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This survey begins with an overview of the differential dynamic programming (DDP) 
idea. The review concentrates on efforts by Ohno, the author, and his colleagues, toward 
understanding the convergence properties of the classical DDP algorithm and its close 
variants. Computational evidence of the power of this approach is cited. In my view, 
the essence of the DDP concept is stagewise application of nonlinear programming algorithms. 
I cite recent accomplishments in bringing quasi-Newton techniques into this framework , 
and outline some ongoing investigations into constrained DDP. 

1. Introduction 

The central aim of this study is to give a self-contained survey of 
developments over the past decade regarding discrete-time differential dynamic 
programming. A motivation for this survey is that the source papers on 
which the theory is founded are scattered through several different journals; 
it is not easy to sort through these works to gain a rounded view of 
the fairly comprehensive picture that is emerging. This survey additionally 
provides the author with an excuse to conjecture on the strengths and 
limitations of the differential dynamic programming idea, and to offer views 
concerning where the limitations are fundamental, or alternatively exist 
because apparently the issues have not been examined carefully. 

The setting for differential dynamic programming (DDP) methodology, 
up to this point, has been the initial-state, finite-horizon problem. Let us 
present some notation. The state and input spaces willl be presumed to 
be respectively the spaces of real n and m-dimensional vectors. A stagewise 
loss function g (x, u, t) and a state transition function T (x, u, t) is presumed 
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specified. The specified initial state is presumed designated by x (1), and 
the terminal decision time by N. 

Given any control vector u = (u (1), ... , u (N)) of inputs, a state trajectory 
x = (x (1), x (2), .. . , x (N + 1)) is thereby determined by the recursive rule, 

x(t+1)=T(x(t),u(t),t), 1 :::;; t:::;;N, (1.1) 

(recalling that x (1) is specified). This, in turn, engenders an overall process 
loss 

V 

J(u)= I g(x(t),u(t),t). (1 .2) 
r ~ 1 

Late I will add the possibility that the available inputs are constrained, 
but for the time being, I discuss DDP ideas in as simple a setting as 
possible. DDP depends on smoothness properties of the control process 
functions . Thus for now, we presume g ( ) and T ( ) are twice-continuously 
differentiable with respect to states and inputs. 

Toward motivating differential dynamic programming, I assert what I 
believe to be the prototypical dynamic programming (DP) algorithms for 
finite-horizon, unconstrained optimal control problems, and then pinpoint 
why this algorithm is not directly computer-realizable. 

The Fundamental Dynamic Programming Algorithm 

One initializes by defining 

V (x; N + 1) = 0, all x. 

Then the backward DP recursion proceeds by defining, for t = N, N -1, ... , 1, 
the Backward DP R ecursion Step for every state x: 

V(x; t) = min [g (x, u, t)+ V(T(x, u, t), t+ 1)J, 
u 

(1.3) 

and 

S(x;t)=u*, 

where u* is mm1m1zer of the right side of (1.3). When S (x; t) has been 
defined for t = N -1, N - 2, ... , 1, the backward recursion is complete. 

Set x* (1) = x (1), the prescribed initial state. For t = 1, 2, .. . , N, perform 
the Forward DP Recursion Step: 

u*(t) = S (x* (t) , t), x*(t+1) = T(x* (t), u* (t) , t). (1.4) 

Then it is a simple matter to show that if this plan can be implemented, 
u* = (u* (1), .. : , u* (N)) is an optimal control. 

The drawback to executing this plan is that for most optimal control 
functions g ( ) and T ( ), it is not an algorithm in the sense of Turing 
machines or recursive functions. One can anticipate that (1.3) cannot be 
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implemented, and even if it could be, the reeded optional return and 
strategy functions V(·; t) and S (·; t) could not be stored for further use. 

As will be revealed next, differential dynamic programming is a means 
of numerical approximation to the DP algorithm. It bears a close resemblance 
to Newton's method, and for N = 1, would, in fact, coincide with Newton's 
method. 

2. The fundamental DDP algorithm 

The algorithm we now give is due to Mayne (1966) (also Chapter 4 
of Jacobson and Mayne (1970), where the name "differential dynamic 
programming" is attached to the method). The presentation to flow is 
based on an algorithmic exposition in Yakowitz and Rutherford (1984). 

