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Jn this paper we present some results on a special .crossing number of bipartite graphs. 
This so-called bipartite crossing number (BCN) is defined by the least number of edge
crossing appearing in the graph when a special topological represt:ntation in the plane is 
used. Determining the BCN of a graph is known to be NP-hard. After the · statement of 
the problem we report several estimations of the BCN [12]. Connections to related graph 
and matrix problems are outlined. Then a thermodynamically motivated simulation procedure 
for determining the p-partite crossing number (p;;:, 2) together with computational results 
is presented. Finally, we point at several applications of the BCN problem to the automatic 
layout of interconnected systems, such as electronic circuits, schematics, and facilities. 

1. Introduction 

The crossing number ,t (G) of a graph G is defined by the least possible 
number of crossings which appear when G is mapped into the plane 
([7], [6]). The corssing number is an important topological invariant of 
a graph. y (G) = 0 is valid iff G is a planar · graph. 

CROSSING NUMBER was shown to be NP-complete· [ 4]. Despite 
intensive research there are only few graphs for which the crossing number 
is known and hardly any infinite families. The most studied iP..finite. families 
are the complete graphs, the complete bipartite graphs, the n-dimensionai 
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cube, and the cross products of some graphs with a simple structure. 
However, even for these cases only very partial results are known (cf. [16]). 

In 1970 · Watkins [15] introduced a special crossing number for bipartite 
graphs as an open research problem; the so-called bipartite crossing number 
{cf. [4]). 

Let G = (U, V; E) be a simple undirected labeled bipartite graph with 
the vertex set U U V(U n V=~) and the edge set E (IEI =e). As for labeling 
we have U = {u~> ... , um} and V= {v1 , ... , v"}. Let G be embedded in the 
plane, such that the elements of U are realized as m points on a straight 
line with ui lying between ui-t and ui+ 1 (i = 2, ... , m-1); the elements 
of V become n points on another straight line parallel to the first one 
and ordered in the same direction. The edges of G are identified with 
straight line segments joining the two points corresponding to their incident 
vertices. 

Let N (G) be the number of crossings of G, that is, the number of 
edge pairs of G which intersect when G is represented in the manner just 
described, not counting the intersections generated by edges incident with 
a common vertex. By { G} we denote the equivalence class of labeled 
bipartite graphs isomorphic to G. Then the bipartite crossing number 
(BCN) v2 (G) of G is defined by 

v2 (G)= min (N (H)IH E {G}). 

BIPARTITE CROSSING NUMBER is known to be NP-complete [4]. 
Restricted to bipartite permutation graphs the BCN can be determined 
in polynomial time [1]. 

The concept of BCN can easily be extended to p-partite graphs G = (U, E) 
where U = U 1 u ... u UP, p ~ 2, E = E1 u ... uEp- 1 and Ei ~ U;x Ui+t• i = 
= 1, ... , p -1. Any p-partite graph can be transformed to this special type 
of p-partite graph by replacing every edge e = (u, v), ue Ui, ve Ui, 1 ~ i < 
<j+l~p-1 by a path (u,et>w 1 , .. . ,ei-i-t>wi-i-hei_i,v) where e1 = 
=(u, wd, ek=(wbwk+ 1), k=2 , ... ,j-i-1, ei-i=(wj-i-l•v) and wkeUi+k· 
Analogous to the BCN (p = 2), let the elements of U be realized as points 
on p parallel straight lines, where U 1 belongs to the first line, U 2 to the 
second, ect. Let NP (G) be the number of crossings occuring when G is 
embedded in the plane as described. By { G} we denote the equivalence 
class of labeled p-partite graphs isomorphic to G. Then the p-partite 
crossing number 1:p (G) of G is defined by 

!:p (G)= min (NP (H)IH E {G}) . 

