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A Pontryagin type maximum principle governing optimal discrete time processes has
been known for many years. We give a new proof of recent refinements of the maximum
principle for such processes: the data is permitted to be merely locally Lipschitz continuous
in the state variable and the directional convexity hypothesis on the velocity set, invoked
in earlier proofs, is weakened. Our approach is to study proximal normals to the epigraph
of a value function. A byproduct of our methods is new sensitivity information regarding
the dependence of the minimum cost on certain parameter values in the data.

1. Introduction

Discrete time optimal control concerns a class of optimization problems
whose common feature is constraints involving difference equations. We shall
study such problems, giving special emphasis to first order optimality
conditions in the form of a maximum principle, within the following
framework of the following problem, labelled F,.

N—=1
Minimize J (Xq, .., X, Ups s Un—1)7= Y. L (X;, )+ h (x0, Xn),
i=0
subject to
xi+1 :fi(xir“i)s izo!---sN—11 (11)
w;eU;, (1.2)
g;[x;]éo, 5:05“'1N_15 (13)

xU,xNEA. (14)
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Here N,n,m and r are given positive integers,
;:R"xR™" =R, f:R"xR"=>R", i=0,.,N-1,
gi:R"—>R,i=0,.,N-1, h:R"xR"> R,

‘are given functions, and
U, RP, i=0y., N=1, A< R"%R",

are given sets. The inequality (1.3) simply means the components of g; (x)
must be non-negative.

A vector (Xg, .., Xy, Ug, ..., Uy - )€ R™ D x R™Y which satisfies the dyna-
mical, control, state and endpoint constraints ((1.1){1.4) respectively) will
be termed an admissible process (for B)). We seek then an admissible
process at which the value of J is a minimum. Such an admissible
process is an optimal process.

The history of discrete time optimal control goes back virtually to
inception of optimal control theory itself. There has been a resurgence
of interest in discrete time problems in recent years, however, as digital
control strategies gain ascendance over traditional analogue controllers
throughout control engineering, and because of attention currently accorded
to robotic control, an area where a good nonlinear, deterministic model
is typically available and optimization issues are significant.

The evolution of the maximum principle mirrors that of other branches
of optimization theory in many respects, notably continuous time optimal
control. Early, direct approaches to deriving optimality conditions (see, e.g.
Halkin’s paper [5]) gave way to general theories of first order necessary
conditions (such as those of Neustadt [11] and Ioffe and Tihomirov [8])
which treat discrete time optimal control as a special case. We refer also
to the influential book by Boltyanskii [2]. In recent years advances in
nonsmooth optimization have been absorbed into discrete time optimal
control; they make possible streamlined treatment of implicit constraints
(via the notion of the normal cone to a general closed set) and, of course
permit consideration of nonsmooth data.

However, one of the most interesting recent developments in optimization
theory has been new insights gained from the work of Aubin, Clarke,
Gauvin, Rockafellar, Loewen and others into the relationship between
Lagrange multipliers (or their equivalents in the maximum principle) and
the sensitivity of the minimum cost ([1], [3], [4], [9], [10] and [12]).
The implications for broad classes of problems in mathematical programming
and continuous time optimal control have, in particular, received consi-
derable attention. But these developments have not yet impinged on discrete
time optimal control, to the author’s knowledge; it i1s the main purpose
of this paper to make good this omission.

It has long been appreciated that implicit in the maximum principle
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is local information about the value function, which summarizes the effects
on the minimum cost of changing certain parameter values. The recent
developments we refer to is a program based on an inherently nonsmooth
technique, proximal normal analysis, in which the relationship is used
advantageously in both directions; examination of normal cones to the
epigraph of the value function leads on the one hand to new proofs
of first order optimality conditions, and on the other to formulae estimating
the gradient of the value function. Since it is not reasonable to suppose that
the value function is differentiable in a traditional sense, the gradients here
are generalized ones,
" This then is the program we pursue here, now with reference to discrete
time optimal control. We will give a new prool of a maximum principle
due to Ioffe ([7] and [8]), in which the hypotheses on the data are very
mild, and also new estimates for generalized gradients to the value function
relative to perturbations of the dynamical and state constraints.

Our final comment in this introduction concerns hypotheses on the
velocity sets Q;(x)eR", i=0,1,..,N—1:

) ) el
Qi (x):= {[f, (x,u)]. eU,}.

It is well known fact about discrete time problems, supported by counter-
-examples °[see, e.g., [5]), that some hypothesis akin to convexity of Q; is
required for the maximum principle to be valid. Emphasis has been given
in the literature to the tasks of identifying and refining the hypothesis.
This was in part for historical reasons: early aftempts at derivations, in
which convexity hypotheses did not feature, contained errors, and this needed
to be stressed. The fact that the much publicized continuous time maximum
principle was known to apply in the absence of such a hypothesis, has no
doubt acted as a spur to weakening it in a discrete time setting as much
as possible. This preoccupation is warranted also because, for digitally
controlled nonlinear systems constrained to operate at low sampling rates,
there is no reason to expect mathematical models with convex velocity sets
will be accurate ones.

For purposes of simple description we drop the x dependence of Q.

