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In this paper we present some results on a special crossing number of bipartite graphs.
This so-called bipartite crossing number (BCN) is defined by the least number of edge-
crossing appearing in the graph when a special topological representation in the plane is
used. Determining the BCN of a graph is known to be NP-hard. After the statement of
the problem we report several estimations of the BCN [12]. Connections to related graph
and matrix problems are outlined. Then a thermodynamically motivated simulation procedure
for determining the p-partite crossing number (p = 2) together with computational results
is presented. Finally, we point at several applications of the BCN problem to the automatic
layout of interconnected systems, such as electronic circuits, schematics, and facilities.

1. Introduction

The crossing number v (G) of a graph G is defined by the least possible
number of crossings which appear when G is mapped into the plane
([71, [6]). The corssing number is an important topological invariant of
a graph. v(G)=0 is valid iff G is a planar graph.

CROSSING NUMBER was shown to be NP-complete' [4]. Despite .
intensive research there are only few graphs for which the crossing number
is known and hardly any infinite families. The most studied infinitc families
are the complete graphs, the complete bipartite graphs, the n-dimessional
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cube, and the cross products of some graphs with a simple structure.
However, even for these cases only very partial results are known (cf. [16]).

In 1970 Watkins [15] introduced a special crossing number for bipartite
graphs as an open research problem; the so-called bipartite crossing number
{cf. [4]).

Let G= (U, V;E) be a simple undirected labeled bipartite graph with
the vertex set UUV(UNV =0) and the edge set E (|[E| =e). As for labeling
we have U = {uy,..,u,} and V= {vy,..,0,}. Let G be embedded in the
plane, such that the elements of U are realized as m points on a straight
line with u; lying between u;_; and u;,, (i=2,..,m—1); the elements
of V become n points on another straight line parallel to the first one
and ordered in the same direction. The edges of G are identified with
straight line segments joining the two points corresponding to their incident
vertices.

Let N (G) be the number of crossings of G, that is, the number of
edge pairs of G which intersect when G is represented in the manner just
described, not counting the intersections generated by edges incident with
a common vertex. By {G} we denote the equivalence class of labeled
bipartite graphs isomorphic to G. Then the bipartite crossing number
(BCN) v, (G) of G is defined by

v; (G) = min (N (H)|H e {G}).

BIPARTITE CROSSING NUMBER is known to be NP-complete [4].
Restricted to bipartite permutation graphs the BCN can be determined
in polynomial time [1].

The concept of BCN can easily be extended to p-partite graphs G = (U, E)
where U=U,u..uU, p=2 E=E u..VE, ; and E,<U;xU;;y, i=
=1,..,p—1. Any p-partite graph can be transformed to this special type
of p-partite graph by replacing every edge e = (u,v), ueU, veU;, 1 <i<
<j+1<p—1 by a path (u,e;,w;,..,€;_;_1,Wj_;_1,€;_;, 1) where ¢, =
=, wy), & =W, Wet1), k=2, ., j—i—1, _;=(W;_;-y,v) and wyeU;,,.
Analogous to the BCN (p = 2), let the elements of U be realized as points
on p parallel straight lines, where U, belongs to the first line, U, to the
second, ect. Let N,(G) be the number of crossings occuring when G is
embedded in the plane as described. By {G} we denote the equivalence
class of labeled p-partite graphs isomorphic to G. Then the p-partite
crossing number v, (G) of G is defined by

v, (G) = min (N, (H)|H e {G}).

— v, has been introduced because of its importance to practical applications.
r—1
Obviously, we have v,(G) = ) v,(G), G;=(U;, Uy 43 Ey).

i=1
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2. Some estimations for the bipartite crossing number

In the following we restrict our consideration to y, where p = 2, that is,
we consider the bipartite graphs G = (U, V; E) with U = {u,, .., u,}, V=
= {vy, .., 0,}, and |E|=e At first we give an equivalent formulation of
v, in terms of mxn (0, 1)-matrices. Let A= (a;) be the (m+n)x(m+n)
adjacency matrix of G, where :