- vP has been introduced because of its importance to practical applications. 
p-1 

Obviously, we have !:p (G) ~ L Yz (G;), Gi = (Ui , ui+ 1; EJ 
i= l 
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2. Some estimations for the bipartite <:rossing number 

In the following we restrict our con~~tion to !p where p = 2, that is, 
we consider the bipartite graphs G = (U, , E) with U = {ul> ... , um}, V= 
= { v1 , ... , vn}, and !El = e. At first we give a · equivalent formulation of 
y2 in terms of mxn (0, 1)-matrices. Let A= (i:iii) be the (m+n)x(m+n) 
adjacency matrix of G, where 

Hence 

.,1 if i ~m, j >m, (ui> vi_m)EE 
ifii= 1 if i>m,j~m, (u;-m,vi)EE 

0 otherwise 

A maybe presented in the following way 

A 

0 

~ 
where AT denotes the trans~se of A. A is a 1?'1 x n (0, 1)-matrix which 
we shall refer to- as reduced ad]acency matrix in what follows. There is a 
natural one-to-one correspondence between the set of mxn· ((};+)-matrices 
A and the set of labeled bipartite graphs G described above. Thus, it is 
sufficient to consider A instead of A, where A = (a.·) and a .. = if . . + 

lJ lJ l,J m' 
i = 1, ... , m, j = 1, ... , n. Let N (A) be the number of distinct (but not necessarily 

disjoint) 2 x 2 submatrices of A having the form ~ ! ,, a, bE {0, 1 }. Obviously 

N (A)= N (AY). . 
Taking into account that two edges (u;, vi), (uk> v1) E E intersect iff i > k, 

I> j or i < k, I <j it follows N (A)= N (G). Hence 

y2 (G)= min (N (B)IBe {A}), 

where {A} is the set of all matrices obtainable from A by permutations 
of its rows and columns. The number of crossings of G can be obtained by 

m n-1 i-1 n m-1 m n 1-1 

N (G)= L L L . L aii akl = L L L L aii ak,, 

and hence 

i=2 j=1 k=ll=j+1 k=1 i=k+l i=2 j=l 

- y2 (G) = min L an(il<t><i> an(k)tp(l), 
nESm 1 ~k ~i<m 
q>ESn l<;;j<;;l<n . 

where sn is the symmetric group of n objects. 

(1) 
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For bipartite multigraphs the a1i in formula (1) must be replaced by the 
weights (multiplicities) b11 of the r-dges (u1, vi). For the complete bipartite 
graph Km;n we have aii = 1 for all i,j. Then (1) immediately yields 

Clearly, for every bipartite graph G it holds 

y_ (G) ~ !'.2 (G) ~ !'.2 (Km,n)· 

In the following we summarize some of the results obtained in [12]. The 
BCN can easily be determined for circuits. By C1 we denote a circuit of 
lenght I~ 3. C1 is bipartite iff l = 2L, L ~ 2. We have 

LEMMA 1. !'.2 (C2J = L~ 1, L ~ 2. [12]. 
Since the existence of circuits in G is sufficient for the appearance of 
crossings in G the investigation of the circuits of G yields some nontrivial 
bounds on y2 for general bipartite graphs. 

A .chord of a circuit C is a path with its end-vertices belonging to C 
but its edges and inner vertices do not. 

Let kc (G) be the number of circuits of G containing no chord of 
lenght 1 (sometimes called diagonal). 

LEMMA 2. y2 (G) ~ kc (G). (12]. 

THEOREM 1. Let k4 (G) be the number of all different circuits c4 of G. 
Then 

where 

!'.2 (G) ~ k4 (G)= mf f (kii) = "f f (kii), (3) 
i=l j=i+l 2 i=1 j=i+l 2 

n 

k1i = L ail a1i, i,j = 1, ... , m, 
I= 1 

m 

kii= L aua1i, i,j= 1, ... ,n. [12]. 
I= 1 

It is desirable to have estimations of y_2 in terms of some other characteristics 
of the graph than kii' e.g. the degree of its vertives or the number of edges. 
This can most easily be done by further estimating k4 , i.e. the right side 
of (3). For this reason the following identity proves hetpful 

~-t f kii= f (d(vi)), v1EV, I= l, ... ,n, 
i=l j=i+ 1 1=1 2 
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where (v) denotes the degree of the vertex v. In this way we get from (3) 

(m) ([a]) (m)- 1 
" (d·(v1)) 

.!:2 (G)~ - 2 · · 2 ' a= 2 1~1 2 ' [12], (5) 

where [a] denotes the integer part of a. Note that (5) holds also when m, n, 
and v1 are replaced by n, m, and u1, respectively. 

Let k(G) be the cyclomatic number of G. For a connected graph 
G =(V, E) it holds k{G}= IEI-!VI + 1 [7]. 