I; . i
Let v(eQ;) be the value of I: :| at the optimal process under consi-

fi
deration.

The discrete-time maximum principle was proved by Halkin [5] under
the hypothesis that Q; is convex. Convexity was subsequently weakened to
directional convexity by Holtzman [6]. This is the hypothesis that Q° is
convex where

00 = Qi +R" x {0} x .. {0}
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The hypothesis adopted here (which is implicit in Joffe’s work) is slightly
weaker than Holtzman’s. It is essentially: there exists o > 0 such that

v+ conv [Q;—7] < OF, (1.5)

where “conv” denotes convex hull. (Convexity of Qf is equivalent to (1.5)
if «=1). The hypothesis says that it must be possible to absorb the
convex hull of Qf into Q° by shrinking it radially with respect to the
point . The diagram illustrates a situation in which this last hypothesis
is operative but the others fail.

'V_fj///.//'

-

. e
// R
The set Q; The set Q° The set
5 i) Y -
(Q; is not convex) (Qy is not convex) u+??on\.r [9-v]
(=qp

2. Generalized gradients

In later sections we make extensive reference to the calculus of generalized
gradients. We briefly summarize here relevant aspects of the theory. (We
refer to [3] for a full account).

Let C be a closed set in R" and let xeC.

We say that a non-zero vector veR" is a proximal normal to C at Xx,
in symbels “v L C at x7, if there exists a positive number K such that

v{c—x) <K |c—x|? for all ceC.

The geometric interpretation of v is that there exists o >0 such that
the closed ball of radius « |v]| and centre x+ov meets the set C at the
single point x.

If v; is a proximal normal to C at x; for i=1, 2, .., such that x;— x;
and v; —» v, we say that v is a limiting normal to C at x.

The normal cone to C at x is the closed convex cone generated by
the set of limiting proximal normals to C at x, ie.
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N¢ (x):=co {,l_i,fg v L C at x;, x;—x}.

(co denotes closed convex cone).
If x is a boundary point of C then there exist non-zero limiting proximal
- normals to C at x, and consequently N¢ (x) contains non-zero points.
Consider now a function f: R" - RuU {+co}. We suppose that f (x) is finite
and the epigraph of f (written epif) is locally closed at (f(x),x) (that is,
the intersection of the set with some closed ball about (f (x), x) is closed).
The generalized gradient of f at x is the set

of (x) = {€eR™:(—1, &)& Nepir (f (x), x)} . (2.3)

Information about non-Lipschitz aspects of f near x is embodied in the
asymptotic generalized gradient of f at x:

0% f (x) = {€eR™:(0, &) € Negir (f (x), x)}- (2.4)

We remark that either df (x) # @ or 6% f (x) # {0}, df (x) is a closed convex
set and d%f (x) is a closed convex cone. The property “0%f(x)= {0}" is
a necessary and sufficient condition for f to be Lipschitz continuous in
a neighbourhood of x.

A useful relationship between df, df* and epif is

Neir (f (x), x) = {A[—1,£]:A>0 and
eV} ([0,8:Eed V(). (29)

There is an important representation of N¢ (x) in terms of the Euclidean
distance function dc (y) (:= Min {[ly—¢| : ce C}), namely

Ne¢ (x) = Ago 2 éde (x).

Let g: R™ — R be a function which is Lipschitz continuous on a neighbourhood
of a point xeR" The generalized Jacobian J, of g at x is the set

dg (x):= conv {[llrg Vg (x;):g is differentiable at x;, x; - x}.

dg (x) is a non-empty, closed set whose elements are bounded in norm
by the Lipschitz rank of g in a neighbourhood of x. Our notation regarding
generalized gradients and Jacobians is consistent since for scalar valued
functions which are Lipschitz continuous in a neighbourhood of the base
point the two concepts coincide.

We list several properties of generalized gradients and Jacobians for
future use. (Throughout x is a point in R" g, g':R"— R™ and f:R"—= R
are functions which are Lipschitz continuous on a neighbourhood of x and
C is a subset of C which is locally closed at x).

(i) (Regularity of the generalized Jacobian, treated as a multifunction of
the base point): the graph of y— dg (y) is locally closed at x,
(i1) (A simple chain rule): for any m-vector d
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dld-g(x)]=d-0g (x)(:= {d-e:ecdg (x)}),
(iii) (Estimate of the generalized Jacobian of a sum of functions):

d(g+9) (x) = dg (x)+0g' (x),
and finally
(iv) (A result summarizing an exact penalization technique which is of great
significance in nonsmooth optimization): suppose f is Lipschitz continuous
on x+e&B with rank k and
fx)<f(y) foral ye(x+eB)nC.
Then
[ (x)+kde (x) < f(y)+kde (y)  for all  yex-+eB.
Here B denotes the open unit ball.

3. A general optimization problem

The discrete time maximum principle is in essence a hybrid multiplier
rule which incorporates the effects of local variations of certain variables
and global variations of others. In this section we state such a multiplier
rule. It relates to the optimization problem Gg:

Minimize F (x) over (x, u)e RY x R™,
Subject to
G(x,u)=0,

xeC,

uell,
in which N, M and K are given integers, F:R* — R and G:R" xR" - R" are
given functions, and C = R¥ and Q < R are given sets. This is followed
by a related sensitivity analysis.

