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A class of multiobjective discrete control problems described only by locally Lipschitz
functions is studied from the point of view of necessary optimality conditions in the
Pareto sense. It is assumed that possible state and control constraints are given implicitly
as general sets being approximated by the respective generalized tangent cone. To investi-
gate this type of nondifferentiable optimization problems some basic facts of the currently
developed nonsmooth analysis have to be applied. The crucial role is played by a generalized
gradient of a locally Lipschitz function. Using these concepts together with the available
results for multiobjective optimization problems one is able to formulate the corresponding
necessary optimality conditions in a fairly general form. A special case of a discrete
control problem is studied separately to postulate these conditions in a more familiar form.

1. Introduction

The existing results in the field of nondifferentiable optimization are
of sufficiently constructive character to be applied to the related areas. In
particular, the developed theory in nondifferentiable mathematical program-
ming contains a number of deep results, e.g. see [3-5], [14], [15], [21], [23],
which can be directly used when dealing with discrete optimal control
problems.

Also in the differentiable case many achievements in discrete optimal
control theory are due to development of the mathematical programming
theory, as shown in {17, [2], [7]. [22]. In nondifferentiable case necessary
optimality conditions were investigated mainly in locally Lipschitz setting

[9]. [t1], (21 [25)
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At present time there exist several attempts to treat the so-called multi-
objective (vector) optimization problems of mathematical programming remo-
ving the differentiability assumption. Let us recall at least the conclusions
for convex problems [16], [19]. Fundamental results for locally Lipschitz
problems of this kind are included in [10], [12], [17], [18] and [20].
All these contributions deal primarily with various forms of necessary
conditions for Pareto optimality in mathematical programming problems.

This paper aims to apply these results to the case of multiobjective
optimization of discrete-time systems in order to generalize the existing
conditions [6], [8] to the locally Lipschitz case. The alternative idea of
“isoperimetric” and “max-type” reduction of multiobjective optimization
problems introduced in [12] is briefly outlined and discussed. Few necessary
facts from nondifferentiable calculus are included for the reader’s convenience.
Then the necessary conditions for Pareto optimality of discrete control
problems are presented assuming only locally Lipschitz formulation.

2. Multiobjective optimization problems

Consider a vector function f:R"— R* with components [, f5, .., /s and
a set Q<= R" The function f represents s objectives (criteria) according to
which the choice of an element (decision) from the admissible set Q is
controlled. The solution concept in this case is the so-called Pareto point -
(vector minimum, noninferior point, etc.).

DerFmNITION 1. A point Xe( is called a Pareto point for vector performance
index f=(f1, f3, .., f;) if and only if for every xeQ either f;(x)= f; (xX) for
all i=1,..,s, or there exists at least one ie{l,2,..,s} such that f;(x)>
> f; (X). '

Thus Pareto point is nothing else than a minimal element of f (€2) with
respect to the partial order < in R® In fact, there is a variety of possible
equivalents of Definition 1, which are responsible for a number of alternative
approaches to the problems of necessary conditions for Pareto points.
This is illustrated by the following two propositions which can be verified
by straightforward contradictions.

Prorosition 1. Let f and @ be as in Definition 1. Then X is a Pareto
point of f on @ if and only if X is a solution to the problem of mini-
mizing f; (x) subject to the constraints xeQ; = {yeQ|f;(y) < f; (%), j#1i
i=1,2,.,s} foralli=1,2,..,s

This is the mentioned “isoperimetric” reduction of multiobjective opti-
mization problems to problems with scalar objective only. For convex
problems in mathematical programming it was applied in [16] and for
locally Lipschitz problems in [12]. Thus one has to use some existing
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necessary optimality conditions to the scalar minimization problems given
in Proposition 1. The only prerequisite is that these optimality conditions
include inequality type constraints as required for handling the constraining
sets ;. -

DEerFiNiTION 2. A point XeQ is called a weak Pareto point for vector
performance index f = (fy, f3, .., f;) if and only if there exists no xeQ such
that f;(x)< fi(X), i=1,2,..,s

Also in this case one can find an alternative characterization of a weak
Pareto point using the auxiliary minimization problem with the scalar
“max-type” objective function. Thus this reduction scheme assumes the ability
to deal with nondifferentiable problems, as the max operation does not
preserve differentiability, in general.