THEOREM 2. Let G be. a connected bipartite graph. Then 

.· }: 2 (G)~k(G)=e-(m+n)+1. [12] (6) 

COROLLARY. Let t be the number ofthe components ofthe bipartite graph G. 
Then Q 2 (G)~ e-(m+n)+t. For detailed proofs and some further results 

see [12]. · 
. We note that including the chordless circuits of G with length l ~ 6 into 
the consideration would result in stronger bounds on .the BCN. 

3. Related matrix and · graph problems 

Since the goal fupction (1) for the BCN problem is very costly from 
the computational ·point of view (0 (m2 

· n2
)), it would be desirable to ap~ 

proximate an optimai solution for BCN by some appropriate function of less 
computational complexity. -For this purpose we make use of the following 
observation. In general, an optimal or near-optimal solution to the BCN 
problem means a clustering of the non-zero entries of the reduced adjacency 
matrix A of G along its "main diagonal". This diagonal is well-defined 
only for quadratic matrices. So we introduce a generalization of this concept 
for arbitrary m x n matrices A. The main diagonal of A is defined by the 
linear function fm,,. where 

n- 1 m-n 
J~." (i) = --1 i+ --1 ' . · · m- · m-

and i corresponds to the i-th row of A. It holds J~,n (1) = 1 and J~.n (m)= n. 
This diagonal is also determined by fn ,m U), where j corresponds to the j-th 
column of A. For quadratic matrices we have fm.m (i) = i. . 

Now we state several problems of minimizing some characteristic of 
A= (aii)m, 11 by p~rmutif\g its rows and columns. Some special cases of these 
pro.bletns are weU-known problelll.S in matrix and graph th~ty. 
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Bancll\idth of A 

Here and in the following problems we have nE sm and q> E Sn. For 
m= n this problem is known as the bandwidth minimization problem for 
quadratic matrices. In this case A can be considered as the adjacency matrix 
of a directed graph G'. Then {3 (G') = Pm,m (A) is called directed bandwidth 
of G'. If A is symmetric and n = q> then {3 (G') is said to be the bandwidth 
of G'. 

Total bandwidth of A 

fl!..n (A)= .~ {~ m~x (aij ·lfm,n (n (i))- q> Wl)+ 
l 

+ ~ m~x (aij' In (i)- fn,m (cp (j))i)}, 
J 

fl!..n is a measure of how far the most distant non-zero elements in every 
row and column of A are from the diagonal. For symmetric matrices this 
concept is similar but not equivalent to the profile of A, which is defined 
only for positive defined A. 

Linear r-arrangement of A 

l~.n (A) = ~~~ ~ aij ·I fm,n (n (i))- (/) (j)l'. 
l,J 

If A is a symmetric matrix, n = q>, and r = 1 this problem is known as 
linear. optimal arrangement of the corresponding graph G'. Obviously, the · 
greater r the more is contributed to the goal function by those elements 
of A having longer distance from the main diagonal. 

All the problems stated in terms of A have an analogous formulation 
for the corresponding bipartite graph G. 

Note that the extension of all these problems to p-partite graphs 
G = (U 1 , ... , U r; E) (chapter 1), that is, a series of coupled reduced adjacency 
matrices A., S= l, ... ,p-1, with the size hsxns+1' ns= IUsl is straight
forward. 

How these problems can be used to find an approximate solution to the 
BCN problem and computational experience is reported in chapter 5. 

4. A thermodynamically motivated heuristic algorithm 

In the previous cHapters w~ have introduced several NP-hard combinatorial 
optimization problems. They have· different goal functions, but a feasible 
solution to one of them is also a feasible solution to the other ones and 
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can always be presented in form of bipartite graphs or reduced adajcency 
matrices (in case of p-partite crossing number p > 2), as a p-partite graph 
G = (U 1 , ... , UP; E) or a set of coupled reduced adjacency matrices A., 
s = 1, ... , p - 1. Every feasible solution corresponds to a certain permutation 
of vertices in the sets U;, i = 1, .. . , p, P' "? 2, and of the corresponding 
rows and columns of the adjacency matrices A 5 , s = 1, ... , p- 1, respectively. 

For such a combinatorial optimization problem a Monte-Carlo method 
can be easily applied, that is, a random local search algorithm. In the 
initialization step a feasible solution is to be selected as the current one. 
Then in every step of the algorithm a new feasible solution of the problem 
from the neighbourhood of the current one is randomly choosen. It is 
accepted as a new current solution only if it improves the value of the 
goal function. Several different criteria of termination may be applied. For 
example the algorithm performs a predefined number of steps, or if in 
a given number of steps no change in the goal function appears then the 
algorithm stops. 