As we shall see, the discrete time problem F, is merely problem G, in

disguise and drawing conclusions about the discrete time problem will turn

out to be largely a matter of transcription.
Define the function L:R¥xR" x Rx R* = R to be

L(x,u, A, u)i=AF (x)+p- G (x, u).

Tueorem 3.1. Let (x, ) solve problem Gq. Assume that

H1: C is a closed set,

HZ: F is Lipschitz continuous on a neighbourhood of X,

H3: for each ueQ, G (-, u) is Lipschitz continuous on a neighbourhood of X,
and
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' H4: given any finite set {uy,..,u} < Q there exists a positive number o such
that, for all points x in some neighbourhood of X,

G (x, ﬁ)+a(i 2 [G(x,u)—G (x,u]) = G (x, Q),
=1 .

whenever {Ai, ..., A} P

Then there exists a non-negative number A and a vector ueR™ such that
(A, ) #0,
0ed, L(x,u, 4, g+ Nc (%), (3.1)
and '

L(X,u,A,m)s L(x,u,4,p) forall wuef. (3.2)
The set P! in hypothesis H4 is

P‘:s{(Ai,..,,ﬂ;)ER!:AfEO,1,...,f and Zi‘llg"l}

The set d, L is the generalized gradient with respect to the first vector
coordinate.

This theorem was proved by Ioffe [7] (in fact under weaker hypotheses
where x and u are permitted to belong to infinite dimensional linear
spaces and where the convexity hypothesis H4 is required to hold only in
an approximate sense). A new proof of Theorem 3.2, which yields as a
byproduct sensitivity information about a minimum cost, is given in Section 6.
Consider now the following hypotheses, which are slightly stronger than
those invoked in Theorem 3.1. Let G:R" x R™ — RX*! be the function

e F (x)
G(x’“)=[6 (x u]]
S1: G is continuous,

S2: there exists 6 >0 such that, for any number 7y, the set {(x,u):
G (x, wll <8, xeC,ueQ} N {(x,u): F(x)< A} is bounded,

S3: C and Q are closed sets '
and-

S4: there exists a constant k such that, corresponding to any solution
(x,u) to (Gy), e >0 can be chosen with the properties:

@@ IG(x,u)—G(y,w)| <k|x—y|, forall x,yex+eB and ueQ,
(b) G (x, Q) is convex for all xex+e&B, _
(¢) the graph of (x, u)— &, G (x, u) is locally closed at (X, i).

We shall use the fact (see Corollary 6.1 below) that if (x,u) solves G
and the stronger hypotheses (S1}S4) are satisfied, then the conclusions of
Theorem 3.1 can be strengthened as follows: “there exists 1> 0 and peR¥,
such that (4, p) # 0,
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0€d, L(x,u, &, w)+k-||(4, p)] - ddc (%), (3.3)
and
L(x,u, A, ) <L(x,u,A,u) forall uef. (3.4)
(The constant k is that of hypotheses S4). The difference here 1s that
N¢ (x) has been replaced by the strict subset k- ||(4, p)| éd. (x).
It is convenient to introduce notation to summarize the statement of the

multiplier rule. Given 2>0 and (x,u)eRY¥xR™ we define the index 1
multiplier set at (x, u), M*(x, u), to be
M*(x, u):= {ueR¥:(3.3) and (3.4) are satisfied}.
We denote by Y the solution set for G
Y:= {(x,u)eR" x R™:(x, u) solves G},
and by M*(Y) the set
M*(Y):=U{M'(x,u):(x,u)eY}.
In terms of our new notation, and under hypotheses S1-S4, the stronger
statement of Theorem 3.1 is that, if (x,u) solves G,, there exists 120
and peM*(x, u) such that (4, ) # 0.

We direct attention now at sensitivity of the minimum cost to perturba-

ions of the equality constraint.
Given aeRX, problem G, is taken to be the new problem which results

when, in problem G, the constraint “G (x, u) = 0” is replaced by “G (x, u) = «”.
The value function of interest then is W (x),

W (2):= Inf {G,}.
(The infimum cost, inf {G,}, is taken to have value to +oco if there are
no vectors (x, ) which satisfy the constraints).

Under our strengthened hypotheses, we relate generalized gradients of W
at a =0 to the multiplier sets.

THEOREM 3.2. Suppose hypotheses S1-S2 are satisfied. Assume also that
W (0) < +c0. Then W is lower semi continuous in a neighbourhood of 0 and

OW (0) = co {M' (Y)n oW (0)+M° (Y)n d° W (0)}. (3.5)

If the cone M°(Y) is pointed, ie. contains no lines, then we can omit the
closure operation in this identity and furthermore 0° W (0) satisfies

8 W (0) = co {M°(Y)na® W (0)}. (3.6)
Identity (3.5) tells us a little bit more than
W (0) = co {M*(Y)+M°(Y)}. . (3.7

This last inclusion is significant because often solution of the nominal
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problem, by either analytical or numerical means, generates the multiplier
sets M'(Y) or M°(Y), or approximations to these sets, along the way.
In these circumstances we can estimate via (3.7) the effects on the minimum
cost of small parameter changes from the nominal value «=0. Such
information is required when we examine the implications of parameter
drift in the model associated with the optimization problem, and also when
we need to consider what small changes in the specifications of an optimal
design problem will most enhance performance.