Differential dynamic programming proceeds much like the traditional 
formal dynamic programming algorithm, except that at each stage, the 
optimal return function from the next stage onward as well as the loss for 
that stage are replaced by their quadratic approximations about the current 
control and trajectory. Toward making this idea precise, let uc = (uc (1), 
u( (2), ... , u( (N)) denote the "current" control sequence, and x = (xc (1), xc (2), ... 
... , xc (N)) the state trajectory induced by u' and the initial state x (1). 
For any function Q (x, u) defined on controls and trajectories we will 
let QP (Q (x, u)) denote the linear and quadratic (but not the constant) 
parts of the Taylor's series expansion of Q ( ) about (uc, xt) 

The DDP backward recursion commences at decision time N by con­
struction of the quadratic (in 6x = (x-x~), 6u = (u-u~)), function 

L(x, u, N) = QP (g (x, u, N)) = (1/ 2) 6x1 (9xxl 6x+ 

+ bx1 (gxul 6u+(1/2) 6u' (guu) 6u+(gu) bu+(gxJ 6x. (2.1) 

The gradients and Hessians of q (x , u, N) are evaluated at x~ and u~ 

presumed I find it useful to represent the above equation in a more 
compact fashion as 

L (x, u, N) = 6x1 Av 6x + 6u"~ EN 6x + 
+ 6u1 

eN 6u + D"(" 6u + E:~ 6x , (2.2) 

where 6x and 6u are state and input perturbations (x-x~) and (u-u~), 
respectively, and the terms A,y, Bv, ... , can be read off (2.1) by comparing 
coefficients of the perturbations, That is, 

A-,= (1/2) 9xx, B .v = 9xu , and so on. 

The DDP idea is to minimize quadratic approximations such as L(x, u, N), 
instead of the actual control problem value functions, thereby obtaining 
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computer amenable functions (at the expense of invoking truncation error). 
A necessfl.ry condition that an input u* be a minimizer of L (x, u, N) is 
that · 

'Vu L(x, u, N) = 2eN bu+BN bx+DN = 0. (2.3) 

One point in making the quadratic approximation is that the optimal 
input u* can be easily found by solving (2.3). Assuming eN is nonsingular, 
this gives 

bu (x' N) = (u*- u~) = - (1/2) e;:; 1 (DN + BN bx) = CJ.N + f3N bx (2.4) 

where obviously we have set 

CJ.N = ( -1/2) e;:; 1 DN' and f3N = ( -1/2) e ,:; 1 BN. (2.5) 

The optimal value function is defined by 

f (x; N) = min g (x, u, N). 
u 

(2.6) 

We approximate the optimal value function by the quadratic: 

V(x; N) = L(x, u (x, N), N) = L(x, iiN+(aN+f3"' bx), N). (2.7) 

One readily checks that V (x; N) is a quadratic, 

V(x; N) = 6x~'P,v bx+QN bx, (2.8) 

where the coefficients are 

P"' = AN- (1 /4) (BNf e,:; 1 B.v, 

Q,~ = -(1/2) (D.vf e,¥1 BN+E,v. 

Under the CirCUmStance that eN is nonsingular. 

(2.9) 

The general DDP backward recursion proceeds for t = N,N -1, ... , 1 as 
follows. Assume inductively that the quadratic approximate optimal return 
function 

V(x, t+ 1) = (6xfP,+ 1 6x+Q,+ 1 bx. 

has already been constructed. Define the quadratic 

(2.10) 

L(x, u, t) = QP[g (x, u, t)+ V(T(x, u, t); t+ 1)]. (2.11) 

Analogously to (2.2), display its coefficients as 

L(x, u, t) = bxr A, bx+bur B, bx+buT e, bu+Di E/ bx. (2.12) 

By calculus, one confirms that these coefficients may be written explicitly 
in terms of first and second order derivatives of the state transition function 
and the current stagewise loss function, as well as the coefficients P, + 1 

and Q,+ 1 by 

[ (oTV (oT) " J A,= (1/2) 9xx+2 ~) P,+J OX + i{;
1 

(Qt+1)i (T;)xx ' 