For applying this method to a problem there must exists the possibility, 
to generate randomly any feasible solution in the neighbourhood of the 
current solution with the same probability. 

If not, then the algorithm may work in a quite pathological way. 
The main application field are large problems for which exact algorithms 
are not applicable from the viewpoint of computational complexity and no 
provably good heuristics exist. The Monte-Carlo method is suitable for 
problems where a new feasible solution and the difference in goal function 
between the new and current solution can be determined with low computa
tional effort. 

Unfortunately, if the problem has some locally optimal solutions, signi
ficantly worse than the global one, then this method can easily fail to 
find a good approximate solution. 

In [8] and [2] a version of the Monte-Carlo method for combinatorial 
minimization problems was proposed. It looks that such an algorithm can 
seriously overcome this drawback of the usual Monte-Carlo procedure. 

Because the idea of this method comes from the thermodynamical 
statistics it was called thermodynamically motivated heuristic. The thermo
dynamical background of this method can be shortly described as follows. 

If we consider a system of atoms forming liquid or solid matter ·then 
there are N atoms and N positions for them. Any atom any occupy an 
arbitrary position. Because the number of atoms is of order 1023 per cubic 
centimeter, only the most probable behaviour of the system in . thermal 
equilibrium at a given temperature is observed in experiments. 

A fundamental question in thermodynamical statict·ics is: What happens 
to the system at the limit of 'iow tewperature, how to find the st.ate 
of substance with the minimum energy? 
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In practical contexts, low temperature is a neccessary but not a sufficient 
condition for finding the minimum energy state of matter. Experiments that 
determine the minimum energy state of a substance are done by careful 
~).mealing, first melting the substance, then lowering the temperature slowly, 
f!.I),d spending a · long time at temperatures in the vicinity of the freezing 
pOint. If it is not done, and the substance is allowed to get out of equilibrium 
it can form only metastable, locally optimal structures. 

A simple algorithm for efficient simulating the behaviour of a collection 
of atoms in equilibrium at a given temperature was introduced in the 
eariiest days of scientific computing. In each step of this algorithm, an 
atom is given a small random displacement and the resulting change 4.E 
in the energy of the system is computed. If 4.E ~ 0, the displacement is 
accepted, and the configuration with the displaced atom is used as the 
starting point of the next step. The case LJE > 0 is treated probabilisti
cally: the probability, that the configuration is accepted, is P (4E) = 
= exp (- 4.E/(k8 T)) (k8 - Boltzmann constant). Random numbers uniformly 
distributed in the interval (0, 1) are a convenient means for implementing 
the random part of the algorithm. One such number is selected and 
compared with P (4E). If it is less than P (4.E), the new configuration 
is retained: if not, the original configuration is used to start the next step. 
By repeating the basic stap many times the thermal motion of atoms in 
thermal contact with a heat bath at temperature T is simulated. This 
choice of P (4E) has the consequence that the system evolves into a Bibbs
-Boltzmann distribution. 

Using the goal function in place of the energy and a feasible solution 
of some combinatoral minimization problem as configuration of atoms of 
given matter, it is straightforward with such a procedure to generate a 
population of feasible solutions at some effective temperature. This tempera
ture is simply a control parameter in the same units as the goal function. 
The simulated annealing process consists of first "melting" the system being 
optimized at a high effective temperature, then lowering the temperature 
by slow stages until the system "freezes" and no further changes occur. 
At each temperature the simulation must proceed long enough for the system 
to reach a steady state. The sequence of temperatures and the number 
of new generated feasible solutions attempted to reach equilibrium at each 
temperature can be considered an annealing schedule. 