A further benefit we derive from the subgradient formulae is criteria for
W to be finite-valued and regular, in some sense, in a neighbourhood of
the nominal parameter value (and so, in particular for the constraints to
remain consistent, even if they are subjected to small perturbations).

CoroLLARY 3.3. Let hypotheses S1-S4 hold and suppose that W (0) < + co.
We have
(i) if M°(Y) = {0} then W is Lipschitz continuous in a neighbourhood of 0 and
(i) if M°(Y)= {0} and M*'(Y) consists of a single point then W is strictly
differentiable at 0.
“Strict differentiability”, a property defined in [3], is intermediate in strength
between Lipschitz continuity and continuous differentiability. The corollary
is a direct consequence of Theorem 3.2 and the following facts. Firstly,
an extended valued function on R¥, which is finite and whose graph is
locally closed at a point in its domain, is Lipschitz continuous in a neigh-
bourhood of that point if and only if the asymptotic gradient is just
{0} there. Secondly, if we are given a function on R¥, which is Lipschitz
continuous on a neighbourhood of a point x in its domain, then the
function is strictly differentiable at x if and only if the generalized gradient
at x contains a single element. ([3, pp. 30 and 102]).

4. A discrete time maximum principle

We revert to the discrete time optimal control problem F, of Section 1.
Let ({&;}, {X;}) be an optimal process.

In the following hypotheses the functions f;:R"xR™— R'*" i=0,1, ..
..., IN—1, are taken to be

=[] o e

1D h_ 18 _'Lipschitz continuous on a neighbourhood of (X, Xy).
D2: f;(,u) is Lipschitz continuous on a neighbourhood of X; for each
uelU; and for i=0,1,..,N—1.
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D3: g, is Lipschitz continuous on a neighbourhood of x; for i=0,1,.., N—1.

D4: A is closed.
D35: Given any finite set ¥; < U;, there exists « > 0 such that

fi (e, )+ [eo fi (x, V)= fi (v, W1 < fi(x, H)+R™ x {o},
for all points x in some neighbourhood of X; and i=0,1,..,N—1

We define the functions H;:R"xR"xXxRxR"xR"—»R, i=0,1,.,N-1,
to be

Hi(x,u, A, p,r)i= = (x, u)+p;-f; (x, u)—r;- g (x).

THeOREM 4.1. Suppose that hypotheses D1-D5 are satisfied. Then there
exists a non-negative number 1, n-vectors pg, .., py and r-vectors ro, ..,Tn-1,
not all zero, such that

pieaxiHi()_c},t_‘fi,l,leJ‘E) rol' £‘=0,l,..,,N""l,
H; (Ei! ﬁ,-,,li,pf,ri): Ma[})( H;(J_c;,u,zl,p,-.ri) for 1=0., 1,.‘.,N—1,
usly

(Po> —Pn)€4 Oh (X, Xy)+Na ((Xo, Xn)),
>0 for i=0,1,.,N-1,

i

and
rigi(x)=0 for i=0,1,.,N-1.

We comment on some variants of Theorem 4.1.

Consider the discrete time optimal control problem which arises when we
delete the unilateral state constraints “g; (x;) <0” in F,. For this problem
a set of necessary conditions are obtained from those for F, by setting
the multipliers rg,..,ry-; to zero. (Now (4, {p;})#0). To show this,
set g = —1 and apply Theorem 4.1.

Problem F, is just one example of a discrete optimal control problem,
necessary conditions for which may be simply deduced from the general
multiplier rule, Theorem 3.1. There is no difficulty in accomodating, for
example, problems in which the unilateral state constraints are replaced
by mixed uni- and bilateral constraints of the form

i, u) <0 and @ (x,u)=0 for i=0,1,..,N—1.

Such problems admit simple reformulations (such as that given below) as
special cases of problem F,, and necessary conditions are obtained by
applying Theorem 3.1.

We now describe a suitable reformulation of the discrete time optimal
control problem F, as a special case of G,. The partitioned vector variables
(X0, s XN» Zos s Zy) @nd (Ug, ooy Uy—15 Ugs ooy Uy—1, Wo, s Wy—1) In By assume
the roles of x and u respectively in G,. We set
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G ((bxih, {2l (fuah, o D)=

x1—fo _(xo,ﬁo)

Xy = fy-1 (15 Un—1)
lo (xg, o) +vo+20—24

Iv—g (Xy—q,Un— 1) FOn— 1+ 2Zy—1— 2N
go (x0) +wo

L Ggn-1 (xN-:l}'I_WN—l_ i
F (({x;}, {Zi})):= h(xo, Xn)+2y,
{({x:}, {z:}): (xo, xn) €A, 2o = O},

[ 6

and
Q:= {({ws}, {v:}, (wi}):we Uy, ;2 0, w; =20 for all i}.