--------------------------------------------------------------
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where \1 x g, \1" g are the components of the gradient g (x, u, t); Yxn Yxu, 
9uu are the components of the Hessian of g (x, u, t); 3T/3x, 3T/3u are the 
Jacobians of T (x, u, t); ('Ti)w (Ii)xu' (T;)"" ' 1 :( i :( n, are the blocks of the 
Hessian matrices of the coordinates of T (x, u, t). Of course, all derivatives 
are taken about current states and inputs (x~·, u~} 

As in the argument of the case t = N, the first order necessary condition 
is that 

'VuL(x , u,t) = O,· (2.14) 

whence the minimizing strategy for the quadratic L (x, u, t) is 

u (x; t) = a,+/3, (x - x;) , (2.15) 

where 

a,= ( -1/2) c,- 1 DT, 
/3, = ( -1/2) c,- 1 B, , 

The approximating polynomial for the optimal return function 

V(x; t) = L(x, u (x , t), t) = (oxf I; (x - x;)+Qi ox, 

has coefficients given by 

I; = A,-(1 /4) Bi' c,- 1 B,, 
Q, = -(1/2) D{ c,- 1 B,+E{. 

(2.16) 

(2.17) 

(2.18) 

This completes the inductive step of the DDP backward recursion. The 
vectors and matrices a,, /3,, 1 :( t :( N, must be stored for use in the forward 
run. 

The forward run, to determine the successor DDP policy, simply amounts 
to successively choosing inputs according to the rule u (x*, t) and then 
calculating the successor state, at each decision time. Thus u* (1) = u (x (1); 1) 
and x*(2)=T(x*(1),u*(1),1). For t = 2, ... ,N, 

u* (t) = u (x* (t); t)+uc (t), (2.19a) 

and 
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x* (t+ 1) = T (x* (t), u* (t), t). (2.19b) 

The control u* = (u* (1), ... , u* (N)) thereby obtained is the DDP successor 
control, and for the next DDP iteration, it will play the role of the 
current control sequence, uc 

3. A survey of computational 'results 
in differential dynamic programming 

Before proceeding onward with a synopsis of theoretical results about 
and technical refinements of DDP, it is well to offer some computational 
evidence that the method is worth the effort of analyzing and uncer­
standing. 

The Unconstrained Case 

Mine and Ohno (1970) had studied circumstances in which mathematical 
programming problems can be rephrased as optimal control problems. 
The key property is called "separability". Murray and Yakowitz (1981) 
undertook a substantial computational study of separable mathematical 
programming problems, such problems being susceptible to DDP solution. 
They tested this approach against results reported in the optimization 
literature for certain standard "benchmark" programs (sum of exponentials, 
Polak bowl, Oren power function, Rosenbrock functions I and II, etc.). 
The number of DDP recursions and function calls required was competitive 
or less than that reported by optimization experts using conventional 
mathematical programming algorithms. The improvement increased with the 
number of problem variables, which in our studies ranged as high as 200. 
The mechanism for this improvement comes from the fact that DDP only 
requires solving a great number of small dimensional problems (one for each 
stage), whereas mathematical programming schemes require simultaneous 
solution of a problem of many variables, at each iteration. By pure Newton 
iteration. for instance, the cost of an iteration grows as N 3

, whereas by 
DDP, it is as N; both algorithms are quadratically convergent. 

Yakowitz and Rutherford (1984) sought to apply the DDP method of the 
preceding section to a generic optimal control problem. They were unaware 
of any high-dimensional problems already in the literature. Therefore they 
devised the problem class with state transition function and stagewise loss 
function. 

Transition function: 

x' = T(x, u , t) = x+Fw (u), (3.1) 

where for u = (u 1
, u2 , ... , u"') 

w (u) =(sin u 1
, sin u2

, ... , sin u"'). 

I I 

-- --------------------------------------------------
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Loss function: 

(3.2) 

the norm being Euclidean. 
In retrospect, this might not have been the finest problem imaginable, 

but it did have useful ingredients: the state and input dimensions n and m, 
as well as the stage horizon N, were readily 'modified. Its dynamics were 
nonlinear, and the loss was not quadratic. This was the one and only 
class we looked at. The components of F in (3.1) were chosen at random, 
and the initial control was chosen to be the sequence of zero vectors. 
The computation times on a CYBER 175 ranged from 0.724 sec. for a 
problem with m = n = N = 5 to 81.2 sec. for a problem with m= n = 40, 
and N = 5. To our knowledge, this latter problem is astronomical compared 
to the size of any other control problem of general structure reported 
solved in the literature, even to this day. 