Prorosition 2. Let f and Q be as in Definition 2. Then X is a weak
Pareto point of f on Q if and only if X is a solution to be problem of
minimizing function F (x) = max | f; (x)—f;(x)|i=1,2,.., s} subject to xeQ.

It i1s easy to see that every Pareto point is at the same time also
a weak Pareto point.

3. Necessary conditions for Pareto points

Let us briefly summarize some basic facts concerning the calculus of
locally Lipschitz functions, ie. functions being almost everywhere differen-
tiable. More exactly, f:R"— R' is locally Lipschitz iff for any bounded
set B< R" there exists a constant L such that for all x, yeB one has
If (x)=f (| < L|lx—y|. The reader can consult [3], [4], [14], [15] for
further details. A comprehensive theory of nonsmooth optimization is
included in [5]. In what follows all functions are assumed to be locally
Lipschitz (in a vector case component-wise).

DeriNTioN 3. The generalized gradient of a function f:R"—R' at the
point x, denoted df (x), is the set (co denotes the convex hull)

af (x) = co {lim Vf (xi)lx; - x},

with f differentiable at x; for each i
It can be shown that df(x) is a nonempty and compact set. If f is
continuously differentiable at x, than df (x) = Vf (x), and convex f implies
that df (x) is a subdifferential of f at x.

The following properties of the generalized gradient relate to the sub-
sequent exposition. Let f,g:R"— R! and ceR'. Then

d(cf (x) = cof (x), (1)
0 (f+9) (x) = af (x)+3dg (x), @)
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[ attains a local minimum at x=0edf (x). (3)

Let f(x) = max {f;(x)]i=1,2,..,s}, where each f; is locally Lipschitz.
Then f is locally Lipschitz and

of (x) = co {0f; ()liel (x)}, )

where I (x) is the set of indices i such that f;(x) = f (x).

If now Q< R" is non-empty and closed, denote as dy(x) the real
function giving the distance of x to Q, ie. dg(x)=inf{|x—q||geQ}. As
the function dy is a Lipschitz function, it is possible to introduce the
generalized normal cone to Q at the point x as the set (cI denotes the
closure)

N (Qj) = ¢l {yqly > 0, geddy (x)}. (5)

The polar cone to N (Qj,) is the so-called generalized tangent cone T (Q; x),
which plays the role of a conical approximation to the set Q.

Let us remark that the listed properties remain valid, in general, also
in Banach space context. For the necessary modification of Definition 3
see [3], [4]. Further consider the problem of minimization of the function f
subject to the constraints xeQ < R", h;(x)=0, i=1,..,p and g;(x) <0,
i=1,..,q, with f, h;, g; being real locally Lipschitz on R" The following
result can be found in [15, Corollary 3.2]. Only the sign of multipliers is
reversed to conform with later studied discrete optimal control problems,
where such usage is common.

Prorosition 3. If ¥ is a minimizing point in the above problem, then
there exist multipliers uo <0, 4, i=1,..,p, and <0, i=1, .., ¢, not all
zero, such that .

(o S+ 3, Aihet Y, vig) DON (@i %) 6 ©)

and v;¢;(X)=0,i=1,.,q

As shown in [5, Thm. 6.1.1], this result is valid also in Banach space
setting. The condition (6) implies with respect to (2) the weaker “separated”
condition, the analogy of which will be used later

ko 0f )+ Y, 240 D+ Y. i 09 ()N QD) # 6. )

Now let f:R"—= R®, = (f1./,..,[;) be locally Lipschitz, and let
Q= {XEQ = R"|hi(x) = 0! i= 17"'3 P, gi (x] < 07 = ]-y ---:Q}, (8)

where Q is closed and h;, g; are real locally Lipschitz functions. On applying
Proposition 1 it is possible to derive the following result [12].

Tureorem 1. If X is a Pareto point of problem (8), then there exist multipliers
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<0, i=1,..,s A, i=1,..,p, and v;,<0, i=1,..,q, not all zero, such
that

1=

0(Y, wmfet ¥, Wbt Y mg) NN (9 # 9. ©)
with v;¢; (X)=0, i=1,..,q.