Proof of Theorem 4.1. When the above identifications are made we find
that ([{f;},(ziz 0)), ({#:}, {v; =0}, {wiz()}]) solves Gy, and the hypotheses
of Theorem 3.1 are satisfied with reference to this solution. The multipliers
in this case comprise a number 1>0 and vectors py, .., Py -1,

Fg, s Ty—1 (not all of which are zero). The stationarity condition (3.1)
yields

Oep;—0, [pis1-fi (6, w)—qi i (%5, w)—ri-gi (x))], for i=1,.,N—1,
0€0,y,xy [Ah (X0, Xn)+pPn - Xn—pi1- fo (Xo, to) +
+qo lo (Xo, o) +70-go (X0)]+ Na (X0, Xn)), (4.1)
and :
Go=¢1==qn-1=14,
while from the minimization of the Hamiltonian condition (3.2) we deduce
—Pi+1-Ji Gy W)+ Qe 1 1y (X 8) S —Piga - f G, )+ G 1 1 (3, W)
for all wveU, i=0,1,.,N-1,
20, i=0,1,.,N-1,
and
6 (E)=0 if rn#0.
Condition (4.1) together with property (iii) of Section 3 yield
(0, —pn)€A Oh (Xo, Xn)—0Oxo [P1 fo (Ko, tho) —
—qo lo (%o, ) =70 go (X0)] x {0} + N4 (%o, Xn))-
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It follows that

(Po, —pn)EA R (X, Xn)+ N4 (Xo, Xn),
for some element

Po €05, [P1 fo (X0, tho) —qo lo (X0, i19)—70"go (Xo)].

Scanning these relationships, we see that the assertions of the theorem are
verified. (Note in particular that (4 {p;}, {r;}) # 0 since {g;} =0if 1=0). H

5. Sensitivity of the minimum cost for discrete
time preblems

Theorem 3.2 provides information about the generalized gradient of the
value function, corresponding to perturbations of the equality constraints.
This yields, in turn, like results for the discrete time optimal control
problem, via the reformulation of the previous section.

We label P, the perturbed discrete time optimal control problem:

Minimize h (x, %)+ 3" I, (xi, ),
i=0
subject to
Xiv1 = fi O, w)+oy, i=0,.,N—1,
gilx)<p i=0,.,N-1,
(xo, Xxn)EA,
and

HEEU;, i=0,.‘.,N"‘1.

Here (a, B) = ({o:}, {f:})) is a point in R™ x R™. The nominal problem,
F,, is obtained by setting (x, f) = 0.
We define V:R™ xR™ — R to be the corresponding value function,

V(a, B):= Inf {R, 4}.
The following hypotheses are invoked:

El: h is locally Lipschitz continuous,

E2: corresponding to any number o there exists & >0 such that the set
{admissible processes for P, :(x, f)eeB and h+Y I, <o} is bounded,

E3: C and Q are closed, l

E4: f: is continuous for i=0, .., N—1, .

E5: there exists a number k such that, corresponding to any minimizing
process ({Xx;}, {it}), ¢ >0 can be chosen with the following properties
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@ Ifi (0= fi Wl <kllx—yl  for (x,y)ex+eB and ueU,,
i=0,.,N—1,
(b) the set
(o0, £ (x, w) it 2 1 (x, u), ue Uy,
is convex for all xex;+¢eB, i=0,.,N—1,

and
(c) the graph of the multifunction
(x:u]'—’axfi (J(,I.t),

is locally closed at (x;,u;), i=0,..,N—1
Under these hypotheses, the assertions of Theorem 4.1 are valid in strengthened
form, where the transversality condition is expressed in terms of dd, instead
of N,. (This follows from Corollary 6.1, via the reformulation of the discrete
time optimal control problem described in Section 4). Our definition of
multiplier sets R* for the discrete time problem is inspired by these stronger
optimality conditions. Given A>0 and an admissible process ({x;}, {u;})
we define

R*({xi}, wi}):=
= {{pi=1, {r}ioo: conditions (a){d) are met, for some vector po}.

The conditions referred to are

(a) pi€d, H; (x;,u;, A, py,ry), i=0,..,N—1,
(b) H;(x;,ui,.l,pi,r,-}=Supjh’,v(x,-,u,l,p,-,ri}} i=0,.,N-1,
(c) (Po» —Pn)€ABR (x¢, xy)+kdd 4 (xo, Xn),
and
) 720, i=0,.,N—1,
and
rige()=0; i=0,.,N—1.

Let Z be the subset of R"™* " xR™ comprising solutions to the nominal
problem F,. In condition (c) k is a constant whose magnitude is determined
by the Lipschitz rank of the data of the discrete time optimal control
problem on some ball about Z.

Tueorem 5.1. Suppose that V(0,0) < +oo. Then under hypotheses E1-E5
we have

vV (0,0) = To {R*(Z)n 8V (0, 0) +R°(Z) " 8 V (0, 0)}.

If the cone R°(z) is pointed then we can omit the closure operation from
this identity and, furthermore, * V (0, 0) satisfies




204 R. VINTER

9=V (0,0) = ©0 {R°(Z) " 8* V (0)}.

We refer back to Section 3 for comments on the significance of subgradient
formulae such as these.