Recently, Sen and Yakowitz (1987) have developed a "quasi-Newton" 
version of DDP which requires only first derivative information. More will 
be said about the algorithm and its properties in the section to follow. 
Some computational studies were reported for the problem (3.1) and (3.2). 
Specifically, for a n = m= N = 5 case, the QDDP rule required 13 iterations 
to DDP's 7, for nine-digit accuracy. One should bear in mind that DDP 
requires second-derivative information and therefore a single iteration is 
typically much more expensive than a QDDP iteration, since QDDP is 
first-order. The calculations do make it clear that QDDP has a superlinear 
convergence rate, in conformance with theoretical results to be reviewed in 
Section 4. 

The Contrained Case 

We have already mentioned that the origins of DDP lie in attempts 
to implement variational-calculus solutions to continuous-time optimal 
control problems. McReynolds (1967) (also Dyer and McReynolds (1970)) 
derived the DDP algorithm as a finite-difference approximation to his 
"successive-sweep" method for continuous-time optimal control problems. 
He applied the algorithm to the brachistochrone and orbit-transfer problems. 
In the latter case, the state dimension is 3, the input is real, and the 
numbers of decision times N was in the order of 30. Gershwin and Jacobson 
(1970) applied their version of constrained DDP to McReynolds (1967) 
orbit transfer problem. 

Ohno (1978a, b) proposed using a Lagrange-multiplier scheme for extending 
DDP to constrained optimization problems. In essence, by Ohno's plan, 
one simultaneously solves for the control and the Lagrange multiplier 
sequence which gives a Kuhn-Tucker point. The study (1978a) developed 
the theory in context of a separable mathematical programming problem 
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and applied it to a smallish (one dimensional, three stage) example. The 
second study applied the technique to an optimal-control problem with 
state constraints, previously analyzed by Jacobsen and Lele. Ohno's discretized 
version had 100 decision times and two state variables, the control being 
scalar. 

MmTay and Yakowitz (1979) presented a method of constrained DDP 
which was based on stagewise solution of a quadratic programming problem. 
Thus, in constrast to the Ohno-Dyer-McReynolds plan, it does not carry 
the Lagrange multipliers as a global variable. We applied the technique 
to a multireservoir problem previously studied using other techniques by 
Larson (1968) and Heidari et aL (1971). State constraints are imposed by 
reservoir capacities. The multireservoir problem has some distinction from 
the problems we have already mentioned: it does not arise from a discrete­
-time approximation to a continuous optimal control problem, and by 
making fictitious reservoir networks, the complexity in terms of state and 
control dimensions, is readily modified. The constrained DDP algorithm 
easily solved the four dimensional problems analyzed by the other authors, 
and additionally solved a 10 reservoir (state and control dimension problem 
which we thought might be inaccessible to the earlier techniques). 

Jones et aL (1987) have applied the constrained differential dynamic 
programming method of Murray and Yakowitz (1979) to a substantial 
problem in groundwater management. This development in encouraging 
because it is a life-size practically motivated study. Furthermore, the 
deterministic dynamics assumption here is more reasonable and hydrologically 
traditional than the multireservoir modeL 

To summarize, my enthusiasm for the DDP idea was kindled by its 
success on what I consider to be substantial problems. It fares well against 
mathematical programming techniques on mathematical programming's home 
ground. My collaborators and I have solved control problems of both 
unconstrained and constrained variety which are larger (in terms of number 
of state and control variables) than problems I have encountered in the 
literature solved by others, regardless of method. 

In the section to follow, I will point out properties of the DDP approach 
that give it advantageous features in comparison to alternatives. 

4. The theory 

In this section, I examme convergence properties of the basic DDP 
method presented in Section 2 and its extensions. The extensions are 
i) "damping" to assure convergence, ii) secant-type approximation of Hessians 
to avoid explicit computing of second derivatives, and iii) alterations to 
encompass constrained optimal control problems. 