When using suggested max-type reduction scheme, Proposition 2 is used
together with (4) to obtain necessary optimality conditions for weak Pareto
points in the “separated” form only [12].

i

1

Tueorem 2. If X is a weak Pareto point of problem (8), then there exist
multipliers u; <0, i=1,..,s A4, i=1,..,p and v,<0, i=1,..,4q, not all
zero, such that

p q
M af; (i)+‘z_:1 4 0; (2)4-;1 vi 0g; (X)) N (Q; %) # 8. (10)

Bt

with v;g; (X) =0, i=1,..,q

The indicated indirect approach can be an alternative one when deriving
necessary optimality conditions for multicriterial problems. However, the
available stronger general result [5, Thm. 6.6.3] implies that the formulation
of Theorem 1 is valid also for weak Pareto points. From this point of
view the analyzed reduction schemes do not give equivalent results. Therefore
Theorem 1 can be used to study both types of solutions. These results
valid in the Banach space formulation generalize the respective theory
developed for differentiable [24] and convex [18], [20] cases.

An important question of the regularity, ie. not all y; in (9) or (10)
equal zero, can be investigated along the lines followed in [12]. It is
necessary to assume additional calmness of the pertinent scalar-valued
optimization problem.

Finally, for Q = R" denote by int Q the interior of Q in R". Now let O,
and Q, be non-empty and closed sets in R", and let xeQ; N Q, be a point
for which T (Q,; x)nint T(Q,; x) # ¢. Then according to [23] the following
relation holds.

N(QinQs;x) = N (Q1; x)+ N (Q2; x). (11)

Observe the apparent analogy of the above requirement to the “regularity”
condition of [13] postulated when dealing with general extremum problems
with constraints.

Further details can be found in the listed references. Having in mind
the later applications let us mentfion also certain drawbacks of the existing
theory with respect to the definition of a partial generalized gradient [4],
[23]. To do this let f:R"xR™— R! be locally Lipschitz. For each xeR"
define the generalized gradient of a function f(x,-) by &, f(x,y) and in a
similar way also for 4, f(x,y). Such definition of a partial generalized
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gradient seems to be quite natural and reasonable. However, there is no
relationship between the sets df (x, y) = 0., f (x,y) and &, f (x, y)x 0, f (x, y).
Simple examples show that neither of these sets is contained in the other,
as would be desirable in our applications.

This fact is also the main reason that in the studied general case of
discrete control problem in the next section the obtained necessary conditions
exhibit more formal character. On the other hand, for a particular case of
discrete systems, which are additive in state and conftrol variables, a familiar
structure of necessary optimality conditions can be maintained.

4. Multiobjective discrete control problem

Let us consider a discrete dynamical system described by the following
relations

Xe+1 = S > we), k=0,1,.,K—1, (12)
(ik)eM,,CR“xR’", w1, B, (13)

k ;
xiEdie Bt (14)

Here K denotes the prescribed number of stages, xeR" the state, and
ueR™ the control. The aim is to minimize the function

K-1
J=gx)+ Y by (e, we), (15)
k=0 .

where f,:R"xR" - R", h:R"xR™— R* and g:R"-— R®. It is assumed that
all these functions are locally Lipschitz and all introduced sets non-empty
and closed.

It is not very difficult to realize that the stated control problem (12)-15)
represents a multiobjective mathematical programming problem of type (8)
in the space of dimension mK-+4n(K+1), i.e. one has to work with a
variable z = (xg, X1, ..., Xk, Ug, Uy, ..., g —1). A special structure of such mathe-
matical programming problem enables to decompose it with respect to the
discrete time variable k.

To derive the further formulated theorem one has to understand that
if function f does not depend on a certain variable, the corresponding
component of all vectors in df is zero. Moreover, if Q = R" and xe(, the
generalized normal cone N (Q;x) is in the same time also a generalized
normal cone to the set O x R™ < R"xR™ at (x, y), ye R™ Then the relations
(9) and (11) are repeatedly applied together with the properties (1) and (2).
There are no principal difficulties in this construction, which is a straight-
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forward one. The only complication is somewhat extensive notation. Let us
therefore omit the particular details and formulate only the final result using
vector notation for convenience.