Proof. We begin by noting a minor variant of Theorem 3.2, namely
“suppose that the hypotheses of Theorem 3.2 are satisfied in all respects,
except that in hypothesis S4, part (c¢) the function G is inserted in place

of G (z [g]) Then the assertions of the theorem remain valid provided
the multiplier sets M* in (3.5) and (3.6) are replaced by
M*(x,u) = {zeR*:0e A 0F (x)+p- 05 G (x, u)+k dd¢ (x)},
and
Hx,u,l, ) <H (x,v, 1, ) for all wve,

The difference here is that the multiplier rule implicit in M* is expressed
in separated form.

To prove this we use the same arguments as before except, before
passing to the limit in the step summarized by Lemma 6.1, we replace
inclusion (6.1) by the weaker inclusion

0€4; 0, F (x)+ -85 G (xy, wi)+ - (g, )l - dc (x)).

We now apply the modified version of Theorem 32 to F,, reformulated
as a special case of problem G, in the manner described in Section 4.
There result subgradient formulae for a value function V («, g, f) expressed
in terms of index A multiplier sets }3". This is the value function associated
with the optimization problems F,,,,(«, 0, f) = ({o}, {o:}, {B:}) = R™ x
% RrN % RN: :
Minimize h(xg, xy)+ zy
subizet to
X,-+1=fi+06i+j, EZU,...,N—I,
gi+w,=0; i=0,.,N-1,
=v+z-24,—-8 i=0,.,N-1,
((xo,xN},ZO)EAX{O}, i=0,.,N-1.
It remains to translate these formulae into statements about the value
function V(a,g). This is easily accomplished since the extra perturbation
vector |f;} associated with V affects the minimization problem in only
a ftrivial way. In fact it is easy to check that the set of solutions to
P00y coincide with that of solutions to Py, and that for arbitrary
values of {} {o;}, {f;} and 1=0 and an arbitrary -solution ({x;}, {u;})
to Py, we have
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P H= V(e )+ 3 fi

and
R*({xi}, {w}) = R*({x}, u}) x {4, 4, .., 4}).
We deduce from (5.1) that
av(0,0,0)=aV(0,0)x {1, .., 1},
and
8% V(0,0)=a*¥(0,0)x {0, .., 0}.

The theorem is proved by appealing to these relationships and by projecting
both sides of the subgradient formulae already obtained onto the subspace
¥ R % {0} ]

6. Proof of theorems 3.1 and 3.2

The following lemma, which estimates limiting proximal normals to the
epigraph of the value function W introduced in Section 2, is the key
element in our proof of the general multiplier rule (Theorem 3.1) and of
associated sensitivity results. Throughout this section k is the constant of
hypothesis S4.

Lemma 6.1. Consider the family of problems {G,} and the associated value
function W. Suppose that hypotheses S1-S4 of Section 3 are satisfied and
Lhai W(0) < +oo. Then epi W is locally closed at (W (0),0). Now let
(=4, =) be an arbitrary limiting proximal normal to epi W at (W (0),0).
Then A =0 and there exists a solution (x,u) to G, such that

0€d, L(x,u, 4, @) +k- |(Z, Pl - 0dc (%),
and

L%, @, 4, ﬁ)=mi}; L(x,a, 2, ).

Proof Standard compactness arguments coupled with hypotheses S1-S4
lead us to the conclusion that epi W is locally closed at (W (0),0) and also
that G, has a solution whenever W(z) < + oo and |« is sufficiently small
It makes sense then to speak of proximal normals to epi W at points in
a neighbourhood of (W (0), 0). We assume that the limiting proximal normal
(—4, —i) under consideration is non-zero, for otherwise the assertions
of the lemma are trivial. By definition of the limiting proximal normal
there exist a sequence {¢;} of points in R, a sequence {§;} of non-negative
numbers and a sequence of vectors {—4;, —} such that

(= —p) Lepi W at (W(e)+6;, ), i=1,2,.
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(W (o) + 6y ) > (W(0),0) as i-— o0,
and
(s t)—> (L, 0D as i—co.
We can arrange (by elimination of initial elements from the sequences)
that G,, has a solution, written (x;, %), for i=1,2,... Since the points

(x;,u;), i= 1,2, .. are confined to a bounded subset of the closed set C x Q,
we can also arrange (this time by subsequence extraction) that

x;—»X and u—iU as i- o0,

for some point (x, f)e Cx Q. From the continuity of F and G we deduce
that (X, ji) satisfies the constraints of problem G, whence

W(0) = F (X).
However F (x;)= W () for i=1,2,.., so

W@O0)=F(x)= If{mF{x,-) = li}n F(x)+6,= W(0).

It follows that (X, i) solves G.

Now according to the proximal normal inequality (2.1) applied to epi W at
(W (o) +8;, o), the functional J; is minimized over CxQxR" at (X, @, )
for i=1,2, .. where

Ji(x,u, 8):= A (F (x)4+8)+ ;- G (x, u)+

+K; [IF (x)4+0—F (x) =0+ G (x, u)— G (x;, w)[|*].
(The K,s are appropriately chosen constants).