Lifism, j>m, (u,v;_,)€E
agy=11ifi>m, j<m, (u_,, v)eE
0 otherwise

Hence
A maybe presented in the following way

ul e um Ul e Uy

where A" denotes the transpose of A. A4 is a mxn (0, 1)-matrix which
we shall refer to as reduced adjacency matrix in what follows. There is a
natural one-to-one correspondence between the set of mxn (0, 1)-matrices
A and the set of labeled bipartite graphs G described above. Thus, it is
sufficient to consider A4 instead of A4, where A4 =(a;) and ;= ;s

i=1,..,mj=1,.,n Let N (A) be the number of distinct (but not necessarily

1
, a,be{0, 1}. Obviously

disjoint) 2 x 2 submatrices of 4 having the form I;j b

N (4) = N (47).
Taking into account that two edges (u;, vy), (4, v)€E intersect iff i > k,
I>jori<k Il<jit follows N (4)= N (G). Hence
v, (G) = min (N (B)|Be {4}),
where {A} is the set of all matrices obtainable from 4 by permutations
of its rows and columns. The number of crossings of G can be obtained by

m #w—1i-1 m n

N(@G)= ) Y, X i: “ijaummil g: Y. Iil Qi Gy (1

i=2 j=1k=11=j+1 k=1i=k+1i=2 j=1

and hence

v; (G) = min Z Aaiyeti) Crloen)>
"Es_sp- 1sk<i<m
PESm [ <i<i<n ’

where S, is the symmetric gfoup of n objects.
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For bipartite multigraphs the a;; in formula (1) must be replaced by the
weights (multiplicities) b;; of the edges (u;,v;). For the complete bipartite
graph K, , we have a;;=1 for all i,j. Then (1) immediately yields

= (3)()

Clearly, for every bipartite graph G it holds
v(G) <3 (G) S v (K )

In the following we summarize some of the results obtained in [12]. The
BCN can easily be determined for circuits. By C, we denote a circuit of
lenght [ > 3. C, is bipartite iff /= 2L, L>2. We have

LemMma 1. v, (Cy))=L~-1, L=2 [12]
Since the existence of circuits in G is sufficient for the appearance of
crossings in G the investigation of the circuits of G yields some nontrivial
bounds on y, for general bipartite graphs.

A chord of a circuit C is a path with its end-vertices belonging to C
but its edges and inner vertices do not.

Let k-(G) be the number of circuits of G containing no chord of
lenght 1 (sometimes called diagonal).

LemMa 2. v, (G) = ke (G). [12].

Tueorem 1. Let k,(G) be the number of alldifferent circuits C, of G.
Then

m—1 m n—1 n ’
v 6G) 2k (G)= ) Y (kzj)= o (2‘) 3)

i=1 j=i+1 i=1 j=i+1

where

n
ku= Z aﬂ au, i.,j= 1, waey m, y
I=1

kij = IZI agay, i,j=1,.,n [12]

It is desirable to have estimations of v, in terms of some other characteristics
of the graph than k;;, e.g. the degree of its vertives or the number of edges.
This can most easily be done by further estimating k,, ie. the right side
of (3). For this reason the following identity proves helpful

m—-1 m n %
Z Z kij= Z (d (;l)), vueV, Il=1,.. . n,
i=1 j=i+1 =1



On the bipartite number 89

where (v) denotes the degree of the vertex v. In this way we get from (3)

50> (3) (f;]), o=(3) L(Y) . o

where [a] denotes the integer part of a. Note that (5) holds also when m, n,
and v, are replaced by n, m, and u,, respectively.

Let k(G) be the cyclomatic number of G. For a connected graph
G=(V,E) it holds k{G)= |E|—-|V|+1 [T].

TueoreM 2. Let G be a connected bipartite graph. Then
v, (G) =k (G)=e—(m+n)+1. [12] 6)

CoRroLLARY. Let t be the number of the components of the bipartite graph G.
Then v, (G) = e—(m+n)+t. For detailed proofs and some further results

see [12].

We note that including the chordless circuits of G with length [ > 6 into

the consideration would result in stronger bounds on the BCN.

3. Related matrix and graph problems

Since the goal function (1) for the BCN problem is very costly from
the computational point of view (0 (m*-n?), it would be desirable to ap-
proximate an optimal solution for BCN by some appropriate function of less
computational complexity. For this purpose we make use of the following
observation. In general, an optimal or near-optimal solution to the BCN
problem means a clustering of the non-zero entries of the reduced adjacency
matrix A of G along its “main diagonal”. This diagonal is weli-defined
only for quadratic matrices. So we introduce a generalization of this concept
for arbitrary mxn matrices 4. The main diagonal of 4 is defined by the
linear function f,, where

n—1 = m—n
B )
m—1 m—1

Jmn (1) =

and i corresponds to the i-th row of A. It holds f, ,(1)=1 and f,,(m)=n
This diagonal is also determined by f, , {j), where j corresponds to the j-th
column of A. For quadratic matrices we have f,,, () =i