The thermodynamically motivated procedure can always omit a local 
optimum at nonzero temperature, which is the main advantage over the 

• ordinary Monte-Carlo method. 
For using such a procedure in solving practical problems we must 

be able t<:> generate a new feasible solution in a way similar to a small 
random displacement of an atom in the annealing process of matter. 
For each of the p~eviously stated combinatoral optimization problems it 



On the bipartite number 93 

can be done in the following way. Assuming the case of a p-partite graph 
G = (U 1 , ... ,UP; E), p;;:: 2, and a set of reduced adjacency matrices Al>:··•Ap-l• 
respectively, we select se{l, ... ,p} at random. Then i,je{l, ... ,n5}, i#j, 
ns =IUs! are randomly choosen. Every of these random choices must be 
performed such that any of the possibilities can be selected with the same 
probability. Interchanging now the i-th and j-th vertex of the set U5 we 
obtain a new feasible solution and the corresponding change 4F in the 
goal function F is calculated. This interchange in Us corresponds to a 
simultaneous change of the i-th and j-th column in the matrix A5 _ 1 and 
the i-th and j-th row in A5 , respectively, where A0 = 0 and AP = 0. 

For applying the thermodynamically motivated pro.cedure to these · 
problems we need an appropriate annealing schedule. This can be obtained 
as follows. Let q be the number of new solutions generated at temperature T. 
Then the new values of T and q can be obtained by T:= a· T, q:= b ·q, 
where a and b are some parameters. For determining an annealing schedule 
it is now enough to define starting values of T and q, and values of a 
and b: The procedure terminates when either at some temperature no 
acceptance of a new feasible solution occurs or temperature becomes too 
small. 

5. Computational experience 

A lot of examples were considered usirig a series of different goal · 
functions. We observed that in general any of the goal functions: BCN, 
bandwidth, and linear 2-arrangement lead to results of almost the same 
quality. This is valid also for p > 2. However, from the viewpoint of 
computational complexity they differ significantly. Let n = max {nill ~ i ~ p}. 
The calculation of 4F can be done for p-partite crossing number in 0 (n3

), 

for bandwidth in 0 (n 2
), and for linear 2-arrangement in 0 (n). It indicates 

that for large sized problems linear 2-arrangement is the most promising 
criterion for all considered problems. Obviously, the starting values of :T and 
q must depend on both n and p. We used T= c ·(n+ p) and q = 2 ·(n+ p). 
The best among all tested values of the parameters a and b were 
0.8 <a< 0.9 (e.g. a= 0.85) and b = 1.1. This ensures slow and careful 
annealing of the system. The best value of the parameter c must be 
established experimentally for every concrete problem. It ought to quarantee 
a careful annealing process and prevent the solution from moving too far 
from the optimal solution during the first iterations. Thus the quality of the 
solution and the computational effort depend highly on a proper parameter 
setting. 

Though there exists no performance guarant-ee for this procedure it 
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exhibits ve-ry well in practice and shows a stable behaviour. If we assume 
that h, the number of all solutions generated by the algorithm, is a good 
measure of the computational complexity of this algorithm, then all our 
computational experiments show that h :::;: 5 · (n + pf. So the algorithm with 
the linear 2-arrangement goal -function has in practice the complexity of 
0 (n. (n + p)2

). Another important observation is that in average 90% of the 
possible improvement in the goal function is reached after one half of the 
running time. That means if a good approximate solution is acceptable 
we may interrput the procedure much earlier, before the stop criterion is 
reached. 

We tested examples up to a size of p = 7 and the size 66 x 66 of the 
reduced adjacency matrix. The program was written in FORTRAN and is 
running on a 16-bit minicomputer (K 1630 robotron). The examples were 
taken partly from the literature and practical applications. Applied to the 
bandwidth minimization problem the algorithm, using all of the above
mentioned goal functions, was able to produce the best known solution 
for the test examples among them those from [3], [5] and [13]. For 
matrices exceeding the size of 30 x 30 the BCN criterion becomes too 
expensive from the computational point of view. The linear 2-arrangement 
provides the best approximate solutions to the BCN problem and in most 
cases is proved to be an even stronger criterion than bandwidth. 

We note that several deterministics algorithms for the BCN problem 
can be found in [10] and [12]. · 

For illustration we give an example where p = 3, n1 = 10, n2 = 15, and 
n3 = 12. We present the starting matrices A 1 and A 2 and the result A'1 

and A~ obtained by the algorithm using 3-partite crossing number criterion. 
The non-zero entries are indicated by x. Figure 1 shows the initial 3-partite 
graph G corresponding to A1 and A 2 and the resulting graph G' cor
responding to A'1 and A~ . . Here the number of crossings was reduced from 
N 3 (G)= 612 to N 3 (G') = 92. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 X X X X X 