T 

------- ----------------------------------------------------------------
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Quadratic Convergence Rate 

The discrete-time DDP idea has its ongms in approxim-ating methods 
for continuous-time problems. These methods were second-order and were 
inspired by the Kantorovich theory of Newton methods for function spaces. 
At least one early author thought that DDP in the discrete setting inherited 
the property of being a Newton method, and another, while not making 
the claim, did claim flalty that the convergence rate was quadratic. In his 
thesis, Murray (1978) examined this issue carefully and proved that DDP 
is quadratically convergent, but nevertheless it does not coincide with 
Newton's method. Murray and Yakowitz (1984) contains a careful comparison 
of the two methods, and contains a quadratic convergence proof which 
refines that of Murray (1978). 

At about the same time as Murray's study, Ohno (1978b) published 
a variation of DDP and gave a very inclusive analysis showing that the 
overall convergence rate of his method is the same as that of the mathematical 
programming technique applied at each stage. He explicitly gave a rule 
which obtains quadratic convergence. Ohno's method has not been followed 
up in the literature; it involves more derivative evaluations for each control 
recursion step than does the prototype DDP scheme, and conditions assuring 
convergence have not been postulated yet. Nevertheless, I regard his study 
as being foundational, and admire the comprehensiveness of his result 
on convergence rates. 

Conditions for Convergence 

Demonstrations of quadratic convergence are predicated on the assumption 
that convergence does occur. Like pure Newton steps, in order to assure 
convergence of a sequence of DDP controls to an optimal control, one 
must demand that the initial "guess" be sufficiently close to an optimal 
control. But one can "borrow" the idea of the damped Newton steps 
(e.g., Ortega and Rhineboldt (1970)) to assure global convergence under 
lenient circumstances. The following developments are from Yakowitz and 
Rutherford (1984). The step search method was given by Mayne (1966). 

Modification of DDP for Global Convergence 

At the terminal stage N , compute the eigenvalues of CN, and let A.MIN 

denote the minimum of these. If AMIN < 0, set 

(4.1) 

1 beiJ}g the nth order identity, to make C, positive definite. Otherwise, 
set eN = C,v, and in any case, set 
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e.v = -n~~ cv- 1 nN, 
and during the backward recursions j = N -1, ... , 1, also compute 

T -1 
6i=-DiCi Di+6i+1· 

(4.2) 

(4.3) 

where Ci is computed analogously to C, . During the forward-run . initially 
set£= 1. But generally, replace the forward-run recursion (2.19) bv 

u* (t) = u' (t) + (1 /2) [-se,- 1 D,- c,- 1 B, (x* (t)- X( (t))J, 

x* (t+ 1) = T (x* (t), u* (t) , t). 
(4.4) 

At the end of the forward run, let u (s) = (u* (1), ... , u* (N)), and compute 

J (u (s)) = I L(xi, u, (s), t). 
t = 1 

If 

J (u (c))< J (u') + e (1)* 8, 

then accept u (e) as the successor control. Otherwise, set 

c: = s/2 , 

and repeat the recursion ( 4.1-4. 7). 

(4.5) 

(4.6) 

(4.7) 

In his original paper credited with the conception of discrete DDP, 
Mayne (1966) showed that the algorithm above assures improvement at 
each iteration, unless the nominal policy is already stationary. Yakowitz 
and Rutherford (1984) showed that if q and T have continuous second 
partials, then if u' is not stationary eventually a successor is accepted, 
and that any accumulation point u* of DDP iterates is a stationary control 
sequences (i .e. , the gradient of J (u) is 0) at that control u* (This is a 
stronger statement than Mayne's, since improvement at each iteration does 
not in itself assure convergence to a stationary point). (The idea of forcing C, 
to be positive definite was employed by Murray (1978)). 

First Order Methods 

A broad view of DDP, and one to which I subscr ibe, is that DDP 
1s any dynamic programming method that is suited to take advantage of 
differentiability of the loss and transition functions. Under this expanded 
conception, first-order gradient algorithms suggested by Dyer and McReynolds 
(1970), Bellman and Dreyfus (1962, The Appendix) and others merit consi­
deration. The background of these methods is that they were proposed 
in the early days of mathematical programming when the steepest descent 
method was in vogue. In subsequent years, pure gradient methods have 
been displaced by other first-order schemes which sidestep some of the 
gradient method 's "zig-zag" problems, and which, moreover, have the super-

------ ------------
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linear convergence property. The book by Gill et al. (1981) gives perspective 
to these assertions and also views quasi-Newton methods as being an attractive 
replacement, perhaps sharing this position with conjugate gradient algorithms. 