Now we state several problems of minimizing some characteristic of
A = (ay;),,» by permuting its rows and columns. Some special cases of these
problems are well-known problems in matrix and graph theory.
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Bandwidth of 4
ﬁm.n (A) == IEI{E‘ IT%?FX {aij i |fm,n (TL‘ (!)J_ @ U)l}

Here and in the following problems we have =neS, and ¢@e€S, For
m = n this problem is known as the bandwidth minimization problem for
quadratic matrices. In this case 4 can be considered as the adjacency matrix
of a directed graph G'. Then f(G') = B, (4) is called directed bandwidth
of G. If A is symmetric and = ¢ then f(G’) is said to be the bandwidth
of G

Total bandwidth of A
B (4) = main {3 max (ay;-| s (7 ()= G)])+
| +3 max (- bt ()= fum (0 )},
J

Bi . is a measure of how far the most distant non-zero elements in every
row and column of A are from the diagonal. For symmetric matrices this
concept is similar but not equivalent to the profile of 4, which is defined
only for positive defined A.

Linear r-arrangement of A
b (4) = min 3 ;| fo,n (7 @)= O
L

If A is a symmetric matrix, 7= ¢, and r =1 this problem is known as
linear_ optimal arrangement of the corresponding graph G'. Obviously, the
greater r the more is contributed to the goal function by those elements
of A having longer distance from the main diagonal.

All the problems stated in terms of A have an analogous formulation
for the corresponding bipartite graph G.

Note that the extension of all these problems to p-partite graphs
G =(U,,..,U,; E) (chapter 1), that is, a series of coupled reduced adjacency
matrices A,, s=1,..,p—1, with the size n;xn,,, ny=1|UJ] is straight-
forward.

How these problems can be used to find an approximate solution to the
BCN problem and computational experience is reported in chapter 5.

4. A thermodynamically motivated heuristic algorithm

in the previous ciidjners we have introduced severai NP-hard combinatorial
optimization problems. They have different goal functions, but a feasible
solution to one of them is also a feasible solution to the other ones and
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can always be presented in form of bipartite graphs or reduced adajcency
matrices (in case of p-partite crossing number p > 2), as a p-partite graph
G=(U,,.,U,E) or a set of coupled reduced adjacency matrices A4,
s=1, .., p—1. Every feasible solution corresponds to a certain permutation
of vertices in the sets U, i=1,..,p, p=2, and of the corresponding
rows and columns of the adjacency matrices 4, s=1, .., p—1, respectively.

For such a combinatorial optimization problem a Monte-Carlo method
can be easily applied, that is, a random local search algorithm. In the
initialization step a feasible solution is to be selected as the current one.
Then in every step of the algorithm a new feasible solution of the problem
from the neighbourhood of the current one is randomly choosen. It is
accepted as a new current solution only if it improves the value of the
goal function. Several different criteria of termination may be applied. For
example the algorithm performs a predefined number of steps, or if in
a given number of steps no change in the goal function appears then the
algorithm stops.

For applying this method to a problem there must exists the possibility,
to generate randomly any feasible solution in the neighbourhood of the
current solution with the same probability.

If not, then the algorithm may work in a quite pathological way.
The main application field are large problems for which exact algorithms
are not applicable from the viewpoint of computational complexity and no
provably good heuristics exist. The Monte-Carlo method is suitable for
probiems where a new feasible solution and the difference in goal function
between the new and current solution can be determined with low computa-
tional effort.

Unfortunately, if the problem has some locally optimal solutions, signi-
ficantly worse than the global one, then this method can easily fail to
find a good approximate solution.

In [8] and [2] a version of the Monte-Carlo method for combinatorial
minimization problems was proposed. It looks that such an algorithm can
seriously overcome this drawback of the usual Monte-Carlo procedure.

Because the idea of this method comes from the thermodynamical
statistics it was called thermodynamically motivated heuristic. The thermo-
dynamical background of this method can be shortly described as follows.

If we consider a system of atoms forming liquid or solid matter then
there are N atoms and N positions for them. Any atom any occupy an
arbitrary position. Because the number of atoms is of order 10?® per cubic
centimeter, only the most probable behaviour of the system in thermal
equilibrium at a given temperature is observed in experiments.