2 X X 

3 X X X X X 

. 4 X X X X X X 

Al= 
5 X X 

6 ·X X X 

7 X X X X 

8 X X X X X 

9 X X X X 

10 X X X 



A~~ 

2 8 6 9 13 4 3 11 15 10 5 1 12 7 14 
6 X X X 

7 X X X X 

1 X X X X X 

3 X X X X X 

9 X X X X 

8 X X X X X 

2 X X 

4 X X X X X X 

10 X X X 

5 X X 

1 2 3 4 5 6 7 8 9 10 11 12 
1 X X 

2 X X X X 

3 X X 

4 X X 

5 X 

6 X X X X 

7 X X X 

A2= 8 X X X X 

9 X X X X 

10 X X 

11 X X 

12 X X 

13 X X X X 

14 X X X 

15 X X 

6 1 8 3 9 2 12 7 5 11 10 4 
2 X X X X 

8 X X X X 

6 X X X 

9 X X X X 

13 · xxxx 
4 X X 

3 X X 

A2 = 11 
15 
10 
5 
1 

12 
7 

14 

. X X 

X X 

. X X 

X 

.X X 

X X 

X X X 

X X X 
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G G' 

6. Applications and conclusions 

The BCN problem and the p~partite crossing number problem, respedi
vely arise in a number of applications, ranging from matrix permutation 
problems over transpostation problems to layout problems in the automation 
of design and documentation. 

In general, the optimal representation of a matrix according to the 
BCN yields an optimal or near-optimal solution to the bandwidth minimi
zation problem and vice versa, though there exist some pathological cases. 
Those conversion problems for sparse matrices appear in solving large 
systems of linear equations and differential equations as well as in network 
analysis. Furthermore in the physical layout of digital systems the minimum 
p-partite crossing number or any criterion from chapter 3 can be used in 
placing modules on special multi-row structures. This situation is met for 
instance in standard cell and gate erray technology. The algorithm developed 
was tested in the placement of several permutation networks. Both criteria 
the minimization of the longest signal and minimum total signal length 
were applied. Comparing our results with the placement done by a skilled 
designer we were able to produce about the same quality of solution 
according to the total channel width in the channel routing, succeeding 
the placement procedure [14]. It has turned out that minimum BCN is an 
appropriate measure for a good module placement subject to channel routing . 
• inother interesting application is in the field of automatic layout of 
schemtics [12], which can be considered a spacial branch of two-dimensional 
computer graphics. The p-partite crossing number criterion is especially 
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suited for multi-row schematics [9] which represent a broad class of schematic · 
drawings such as logic diagrams. It was succesfully applied in laying out 
logic schematics in order to fulfil certain functional and aesthetical conditions. 
Several results and additional algorithms are presented in [11] and [12]. 
Potential applications lie in the field of transportation and communication, 
where certain streets or communication lines are required to intersect each 
other in as few crossings as possible. 

Hence, there are good reasons both from graph theory and from the 
application viewpoint to continue the research in the BCN problem. The 
considerations made in this paper can for instance be extended to arbitrary 
graphs presented on parallel consecutive · rows as described in chapter 1. 
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0 liczbie przeci~ w grafach dwudzielnych 

W pracy przedstawiono pewne wyniki dotyczqce liczby przeclf(C w grafach dwudzielnych. 
Jest to NP - trudne zadanie optymalizacji dyskretnej. Uzyskano oszacowania rozwi<~.zania 

optymalnego. Zaprezentowano szereg zbli:i:onych sformulowar\. zagadnier\. optymalizacyjnych 
na grafach w postaci macierzowej. W pracy przedstawiono algorytm termodynamiczny dla 
odnajdywania · minima!nej Iiczby przecif(C w grafach p-dzielnych oraz wyniki eksperymentu 
obliczeniowego. 

0 'IIIC.Ile nepece-temrii o .lUlY .IJ.OJILHbiX rpa4tax 

B pa6oTc npe.UCTaBJICHbl HCKOTOpbiC pe3yJlbTaTbi KaCa!O!llHCCll 'IHCJia nepece'!CHHH B .UBY· 
.UOJI&HbiX rpalflax. 3To liBJIIIcTCll NP-Tpy.unoii: Ja.Ua'!eii: .uneKpeTnoH: onTHMHJa~HH. llony'lcH&I 
o~eHKH onniMaJI&Horo perueHHll. llpe.ucTasnen Pli.Ll ananoru'IH&IX lflopMyJIHpoBoK onTUMH· 
Ja~OHHbiX 3&.Ua'l Ha rpalflax B MaTpH'IHOM BH,Uc. B pa60TC npe,UCTaBJICH TepMO.UHHaMH'ICCKHM 
aJifOpHTM .llJlll HaXOJK){CHHll MHHHMaJibHOfO 'IIICJia 11Cpece'ICHHH B p-.UOJibHbiX rpalflax 
H pe3yJI&TaTbl 'IHCJICHHOfO JKCllcpHMCHTa. 