Sen and Yakowitz (1987) have proposed a quasi-Newton differential 
dynamic programming algorithm. It replaces A,, B,, and C,, in the proto­
typical DDP rule (2.13) by secant-type updates which require that at each 
QDDP iteration, the current estimates J:, .B: and c; of the unknown 
second-order derivative matrices be consistent with the most recent gradient 
values. That is 

[A~ (B~r] [L1xr] = [L1Er]. 
B, C, L1u, L1D, 

(4.8) 

In this expression L1xc = x~· - x,- , and L1uc = u~· - u,- . Here, as before, 
x~· is the state at time t of the current trajectory, and we define x,- to 
be the corresponding state at the preceding QDDP iteration. The term 
L1u~· is defined similarly, and L1E~· = E~·- E,-, where E~ is as in (2.3), and 
E,- is the E, term of the preceding QDDP iteration; of course, L1D~· = 

= D~· -D,- . 

Rewrite (4.8) as 

Mcb= y . 

Then we compute Mc from the matrix M - at the preceding QDDP. recursion 
by Broyden updates (e.g., Fletcher (1980)), 

MC= M - +(y-M- b) (y-M- (j)l'j[(y-M- 6f 6]. (4.9) 

In Sen and Yakowitz (1987), we demonstrated that this procedure does 
inherit the quasi-Newton property of super-linear convergence. We did enough 
computational testing to see that it is quite effective on a benchmark 
control problem; these results were mentioned in the preceding section. 

The Constrained Case 

McReynolds (1967) presented a DDP algorithm in a form that allowed 
constrained problems. Suppose at each stage, we have a constraint 

h(x,u,t)=O, 

with k being the dimension of the range of h ( ). The idea IS to view the 
Lagrange parameter (vector) A, in the Hamiltonian 

q (x, u, t)+ V, (T(x, u, t))+},, h (x , u, t) , 

as another control variable. This effectively reduces the problem to an 
unconstrained problem with rn+k variables at each stage. I have not checked 
the details, but I think it highly likely that the method is quadratically 
convergent , as McReynolds claimed (but did not prove). 
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Ohno (1978b) presented his DDP plan in a setting essentially the same 
as McReynolds' (1968), so that it is suited to constrained problems. He did 
provide convergence proofs, but for an algorithm that is somewhat different 
from the fundamental DDP construct of Section 2. 

Murray and Yakowitz (1979) offered a constrained DDP algorithm which 
does not treat the Lagrange multiplier as a separate control variable, 
but rather replaces the Newton step at each stage by the quadratic 
programming problem, 

Minimize QP [g (x, u, t)+ V (T (x , u, t); t+ 1)], 
u 

subject to (4.10) 

LP [h (x, u, t)] = 0. 

Here, as in Section 2, "QP" means the quadratic and linear part of the 
Taylor's series expansion about xc and uc "LP" indicates the constant and 
linear part of the expansion. By conventional methods (Fletcher, 1980), this 
reduces to a linear equation 

[ ~: uJ] [o;J = [ ~~=i~~:J. 
( 

(4.11) 

Here Bn Cn and D, are as in (2.13), 01 is a matrix of zeros, and U1, Vli;, 
and X, are the coefficients of the linear part of h: 

LP [h (x, u , t)] = Vli;+X1 ox+ U1 bu. (4.12) 

By multiplying by the inverse of the system matrix in (4.11), one can get 
the QDDP control law counterpart to (2.4), namely 

ou = a1+ {3, ox, 
where 

- 1 [ D,J a,= -n -W,, 

-
1 [B'] {3, = -n X, ' 

where 

_[cl u:J n - U 
l 0 

Yakowitz (1986) has derived a theory for this approach and proved con­
vergence under the assumption that J (u) is positive definite at all policies u, 
the constraint functions actually are linear, and a stepsize selection rule such 
as (4.4-4.7) is followed. 