A fundamental question in thermodynamical statictics is: What happens
to the system at the limit of low temperature, how to find ths state
of substance with the minimum energy?
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In practical contexts, low temperature is a neccessary but not a sufficient
condition for finding the minimum energy state of matter. Experiments that
determine the minimum energy state of a substance are done by careful
annealing, first melting the substance, then lowering the temperature slowly,
and spending a long time at temperatures in the vicinity of the freezing
point. If it is not done, and the substance is allowed to get out of equilibrium
it can form only metastable, locally optimal structures.

A simple algorithm for efficient simulating the behaviour of a coilection
of atoms in equilibrium at a given temperature was introduced in the
carliest days of scientific computing. In each step of this algorithm, an
atom is given a small random displacement and the resulting change AE
in the energy of the system is computed. If AE <0, the displacement is
accepted, and the configuration with the displaced atom is used as the
starting point of the next step. The case AE >0 is treated probabilisti-
cally: the probability, that the configuration is accepted, is P (4E)=
= exp (—4E/(ky T)) (ks — Boltzmann constant). Random numbers uniformly
distributed in the interval (0, 1) are a convenient means for implementing
the random part of the algorithm. One such number is selected and
compared with P (4E). If it is less than P (4E), the new configuration
is retained: if not, the original configuration is used to start the next step.
By repeating the basic stap many times the thermal motion of aloms in
thermal contact with a heat bath at temperature T is simulated. This
choice of P (4E) has the consequence that the system evolves into a Bibbs-
-Boltzmann distribution.

- Using the goal function in place of the energy and a feasible solution
of some combinatoral minimization problem as configuration of atoms of
given matter, it is straightforward with such a procedure to generate a
population of feasible solutions at some effective temperature. This tempera-
ture is simply a control parameter in the same units as the goal function.
The simulated annealing process consists of first “melting” the system being
optimized at a high effective temperature, then lowering the temperature
by slow stages until the system “freezes” and no further changes occur.
At each temperature the simulation must proceed long enough for the system
to reach a steady state. The sequence of temperatures and the number
of new generated feasible solutions attempted to reach equilibrium at each
temperature can be considered an annealing schedule.

The thermodynamically motivated procedure can always omit a local
optimum at nonzero temperature, which is the main advantage over the
ordinary Monte-Carlo method.

For using such a procedure in solving practical problems we must
be able to generate a new feasible solution in a way similar to a small
random displacement of an atom in the annealing process of matter.
For each of the previously stated combinatoral optimization problems it
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can be done in the following way. Assuming the case of a p-partite graph
G=(U,,.., U, E), p > 2, and a set of reduced adjacency matrices 4,,.., 4,1,
respectively, we select se{l,..,p} at random. Then i,je{l,..,n}, i#],
n,=|U, are randomly choosen. Every of these random choices must be
performed such that any of the possibilities can be selected with the same
probability. Interchanging now the i-th and j-th vertex of the set U; we
obtain a new feasible solution and the corresponding change AF in the
goal function F is calculated. This interchange in U, corresponds to a
simultaneous change of the i-th and j-th column in the matrix 4;_, and
the i-th and j-th row in A,, respectively, where 4, =0 and 4, =0.

For applying the thermodynamically motivated procedure to these
problems we need an appropriate annealing schedule. This can be obtained
as follows. Let g be the number of new solutions generated at temperature 7.
Then the new values of T and g can be obtained by T:=a-T, q:=b-q,
where a and b are some parameters. For determining an annealing schedule
it is now enough to define starting values of T and g, and values of a
and b. The procedure terminates when either at some temperature no
acceptance of a new feasible solution occurs or temperature becomes too
small.

5. Computational experience

A lot of examples were considered using a series of different goal -
functions. We observed that in general any of the goal functions: BCN,
bandwidth, and linear 2-arrangement lead to results of almost the same
quality. This is valid also for p> 2. . However, from the viewpoint of
computational complexity they differ significantly. Let n = max {n;|1 <i <p}.
The calculation of AF can be done for p-partite crossing number in 0 (n°),
for bandwidth in 0(n?), and for linear 2-arrangement in O (n). It indicates
that for large sized problems linear 2-arrangement is the most promising
criterion for all considered problems. Obviously, the starting values of ‘T and
g must depend on both n and p. We used T=c-(n+p) and g=2-(n+p)
The best among all tested values of the parameters a and b were
08<a<09 (eg. a=085 and b= 1.1. This ensures slow and careful
annealing of the system. The best value of the parameter ¢ must be
established experimentally for every concrete problem. It ought to quarantee
a careful annealing process and prevent the solution from moving too far
from the optimal solution during the first iterations. Thus the quality of the
solution and the computational effort depend highly on a proper parameter
setting. '

Though there exists no performance guarantee for this procedure it
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exhibits very well in practice and shows a stable behaviour. If we assume
that h, the number of all solutions generated by the algorithm, is a good
measure of the computational complexity of this algorithm, then all our
computational experiments show that h <5-(n+p)> So the algorithm with
the linear 2-arrangement goal function has in practice the complexity of
0 (n-(n+p)?). Another important observation is that in average 90% of the
possible improvement in the goal function is reached after one half of the
running time. That means if a good approximate solution is acceptable
we may interrput the procedure much earlier, before the stop criterion is
reached.