THEOREM 3. Let iig, iy, .., dx—1 and the corresponding Xg, Xy, .., Xk be a
Pareto (weak Pareto) point of the stated multiobjective discrete optimal control
problem (12)15), and assume that

int T (My; Ry, G)) # 6, k=0,1,.., K—1.

Then there exists a vector pueR® <0, i=1,..,s and vectors AeR",
k=1, ..,K, not all zero, such that

% g A R L
Oxu Hics 1 (X, ﬂka"(ok)'i'N (My; Ry, W) # 6, k=0,1,..,K—1, (16)
Wlth A‘O = 0, :’.I?Id
O 1" g (Re) N Ak + N (Ag; Xx) # 6. (17)
As usual
Hk+.l {xa u}: Ju'Thk (x!u)—"_‘l;-i‘l ﬁ( (x5 H), k= 0: [s it K—1. (18)

One can see an overall analogy of the obtained necessary conditions
with those known for the differentiable case [6], [8]. The imposed assumption
concerning the respective generalized tangent cones ensures the application
of (11) in order to be able to decompose also the overall constraining
set of the resulting mathematical programming problem. On the other hand,
the mentioned property of partial generalized gradients d, and 4, does not
allow to decompose the adjoint conditions (16) in simple way to separate
the relations for x and w. Therefore the indicated composed form of a
generalized gradient &, , must be preserved, in general. This was also the
motivation to assume general implicit constraints of the “mixed” type in (13).
Otherwise, such generalization seems not to be of great practical importance.
The presented fairly general form of necessary optimality conditions, although
interesting from a theoretical point of view, does not possess too much
practical impact and more concrete form is therefore desirable. Problems
of this kind arise in some applications in economy and management science
especially in connection with multi-level decision-making.

5. Special class of discrete control problems

One way to overcome the encountered difficulty with generalized gradient

~formulation is to impose certain additional assumptions on the studied
. control problem. First, one can simply assume the so-called subdifferential
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regularity [23] of all functions f,, by and g. Then one has that, eg.
O i (x, ) = Oy fi (x, u)x 8, fi (x, u), which makes the required decomposi-
tion possible. Otherwise, one can assume the “additive” structure of all fy
and h, as mentioned earlier and used for a scalar objective in [9]. Then
the generalized gradient inclusion is still preserved. Therefore let

X1 = S )+ 2w, k=0,1, ., K—1, (19)
aedic R, k=0,1,..K, (20)
welUycR™ k=0,1,..,K—-1. (21)

The aim is to minimize the functional

K-1

J=g )+ ¥ (b (o) +hE (). (22)

Here f;' : R" - R", f;?:R™ - R", hi : R"— R, h{ : R™ - R®, and g:R" — R®. Again
it is assumed that these functions are locally Lipschitz and all indicated
sets non-empty and closed. For this special case Theorem 3 takes the form
as follows.

THEOREM 4. Let g, iy, .., Hx—, and the corresponding Xo,X,,..,Xx be a
Pareto (weak Pareto) point of the multiobjective discrete optimal control
problem (19)-(22). Assume that int T (A %) # ¢ and int T(Up; i) # @, k=
=0,1,..,K—1. Then there exists a vector ueR*, 1; <0, i=1,..,s, and
vectors A,eR", k=1, .., K, not all zero, such that the -following conditions
are satisfied. z

(a) The vectors A satisfy the adjoint relations

O (W g+ 21 D GO A+ N (A X) # 6, k=0,1,..,K-1, . (23)
with Ag =0, and

s 1" g (k) A+ N (Ak; X)) # 6. (24)
(b) The optimal control sequence satisfies the relations
Bu (W B+ 24y f) @) O N (Uy, ) = 8, k=0,1,.., K—1. (25)

Now one can see more evident analogy with a differentiable case [6],
[8], as the “adjoint system equations” and “optimality conditions” are
separated — see (23) and (25). A question can arise about the maximum
principle formulation of (25). As it is known, such form requires additonal
assumptions regarding the convexity of discrete control problems. The results
valid for the scalar nondifferentiable case are readily modified to the
multiobjective setting — see [9], [25]. Furthermore, one can also derive,
without no substantial troubles, more explicit case with all constraining
sets given as a system of equalities and inequalities [9].
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6. Conclusions

A possible application of recent results in the field of nonsmooth analysis
to nondifferentiable (locally Lipschitz) multiobjective discrete control problems
was investigated. Necessary optimality conditions for Pareto points were
presented for the studied classes of problems. In this connection it was
shown that only under the additional assumptions we are able to bring these
conditions to familiar form. A special class of a discrete control problem
was therefore treated in detail to overcome this difficulty. All results can
be in an obvious way generalized to Banach spaces formulation.