Fix (x,u)=(x;,u;) and consider minimization with respect to the &
variable. If the minimizer é; > 0 then A; must be zero. On the other hand,
if 6,=0 then A; = 0. In either case we have A, = 0.

Now fix u=u; and § = §;, and consider minimization with respect to
the x variable. By eliminating initial terms in our sequences we can
arrange that ||x;—X| <& for all i. (Here ¢ is the constant in hypothesis
S4 associated with the solution (X, u) to G,). By property (iv) listed in
Section 2,

0651 L(xh U, ']"i) ‘!.i‘)-i'k n()“u P’x]” . ad’{ (xi]' {61]

Next fix x = x; and ¢ = §,, and consider minimization with respect to the
u variable. We see that the function i

o= i 0+K; lo=G (x, u)l?,

is minimized over G (x;, Q) at G (x;, u;). Let ueQ and o >0 be arbitrarily
chosen. Since G (x;, Q) is convex we have

(1—0) G (x;, u)+0G (x;, WeG (x;, Q).
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It follows that
o [G (xi, )= G (x;, )]+ K; |G (x;, )= G (x;, )| = 0.
Dividing across by ¢ and passing to the limit as ¢ — 0 we obtain
i G (xg, 1) 2 - G (X, ). (6.2)

Here, we recall, u is an arbitraty element in Q.

We now pass to the limit i—co. We obtain 4>0 since 4 =0 for
i=1,2,... Inequality (6.2) is preserved in the limit since G is continuous.

The inclusion (6.1) too is preserved in the limit. This follows from
properties (i) and (ii) listed in Section 2, together with hypothesis S4. The
lemma is proved.

Since (W (0), 0) is a boundary point of epi W and epi W is locally closed
at (W(0),0), the set of non-zero limiting proximal normals at (W (0),0)
is non-empty. This observation together with Lemma 6.1 yields the following
preliminary multiplier rule:

CoroLLARY 6.2. Suppose that hypotheses S1-S4 of Section 2 are satisfied and
that there is a unique solution (X, u) to G,. Then there exists a non-negative
number .20 and a vector peR* such that (A, p) # 0,

0ed, L(x,u, A, p)+k-[|(4, pl - 0dc (),
and
L(x,u, 4, p) = Max L(X, u, 2, ).
We are ready to prove a multiplier rule under merely the hypotheses.
of Theorem 3.1. This is achieved by applying the preliminary multiplier

rule along a sequence of optimization problems, the data in each of which
satisfies the more stringent hypotheses of Corollary 6.2.

Proof of Theorem 3.1. Choose a monotone sequence of positive numbers
(ki}, k;— oo, Let S;, i=1,2,.. be an increasing sequence of finite subsets
of the open unit ball B in R* such that

B8+l ? B, i=1,2;
Define
Q.= {veQ: |G (%, v)| < k;}.

By choosing the k;’s large enough we arrange that the set is_non-empty
for each i. Corresponding to each point seS; we can choose u e €, such that

s G(X,u)<s-G(X,v)+k ' forall vel,.
We now define
Q;:= {u,:s€8;}.

For each i let ¢ be a positive number such that X+2¢ B lies in the
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neighbourhoods about x of hypotheses H2-H4 (with reference to the finite
subset ;= Q). Again with reference to Q,, we write «; in place of the
positive number o of hypothesis H4. _
Now fix i and label as {u;,u,,..,u} the elements in Q; Consider the
optimization problem (Q)

Minimize {F (%):G (%) =0,xeC},

in which

5'5: (X, (ﬁl, sy ﬁ.[])

F (%, (B s B) = F ()

G (x, (Bys s B)) = G (x, i)+ {Z B; (G (x,u)—G (x, )]
and

C=(CnX+gB)xP.

(Q) is a particularly simple instance of problem (P). If X = (x, (8, ... ﬁi))ef
and G[Sc):o then xeC and there exists ue@Q such that G(x,u)=0.
(This follows from hypothesis H4). Clearly then, (%,0,0,..,0) solves
problem (Q). By appealing to well known optimality conditions in the
mathematical programming literature (sec, e.g., [3]), or Lemma 6.1 (the
hypotheses involved are satisfied) we conclude existence of a point (4;, y;)
such that 4, =0 and |(4;, x;)| = 1, with the following properties:

0€0, [4 F @)+ G (%, D]+ Ne (9, (63)
and
Oea; ({p[G (X, u)—G (X, W)]}j=1)+Np (0).