We tested examples up to a size of p=7 and the size 66x66 of the
reduced adjacency matrix. The program was written in FORTRAN and is
running on a 16-bit minicomputer (K 1630 robotron). The examples were
taken partly from the literature and practical applications. Applied to the
bandwidth minimization problem the algorithm, using all of the above-
mentioned goal functions, was able to produce the best known solution
for the test examples among them those from [3], [5] and [13]. For
matrices exceeding the size of 30x30 the BCN criterion becomes too
expensive from the computational point of view. The linear 2-arrangement
provides the best approximate solutions to the BCN problem and in most
cases is proved to be an even stronger criterion than bandwidth.

We note that several deterministics algorithms for the BCN problem
can be found in [10] and [12].

For illustration we give an example where p=3, n; = 10, n, = 15, and
ny = 12. We present the starting matrices 4; and A4, and the result A}
and A} obtained by the algorithm using 3-partite crossing number criterion.
The non-zero entries are indicated by x. Figure 1 shows the initial 3-partite
graph G corresponding to A4, and A, and the resulting graph G' cor-
responding to A} and A%. Here the number of crossings was reduced from
N3 (G) =612 to N;(G)=92.
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6. Applications and conclusions

The BCN problem and the p-partite crossing number problem, respecti-
vely arise in a number of applications, ranging from matrix permutation
problems over transpostation problems to layout problems in the automation
of design and documentation.

In general, the optimal representation of a matrix according to the
BCN yields an optimal or near-optimal solution to the bandwidth minimi-
zation problem and vice versa, though there exist some pathological cases.
Those conversion problems for sparse matrices appear in solving large
systems of linear equations and differential equations as well as in network
analysis. Furthermore in the physical layout of digital systems the minimum
p-partite crossing number or any criterion from chapter 3 can be used in
placing modules on special multi-row structures. This situation is met for
instance in standard cell and gate erray technology. The algorithm developed
was tested in the placement of several permutation networks. Both criteria
the minimization of the longest signal and minimum total signal length
were applied. Comparing our results with the placement done by a skilled
designer we were able to produce about the same quality of solution
according to the total channel width in the channel routing, succeeding
the placement procedure [14]. It has turned out that minimum BCN is an
appropriate measure for a good module placement subject to channel routing.
<nother inferesting application is in the field of automatic layout of
schemtics [12], which can be considered a spacial branch of two-dimensional
computer graphics. The p-partite crossing number criterion is especially
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suited for multi-row schematics [9] which represent a broad class of schematic
drawings such as logic diagrams. It was succesfully applied in laying out
logic schematics in order to fulfil certain functional and aesthetical conditions.
Several results and additional algorithms are presented in [11] and [12].
Potential applications lie in the field of transportation and communication,
where certain streets or communication lines are required to intersect each
other in as few crossings as possible.

Hence, there are good reasons both from graph theory and from the
application viewpoint to continue the research in the BCN problem. The

considerations made in this paper can for instance be extended to arbitrary
graphs presented on parallel consecutive rows as described in chapter 1.
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O liczbie przecig¢ w grafach dwudzielnych

W pracy przedstawiono pewne wyniki dotyczace liczby przecigé¢ w grafach dwudzielnych.
Jest to NP —trudne zadanie optymalizacji dyskretnej. Uzyskano oszacowania rozwiazania
optymalnego. Zaprezentowano szereg zblizonych sformulowan zagadnien optymalizacyjnych
na grafach w postaci macierzowej. W pracy przedstawiono algorytm termodynamiczny dla
odnajdywania minimainej liczby przecig¢ w grafach p-dzielnych oraz wyniki eksperymentu
obliczeniowego. :