All of these methods have obvious counterparts for the inequality 
constraint case. 
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The Alternatives to DDP 

One groundrule that I impose in seeking DDP alternatives is that 
the method must not depend on discretization of state or policy space, 
as does conventional discrete dynamic programming (e.g., Bellman and 
Dreyfus (1962)), for such methods are subject to "the curse of dimensionality": 
The storage and effort grows as a power of state and control dimension. 
Also, I discard those methods which do not make a stage-wise decompo­
sition of the control problem. This includes techniques which minimize 
J (u) in (1.2) directly as a function of u, without regard to the control 
process structure. The only techniques in the permissible class that I know 
of, aside from DDP, which are computer-realizable, are 
i. The Successive Approximations (SA) method of Larson and Korsak (1970). 

ii. Methods based on the discrete maximum principle. . · 
I am unenthusiastic about SA. It amounts to optimizing on one 

variable at a time, and I have shown (Yakowitz (1983)) that in so doing, 
it is essentially a block-Seidel method and thus has only linear conver­
gence. Such methods, known as "coordinate search" techniques, are not 
popular in the mathematical programming literature. 

The discrete maximum principle has more theoretical attraction. Analo­
gously to the continuous-time case, the idea is to convert the problem 
into a two-point boundary-value difference equation problem. Such problems 
are within the domains of shooting and quasi-linearization methods, which 
are quadratically convergent. I have not undertaken computer experimen­
tation on such problems, but my experience with continuous-time problems 
has convinced me that the maximum· principle, in conjunction with quasi­
-linearization, is a very effective approach. There is some difficulty in 
establishing conditions under which the discrete maximum principle applies 
(Halkin (1966)). 

5. Research Directions 

Some Activities and Refinements 

My impression is that for deterministic, finite-horizon optimal control 
problems having smooth stagewise loss and transition functions, the status 
of DDP theory and methods is reasonably complete and powerful. At this 
point, the main need I see is for "customers" from the world of applica­
tions. For a while, optimal control was oversold in the sense that the 
computational methodology limited applications to small-scale problems, 
whereas the conceptual effort needed to understand the literature was 
relatively sizeable. During this period, optimal control theory lost its luster 
for a great many people, especially those outside academia. At this writing, 
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and m view of advances such as I have been describing in this paper, 
and in view of hardware and software progress in computer technology, 
for certain classes of problems, I believe the situation is much more hopeful, 
and I emphatically urge people close to "real-world" control problems to 
give modern developments a try. Briefly, the most needed ingredient in 
optimal control theory is a little encouragement by way of impact on 
engineering problems, along the lines of Jones et. al. (1987). 

On the theoretical side, there are a few odds and ends that should 
be straightened up. For example, Powell (1986) has recently published 
some analytic and computational investigations which suggest that certain 
conjugate gradient methods have advantage over the quasi-Newton idea for 
mathematical programming. It would seem worthwhile to derive and examine 
a conjugate gradient version of DDP. Lasdon et al. (1967) and others have 
devised a conjugate gradient rule for continuous-time optimal control 
problem. My student T. Jayawardena is investigating convergence properties 
for a discrete-time version. 

The constrained DDP method has some loose ends. I am sure the 
stagewise quadratic programming algorithm I presented in the preceding 
section is not quadratically convergent. But in proving global convergence, 
I developed (Yakowitz (1986), Section IV) some expressions which I think 
could lead to a modified version of the rule that would be quadratically 
convergent. Such an algorithm would be the first to be shown globally 
qnd quadratically convergent to a Kuhn-Tucker point. 

The Stochastic Bottleneck 

A stochastic control problem arises if the deterministic transition law 
(1.1) is replaced by a stochastic rule 

x(n+ l)= T(x (n) ,u(n),t)+W(n), 

where [ W (n)} is a random noise sequence. In this case, one is to mimmize 
the expt:cted value of J in (1.2). One typically applies the strategy function 
S (x (t) , t) at each stage, instead of seeking a control sequence u*, to allow 
the flexibility of letting the input depend on state as well as time. In the 
stochastic case, such feedback leads to improved performance since the 
states cannot be determined in advance, under a given decision plan. 