But Np,; (0) is just the convex set, the negative orthant. Since the definition
of normal cones which we adopt is consistent with the standard definition
in the theory of convex sets, we deduce from this last inclusion that

w-Gx,u)spu-Gix,u) for all uef,.
We arrange by extraction of subsequences that
A‘{'_)’ls Hi— [, as iﬁm) (64]

for some points 4 and p. Clearly A =0 and ||(4, gl = L
Let ueQ be an arbitrary vector. For all values of i sufficiently large,
uef; and there exists some seS; such that

Is—pll < ki3,
SAG(E! us) = S'G()_C, H)-i—.r‘{;l-_l,
and
max {||G (%, w)l, |G (&, W)} < k;.
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Consequently
s G u) 2 —lls—p]l IG (%, W) +5-G (x, u) 2
2k kT s G (X, u) = — 2k =k k- G (X, uy).
Since u,eQ,, we deduce from this last inequality and (6.4) that
-G (X, i) < p-G(x,w)+3k, for i=1,2,.. (6.5)
We now pass to the limit as i — oo in (6.3) and (6.5). There results
Oed, L(x,u, A, )+ N¢ (X),
and
wG(x,u)<spG(x,u.
Bearing in mind that u is an arbitrary element in €2, we see that proof
of the theorem is complete. Theorem 3.2 is proved by bringing together
the characterization of the normal cone in the terms of proximal normals

(2.2), Lemma 6.1 which relates proximal normals to multiplier sets and the
following proposition due to Rockafellar [12, Prop. 15].

ProrosiTion 6.3. Let D and D° be closed subsets of R* and suppose that
D° is a cone which contains the origin and the recession cone of D.
Define the closed cone
Ni={A(—1,):A>0,pueD}u {0, u):ueb’,

in R**' Then

(1:(~1, )€ N} = G (D+D°). 6.6)
If the cone D° is pointed, then the identity (6.6) is valid when the closure
operation is dropped from the right hand side and furthermore

{u:(0, w)eco N} = co D°.

Proof of Theorem 3.2. Take the sets D and D° of Proposition 6.3 to
be M*(Y)n @V (0) and M°(Y)n dV (0) respectively. It is a straightforward
matter to check that D is a closed set and D° is a closed cone containing
the origin, as is required for application of the proposition.

We shall show shortly that

Neiv (V(0),0)=0co N, (6.7)
where
N={l(—1,1):1>0,ueD}u {0, u): neD}.
We conclude from this identity, Proposition 6.3 and the definition of
¢V (0) and a* V(0) that
¥ (0)= {u:(—1,meco N} =co (D+D"),
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and, in the event D° is pointed,
V(0)=co(D+D° and 48V (0)=co (D).

This will be recognized as the properties we set out to prove. It remains
then to verify (6.7). The inclusion

Ncp'iV (V(O)!O):) EN;

follows immediately from identity (24). To prove the reverse inclusion,
we take an arbitrary limiting proximal normal (4, ) to epi V at (V(0),0).
If 2#0, it follows from definition (2.3) and Lemma 6.1 that (1/4)
uedV(0)u ML (Y). If on the other hand 1 = 0, definition (2.4) and Lemma 6.1
give ped® ¥V (0)u M°(Y). We conclude that

Pc{i(-1,w):2>0,pe¥Y}u {0, pn):ueb,

where P is the set of limiting proximal normal to epi V at (V(0),0).
Examining the closed convex cones generalized by the sets on either side
of this inclusion and using (2.2), we obtain

Neyiv (V(0),0)=Co P=co N.
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Optymalnoé¢ i wrazliwoéé zadan sterowania
z czasem dyskretnym

Zasada maksimum Pontriagina dla zadan sterowania z czasem dyskretnym jest znana
od wielu lat. W pracy przedstawiono nowy dowod tej zasady przy slabszych zalozeniach:
funkcje wystepujace w sformulowaniu zadania moga by¢ tylko lipschitzowsko ciagle wzgledem
zmiennych stanu, a kierunkowa wypuklos¢ zbioru rozszerzonych stanow, wymagana we
wezesnigjszych dowodach, zamieniono warunkiem slabszym. Prezentowane podejicie polega
na zastosowaniu przyblizonych wektoréw normalnych do epigrafu funkeji Bellmana, Dodat-
kowym wynikiem rozwazan sa wspOlczynniki wrazliwosci minimalnego kosztu wzgledem
parametrow zadania. :

OnTHMaLHOCTE HYBCTBHTETBHOCTE
JHCKPETHBIX 3a0a4 YHpapJieHHH

IMpuanun makcumyma [TOHTpAruHa [N OHCKPETHBIX 33744 HM3BECTEH YKE MHOFO [IET.
B paBoTe MpenCTABICHO HOBOE NOKA3ATENBCTBO 3TOrD NpuHOuna npu Donee cnabeix mpen-
HOCBITKAX . (DYHKIMH YuacTeyrolMe NMpU (POPMYIMPOBKE 3amavd MOryT OeiTh fuiik no Jlun-
UIHLY HENPepPBIBHBI M0 OTHOIUEHHIO K COCTOSHMAM, & CYIIECTBEHHAR BBIIYKNOCTE MHOKECTBA
PACIIMPEHHEIX COCTOAHUE, Tpebyeman B Oonee paHHHX [0KAa3aTeNLCTRAX, 3ameHseTca Donee
cnabriM yenoewes, [IpefcTapieHHEll MOOX0L COCTOWT B MCHONIL3OBAHKME BEKTOPOB NpubmH-
SKEHHO HOPMaAbHBIX & anurpady ¢yekouu bennmana.  JlomomHHTenbHBIM  PE3yNbTATOM
ABNANHCE KOIPUIMEHTEl YYBCTBHTENEHOCTH MHHUMANLHEIX 3aTpaT 10 OTHOILIEHAID K Tapa-
METpaM 3amavil.