O umcne nepeceuennii B ABYI0IBHBIX rpagax

B pabore npencraBieHBl HEKOTOPHIE PE3YJbTATH KACAIOIIHECH YHCIA NEPECeHeHHH B IBY-
nonbHeix rpadax. to semsercs NP-Tpyamoil 2amaueit muexpernoif omtumusauun. Momyuens
OLEHKH onTHManbioro pewennas. [Ipeacrabnen pss aHamOTHYHBIX (OPMYIHPOBOK O THME-
JAUMOHHBIX 3a/a4 Ha rpadax B MaTpu4HOM BuAe. B paboTe mpeicTaBlied TepMOAMHAMHYECKHIT
anropuT™M IS HAXOMICHHA MHHHMANBLHOTO YHCIA [CpecedeHuil B P-JONBHBIX rpatax
M pe3yibTaThl MHCICHHOIO 3KCAEPHMEHTA.



Wskazéwki dla autorow

W wydawnictwie ,,Control and Cybernetics” drukuje si¢ prace oryginalne
nie publikowane w innych czasopismach. Zalecane jest nadsylanie artykulow
w jezyku angielskim. W przypadku nadestania artykulu w jezyku polskim
Redakcja moze zaleci¢ przettumaczenie na jezyk angielski. Objetos¢ artykulu
nie powinna przekracza¢ 1 arkusza wydawniczego, czyli ok. 20 stron maszy-
nopisu formatu A4 z zachowaniem interlinii i marginesu 5 cm z lewej
strony. Prace nalezy sklada¢ w 2 egzemplarzach. Uklad pracy i forma
powinny by¢ dostosowane do nizej podanych wskazowek.

1. W nagléwku nalezy poda¢ tytul pracy, nastgpnie imi¢ (imiona) i
nazwisko (nazwiska) autora (autorow) w porzadku alfabetycznym oraz nazwe
reprezentowanej instytucji i nazwe miasta. Po tytule nalezy umiesci¢ krotkie
streszczenie pracy (do 15 wierszy maszynopisu).

2. Materiat ilustracyjny powinien by¢ dolgczony na oddzielnych stronach.
Podpisy pod rysunki nalezy poda¢ oddzielnie.

3. Wzory i symbole powinny by¢ wpisane na maszynie bardzo starannie.

Szczegdlng uwage nalezy zwrdci¢ na wyrazne zroznicowanie malych i
duzych liter. Litery greckie powinny by¢ objasnione na maszynopisie. Szcze-
gblnie dokladnie powinny by¢ opisane indeksy (wskazniki) i oznaczenia
potggowe. Nalezy stosowa¢ nawiasy okragle. _

4. Spis literatury powinien by¢ podany na koncu artykulu. Numery
pozycji literatury w tekscie zaopatruje si¢ w nawiasy kwadratowe. Pozycje
literatury powinny zawiera¢ nazwisko autora (autoréw) i pierwsze litery imion
oraz dokladny tytul pracy (w jezyku oryginalu), a ponadto:

a) przy wydawnictwach zwartych (ksiazki) — miejsce i rok wydania oraz
wydawce;

b) przy artykulach z czasopism: nazwg¢ czasopisma, numer tomu, rok
wydania i numer biezacy.

Pozycje literatury radzieckiej nalezy pisa¢ alfabetem oryginalnym, czyli
tzw. grazdanka.




Recommendations for the Authors

Control and Cybernetics publishes original papers which have. not
previously appeared in other journals. Submission of papers in English is
recommended. No paper should exceed in length 20 typewritten pages
(210 x 297 mm) with lines spaced and a 50 mm margin on the lefthand side.
Papers should be submitted in duplicate. The plan and form of the paper
should be as follows:

1. The heading should include the title, the full names and surnames of
the authors in alphabetic order, the names of the institutions they represent
- and the name of the city or town. This heading should be followed by a
brief summary (about 15 typewritten lines).

2. Figures, photographs, tables, diagrams should be enclosed to the
manuscript. The texts related to the figures should be typed on a separate
page.

3. If possible all mathematical expressions should be typewritten. Parti-
cular attention should be paid to differentiation between capital and small
letters. Greek letters should as a rule be defined. Indices and exponents
should be written with particular care. Round brackets should not be
replaced by an inclined fraction line.

4. References should be put on the separate page. Numbers in the text
identified by references should be enclosed in brackets. References should
contain the surname and the initial of Christian rames, of the author
(or authors), the complete title of the work (in the original language) and,
in addition:

a) for books — the place and the year of publication and the publishers
neme;

b) for journals — the name of the journal, the number of the volume,
the year of the publication, and the ordinal number.