The present theory of nondifferentiable optimization also includes the
cases when only lower semicontinuity instead of locally Lipschitz continuity
is assumed. There exist some results dealing with general type of functions
only [3], [23]. On the other hand, it has to be realized that in such
general setting several useful properties of the locally Lipschitz case are lost.
Then especially applications to discrete optimal control, as concluded also
in [9], become more questionable as the used decomposition technique cannot
be simply substituted.
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Warunki konieczne optymalno$ei w nierézniczkowalnych
zadaniach sterowania dyskretnego

W pracy rozwaza sig klasg wielokryterialnych zadan sterowania dyskretnego opisanych
funkcjami lokalnie lipschitzowskimi pod kgtem wprowadzenia koniecznych warunkéw opty-
malnosci w sensic Pareto. ZaloZono, Ze ograniczenia na stany i sterowania sg zadane
w sposob posredni jako zbiory, ktére mozna aproksymowac uogolnionymi stozkami stycznymi.
Do badania tego typu nierézniczkowalnych zadan optymalizacji zastosowano pewne pod-
stawowe konstrukecje obecnie rozwijane) analizy nierdzniczkowalne). Glowng role gra w nich
uogodlniony gradient funkeji lokanie lipschitzowskiej. Uzycie tego aparatu oraz istniejgcych
wynikow dla wielokryterialnych zadan optymalizacji pozwolilo na sformulowanie odpowied-
nich warunkow optymalnosci w dostatecznie ogolnej postaci. Rozwazono dodatkowo specjalny
przypadek zadania sterowania dyskretnego pozwalajacy na przedstawienie tych warunkow
w bardziej rozpowszechnionym zapisie.
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HeoGxoaumMbie YCIOBHS ONTHMAJILHOCTH
B neudepeHunpyeMslx 33a4aX JHCKPETHOrO YIpaBJieHHs

B paboTe paccMaTpHBaeTCs KI4CC MHOIOKDHTEDHANLHBIX 3aaq AHCKPETHOIO YNpaB/ieHHs,
OMKCHIBAEMEBIX JIOKAMBHO JIMIIIUIIOBEIME (YHKIHAMH C TOYKH 3peHHs BBeleHHs Heobxonu-
MBIX YyCiaoBuil onmTumanbhocTd B cmeicne [lapero. Tlpesnonaraetcs, wTO OrpaHuMHeHHs [0
COCTOSHHIO H YOPAaBICHHIO 3aJaHbl MOCPEACTBOM MHOMECTB, KOTOPBIE MOXKHO AMIPOKCHMM-
poBaTh 00ODINEHHBIMK KacaTelbHbIMH KOHycamu. [Ind uccnenopaHus 3TOTO THNA HeAW(de-
PEHUMPYEMBIX 3afad ONTHMH3AUHK WCTONB30BANNCh HEKOTOpBIE KOHCTPYKUWM pa3BuyBae-
MOI0 B HACTOSIME Bpema HeAn(epeHuupyeMoro avanmmia. OCHOBHYI pOJB HI'DaeT B HHX
06001IeHHBIH TPaaAleHT MOKalNbHO NHNIUHOOBBEIX (yHkuui. Mcnonbsoeanue sToro ammapata
M CYIECTBYIOUMX DE3YNbTATOB AN MHOTOKPHUTEPHANLHEIX 33749 ONTHMH3IAUWH MO3BOJIHIO
copMynHpOBATE COOTBETCTBYIOUIHE YCHOBUS ONTHMANBHOCTH B HOCTaTOqHO 0006LIEHHOM
suse. JlonomHuTeNnbHO paccMoTpeH ocobwlil ciayuali 3afaduy AHCKPETHOIO YIpasieHus, Mo3-
BONAOIIKA NpPeAcTaBUTL 3TH ycloBus B Gonee ymoGHOM BHAE.







