem P2 . Similarly as in [4], we introduce two 
additional equalities: 

-n1-n2+r- =0 

n1+n2+r+=O 

and compute reduced costs for the achievement function 

a2 = n2+P2+n3 

The initial tableau to the problem P2 appears in Table 4. 

Table 4. Priority level two: initial tableau. 

Ill llz Pt Pz P3 

XI 1 0 -1 0 0 1 
Xz -1 1 1 -1 0 1 
n3 1 -1 -1 1 -I 0 
r_ -1 -1 0 0 0 0 
r+ 1 1 0 0 0 0 

1 -2 -1 0 -1 0 

This tableau is nonoptimal. The variable n1 eriters basis, replacing n3 , 

and thereby yielding the second tableau given in Table 5. 

Table 5. Priority level two: second (final) tableau. 

llz 113 Pt Pz P3 

XI 1 - 1 0 -1 1 1 

Xz 0 1 0 0 -1 1 
Ill -1 1 -1 1 -1 0 
r_ -2 1 -1 1 -1 0 
r+ 2 -1 1 -1 1 0 

-1 -1 0 -1 0 0 
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·The last tableau proves to be optimal to· the problem P2 and ·thereby it 
is an SLGP final tableau. The optimal solution to the original ·:--LGP 
problem is: 

x = (1, w·, n= (0, Of, p= (0, Of and a= (0, O)T. 

We now transform Table 5 into the corresponding MLGP tableau 
using the algorithm proposed in [ 4]. The main operation performed in the 
algorithm depends on forcing r _ and r + into the basis. In our case, however, 
r _ and r + have already stayed in the basis. So, the algorithm transforms 
only form of the tableau without any change of the basis structure. In 
effect we get the MLGP tableau given in Table 6. The tableau is evidently 
nonoptimal since there are some positive elements in the P1 index row. 

Table 6. Final SLGP tableau transformed into the MLGP form 

P2 l 1 0 1 0 
Pi 1 0 0 0 · 0 

P2 P1 V n2 n3 Pt P2 P3 b 

0 0 Xt 1 -l 0 - l l 1 
0 0 x2 0 1 0 0 - l l 
0 l nr -l l - 1 1 - l 0 

P1 - 2 l - l l - l 0 
P2 -l -l 0 - 1 0 0 

In other words, we get a tableau which generates an optimal solution 
to the LGP problem but the dual solution generated by the tableau is 
infeasible and cannot be used in sensitivity analysis. This phenomenon can 
be easily explained by careful analysis of the transformation proposed in [4]. 
As we have already mentioned the main operation performed in the algorithm 
depends on forcing r _ and r + variables into the basis. Such an operation 
guarantees that the transformation yields some basis to the optimal solution 
of the MLGP problem. However, if degeneracy occurs then some bases 
to the optimal solution can be nonoptimal. So, Markowski and Ignizio 
use degeneracy of the SLGP problem for forcing the r _ and r + variables 
into basis and, simultaneously. they ignore consequences of degeneracy in the 
original LGP problem. Thus advantages of the transformation proposed in 
[4] seein to be limited to rather theoretical class of nondegenerated LGP 
problems whereas real-life LGP problems are usually strongly degenerated. 

Moreover, note that the basis consisting of the variables X t. x 2 and n1 

is optimal in the SLGP approach. and it is nonoptimal in the MLGP 
approach. One can easily verify that the tableau given in Table 4, which 
is nonoptimal to the SLGP approach, would be transformed into an optimal 
MLGP tableau. So, the basis optimal in one approach can be nonoptimal 
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in the second . approach and vice versa. The above proves that these two 
approaches to the LGP problems should be regarded as . inconvertible with 
respect to optimal basis structure. 
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Kontrprzyktad na przeksztalcenia tablic sympleksowych 
w hierarchicznym i wielofazowym podej§ciu 
do leksykograficznego progi'amowania celowego 

Leksykograficzne programowanie celowe (LPC) jest szeroko stosowanym narz~ziem 
imalizy problem6w wielokryterialnych. Isiniejll dwie podstawowe metody rozwillzywania zadan 
LPC: optymalizacja hierarchiczna i wielofazowy algorytm sympleks. Oba podejscia wyznaczajll 
te same wektory optymalne, ale odpowiadajll im r6zne. tablice sympleksowe. Tablica 
sympleksowa dla wielofazowego algorytmu sympleks zawiera jednoczesnie rozwillzanie dualne 
i · inne elementy potrzebne do analiz.y wmzliwosci. Wlasnosci tej nie posiada tablica otrzy
maria w wyniku realizacji latwiej impelementowanej optymalizacji hierarchicznej. Okazuje sicr, 
i:e nie ma moi:liwosci wzajemnego przeksztalcania tych tablic (po rozwillzaniu zadania), 
gdyi: ·· kazda z nich ·moze bye generowana przez inn'! bazcr optymaJnl!. 

KoHTpnpHMep npeo6pa3ooatnut CHMWieKCHbiX Ta6~ 
· B liepapxll'lecKOM H Mnonlflla3HOM no.r.xo~e 
K JJeKCHKorpacJ»II'IecKOMY QeJJeBOMY nporpaMMHpoBaHHIO 

JleKCHKorpa$n'leCKOe UCJJesoe nporpaMMHpDBaHHC (JIQIJ) liBJJlleTCll. UIHpOKOnpHMeHlleMh!M 
HHCTpyMCHTOM aHaJJH3a MHOTOKpHTepHaJJhHhiX 33,D;a'!. CymecTBYI<>T ,D;Ba OCHOBHhi.e · MeTO.D;a 
peweHHll 3a,D;a'l JIQIJ : HepapXH'ICCKall OllTHMH3anHll H MHOTO$a1HhiH CHMllJJCKC-allrOpHTM. 
06a ·no.nxo.na onpe.nenlii<>T Te lKe onTHMaJJhHhiC seKTOphi, o.nnaKo HM coorseTcTByi<>T pa3Hhie 
CHMnJICKCHhie Ta6nHnhl. CHMnneKCHall Ta6JJHna .D;JJll MHoro$a3Horo cnMnJJeKc~anropHTMa o.n;Ho
speMenno CO,D;CplKHT ,n;yaJJhHOe pewenne H ,n;pyrne 3JieMeHThi, He06XO,LIHMhlC ,D;Jlll 3HaJJH33 
'IYBCTBHTeJihHOCTH. 3THM CBOHCTBOM He 06JJa,n;aeT TafiJJHna nonyqaeMall B pe3yJihTaTC peaJJH-
3alllfH, fioJJee y.nofiHOH B npHMeHeHHH, HepapXH'!eCKOH . OllTHMH3anHH. 0Ka3h!B3eTCll, 'lTO 
""rCJTCTByeT D03MOlKHOC11> bJ3HMHOTO npeo6pa30BaHHll 3THX Ta6JIH11 lllOCJJC peilleHHll 3a,D;a'll!), 
nocKOJJhKY KalK)lall H3 HHX . MOlKeT fihiTh reHepnpoBaHa ,n;pyroii OllTHMaJJhHOH . 6a30H . . 
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