Wska.zOwki dla autorow 

W wydawnictwie ,Control and Cybernetics" drukuje si~ prace oryginalne 
nie publikowane w innych czasopismach. Zalecane jest nadsylanie artykul6w 
w j~zyku angielskim. W przypadku nadeslania artykulu w j~zyku polskim 
Redakcja moze zalecic przetlumaczenie na j~zyk angielski. Obj~tosc artykulu 
nie powinna przekraczac 1 arkusza wydawniczego, czyli ok. 20 stron maszy
nopisu formatu A4 z zachowaniem interlinii i marginesu 5 cm z lewej 
strony. Prace nalezy skladac w 2 egzemplarzach. Uklad pracy i forma 
powinny bye dostosowane do nizej podanych wskaz6wek. 

1. W nagl6wku nalezy podac tytul pracy, nast~pnie imi~ (imiona) i 
nazwisko (nazwiska) autora (autor6w) w porz(!dku alfabetycznym oraz nazw~ 
reprezentowanej instytucji i nazw~ miasta. Po tytule nalezy umiescic kr6tkie 
·streszczenie pracy (do 15 wierszy maszynopisu). 

2. Material ilustracyjny powinien bye dol(!czony na oddzielnych stronach. 
Podpisy pod rysunki nalezy podae . oddzielnie. 

3. Wzory i symbole powinny bye wpisane na maszynie bardzo starannie. 
Szczeg6ln(! uwag~ nalezy zwr6cic na wyrazne zr6znicowanie malych i 

duzych liter. Litery greckie powinny bye objasnione na maszynopisie. Szcze
g6lnie dokladnie powinny bye opisane indeksy (wskazniki) i oznaczenia 
pot~gowe. Nalezy stosowac nawiasy okrctgle. 

4. Spis literatury powinien bye podany na koncu . artykulu. Numery 
pozycji literatury w tekscie zaopatruje si~ w nawiasy kwadratowe. Pozycje 
literatury powinny zawierac nazwisko autora (autor6w) i pierwsze litery imion 
oraz dokladny tytul pracy (w j~zyku oryginalu), a ponadto: 

a) przy wydawnictwach zwartych (ksi(!zki)- miejsce i rok wydania oraz 
wydawc~; 

b) przy artykulach z czasopism: nazw~ czasopisma, numer tomu, rok 
wydania i numer biezqcy. 

Pozycje literatury radzieckiej nalezy pisac alfabetem oryginalnym, czyli 
tzw. grazdank(!. 



Recommendations for the Authors 

Control and Cybernetics publishes original papers which have not 
previously appeared in other journals. Submission of papers in English is 
recommended. No paper should exceed in length 20 typewritten pages 
(210 x 297 mm) with lines spaced and a 50 mm margin on the lefthand side. 
Papers should be submitted in duplicate. The plan and form of the paper 
should be as follows: 

1. The heading should include the title, the full names and surnames of 
the authors in alphabetic order, the names of the institutions they represent 
and the name of the city or town. This heading should be followed by a 
brief summary (about 15 typewritten lines). 

2. Figures, photographs, tables, diagrams should be enclosed to the 
manuscript. The texts related to the figures should be typed on a separate 
page. 

3. If possible all mathematical expressions should be typewritten. Parti
cular attention should be paid to differentiation between capital and small 
letters. Greek letters should as a rule be defined. Indices and exponents 
should be written with particular care. Round brackets should not be 
replaced by an inclined fraction line. 

4. References should be put on the separate page. Numbers in the text 
identified by references should be enclosed in brackets. References should 
contain the surname .and the initial of Christian rames, of the author 
(or authors}, the complete title of the work (in the original language) and, 
in addition: 

a) for books.- the place and the year of publication and the publishers 
neme; 

b) for journals- the name of the journal, the number of the volume, 
the year of the publication, and the ordinal number. 