There is no question that stochastic problems are of paramount importance 
to practical activities; their importance exceeds that of deterministic problems. 
About every six months I am sent a paper from the practitoner's community 
for review which gives an algorithm for stochastic optimal control problems 
and hints that thi s algorithm yields an optimal solution. I am convinced that 
the DDP idea does not readily generalize to stochastic control because 
the mechanism that makes DDP work (namely, that the dynamics and return 
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functions are accurately described by quadratics in a close neighborhood 
of the current control) has no bearing on the stochastic case where 
randomness makes states flit around erratically. Quadratics are not accurate 
if the noise is not negligible. Except in a few cases (notably the Gauss­
-Markov model) computational methodology is still subject to the "curse 
of dimensionality". Further discussion on this matter, and information about 
certain stochastic problems that have solutions is offered in Section 5 of 
my survey paper Yakowitz (1982). I see no hope for a general approach 
to stochastic control, and think that the field has not advanced dramatically 
over discrete dynamic programming techniques given by Bellman and 
Dreyfus (1962). 

Artificial Intelligence 

My own investigations for stochastic control have, at the current time, 
departed from attempts at strickt optimization and turned toward heuristic 
methods. I think that notions of artificial intelligence and heuristic [graph] 
search are promising. They were developed in the context of deterministic 
games and decision problems (e.g., Nilsson (1980)). I have been paying 
particular attention to "machine learning" ideas, about which I cannot find 
much adequate scientific literature. My initial efforts in this direction are 
outlined in Yakowitz and Lugosi (1987), and were motivated by attempts 
to solve the 8 and 15 puzzles with randomly chosen initial configurations. 
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Ponizsza praca przeglqdowa zaczyna si~ od przedstawienia idei r6zniczkowego progra­
mowania dynamicznego (DDP). Nast~pnie skoncentrowano si~ na opisaniu prac Ohno, 
autora i jego koleg6w zwiqzanych ze zbieznosciq klasycznych algorytm6w DDP i ich 
wariant6w. Przedstawiono obliczenia potwierdzajqce duze mozliwosci tego podejscia. Istotq 
DDP jest poetapowe zastosowanie algorytm6w programowania nieliniowego. Opisane ostatnie 
osiqgni((cia dotyczqce wprowadzenia do algorytm6w DDP metody Newtona i naszkicowano 
prowadzone obecnie badania ;zwiqzane z zadaniami DDP z ograniczeniami. 

TeopeTH'feCKHif u Bhi'fHCJIHTeJihHhiH nporpecc 
B ,n:u«fl«flepeuuupyeMoM ,n:uuaMH'feCJWM nporpaMMHposauuu 

.[(amiaJI 0630pHaJI pa6oTa Ha'll!HaeTCJI OT npe,[(CTa8JieHHJI H,[(eH ,[(Hlpc!JepeHI.\HpyeMOfO 
,L\HHaMwiecKoro nporpaMMHpo8aHHll (.[(.[(!1). 3aTeM o6pameHo 8HHMaHHe Ha ormcamte pa6oT 
aBTOpa ,[(aHHOH CTaTbH H ero KOJIJier, a TaKJKe 0HO, C8l!3aHHb!X CO CXO,L\HMOCTb!O KJiaCCH­
'IeCKHX anropHTM08 .[(.[(fi H HX BapHaHT08. fipe,L\CTa8JieHbl 8bl'IHCJieHHll, TIO,L\T8epJK,[(a!Oll.(He 
6onhWHe 803MOJKHOCTH 3Toro no,L\XO,L\a. CyTh .[(.[(IT cocTOHT 8 no3TanHoM npHMeHeHHH anro­
pHTMOB Hem!Hei!Horo nporpaMMHposaHHJI. OnHcaHbl nocne,[(HHe ,[(OCTHlKeHHll , Kaca!Oll.(Hecl! 
88e,[\eHHll 8 anropHTMbl .[(.[(fi MeTO,L\a HhiOTOHa H OfOBOpeHbl np080,[(HMbie B HaCTOllll.(He 
8peMl! HCCJie,[(OBaHHJI, CBl!3aHHbie C 3a,[(a'IaMH .[(.[(fi C OrpaHI1'IeHHJIMH . 




