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1. Problem Models with Convexity 

This paper is concerned with the interface between discrete-time optimal 
control and convex programming, which encompasses linear and quadratic 
programming in particular. Despite the frequent presence of convexity, 
problems in optimal control have seldom in the past been viewed in a 
framework of convex programming. This is partly because the control 
literature, with its traditional emphasis on engineering applications, has not 
focused particularly on convexity and its consequences. Another reason has 
been attractiveness of working with concepts specific to control, like the 
maximum principle. 

Problems in convex programming, on the other hand, even when they 
involve the management of discrete-time dynamical systems through a multi-
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stage decision process, have seldom been seen as instances of optimal 
control. To some extent this could be due to unfamiliarity of the users 
of multistage models in operations research with the mathematics of optima,! 
control, typically thought of as infinite-dimensional. In any case, multistage 
convex programming and discrete-time optimal control have been developed 
along separate lines by rather separate communities of researchers. A potential 
now exists for a useful exchange of ideas. 

The goal we set here is the introduction of new problem models in 
discrete-time optimal control that exhibit convexity and promote its role. 
These models are designed to appeal to mathematical programmers and to 
open the way to solution techniques in optimal control like some of those 
in the literature on large-scale convex programming. Our main results are 
duality relations and the characterization of optimality in terms of a 
"minimaximum principle". 

The guidelines we follow are those of general duality theory [1], [2], and 
the piecewise linear-quadratic programming models in optimal control that 
we have developed in [3] for continuous time and in [4] for discrete time. 
A connection with the discrete-time Bolza problems in [5] may also be 
noted, although these do not explicitly involve controls and appear rather 
as analogues of problems in the calculus of variations. 

The basic problem we propose to investigate has N + 1 stages represented 
by state vectors 

x,ER"' for -r=O,l, ... ,N; x=(x0 ,x 1 , ... , xNl· (1.1) 

The dynamical system is taken to be linear, as a prerequisite to convexity 
in the problem (actually this is not as restrictive as it may seem), and is 
placed in the pattern of 

x, =A, x, _ 1 +B, u,+b, for -r = 1, ... , N, (1.2) 

X o =Be ue+Be, (1.3) 

which involves "temporal" control vectors 

u,ERk, for T = 1, ... , N; u = (u 1 , ... , uN), (1.4) 

and a "terminal" control vector ue E Rk' . The vector ue represents supplementary 
parameters which may be adjusted in the problem in connection with 
endopoints. (The subscript e will consistently be used to mark endopoint 
elements). The nonstandard condition (1.3) allows of course for simple 
cases like x0 = be (fixed initial state). One can always trivialize ue, if it is 
not needed in the model, by taking it to be 0-dimensional. 

The reader should note well that the dimensions n, in (1.1) and k, in 
(1.4) are allowed to depend on T. In a typical problem arising from the 
discretization of a continuous-time problem in optimal control, one would 
not have such variability: the vectors x0 , x 1 , ... , xN would all be in a certain 
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R", and u1 , .. -, uN m Rk The equation (1.2) would arise from a difference 
equation 

(1.5) 

by setting 

(1.6) 

Such cases are obviously covered by our formulation in particular, but the 
provision for varying dimensionality enlarges the scope of the model quite 
significantly. In fact it enables the model in principle to encompass the 
dynamical structures of all multistage decision processes that can be expressed 
deterministically in terms of finitely many real variables. For if such a process 
requires the choice of a vector ur E Rk, for r = 0 , 1, ... , N (subject presumably 
to constraints, which for the moment need not concern us), it is possible 
always to define the "history" (u0, u1, ... , ur) of the process as the state xr 
at time r, so that 

These relations can be written in the form of (1.2), (1.3), with 

I 
I 

A= r 

for identity matrices I and zero matrices 0 of appropriate sizes, and with 
br and be taken to be zero vectors; u0 is interpreted in this case as ue· 

This observation makes clear at the same time that the assumption of 
linearity in the dynamical system is, in itself, no real restriction but merely 
a convenient normalization for the purposes at hand. The true restrictions 
enter the model separately in the specifiation of what additional constraints 
one is allowed to impose on the relationship between xr- 1 and ur. 

We are now ready to state our optimization problem in its general form, 
where any additional constraints on xr- 1 and ur beyond the dynamical 
relations are notationally supressed from view through the use of infinite 
penalities. The problem is 
(3") minimize the expressiOn 

:V 

.;;: (u, ue) = L [fr (Cr Xr - 1, ur)- Cr· Xr - lJ + [.fe (Ce XN, ue)-ce · XN], 
t= 1 

over all u=(u 1 ,uN)ERk1 x ... xR"N and ueERke, 

where x = (x0 , x 1 , ... , xN) is given by (1.2}--(1.3). 

Here fr: R1
' x Rk, --+ R and fe: R1

' x Rk,--+ R are extended-real-valued functions 
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which are assumed to be convex, proper and lower semicontinuous, while 
C, and Ce are matrices of appropriate size, and c, and ce are vectors. 

Implicit in (00) are general constraints of the form 

(C, x, _ 1 ,u,)EF, for r= 1, ... , N, and (CexN,ue)EFe, (1.7) 

where 

F, = {(s" u,)ER1
' x Rk, lfr (s" u,) < oo}, 

Fe= {(se , ue)ER1
• X Rk• lf e (se, ue) < 00 }. 

(1.8) 

(1.9) 

Indeed, .F (u, ue) < oo if and only if (1.7) is satisfied. The sets F, and Fe 
are nonempty and convex by virtue of the assumptions of convexity and 
properness placed on f, and fe · They do not have to be closed, however; 
in some cases one could have fr (s" u,) approach oo as (s0 u,) nears certain 
boundary points of F0 for instance, and similarly with f e and Fe. The 
matrices c, and ce can be identity matrices in particular, but more generally 
they allow us to deal in a convenient, specific way with the fact that 
in some models the constraints and objective terms may not fully depend 
on all the state components. 

Represented in (1.7) are a great many possible cases involving restrictions 
on control vectors and/or state vectors. For the sake of illustration we 
shall focus here on the following case, which corresponds to an "ordinary" 
approach to convex programming. 

ExAMPLE 1.1. Problem (o/) contains as a special case the problem of 
minimizing 

m the context of (1.2)--(1.3), subject to 

for i = 1 , ... , 10 and u, E U <> 

for i = 1 , ... , le, and Ue E U e, 

(1.11) 

(1.12) 

where the functions hi: Rk, --> R and f ei: Rk• --> R are convex and finite, and 
the sets U, c Rk, and Ue c Rk• are nonempty, convex and closed. This 
corresponds notationally to c, = c,0 , ce = ceo, 

and m terms of 

the definitions 

C, = [1, x k, matrix with rows c,;], 

Ce = [le X ke matriX With IOWS ceJ, 

(1.13) 

(1.14) 

(1.15) 
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r (s u ) = {({)to (ut) 
Jr o t et) 

if UtEUt and cpt,(ut)~st, fori= 1, ... ,1., (1.1
6
) 

for all other ut, 

r (s u ) = {({)eo (u.) 
Je e' e CIJ 

ifu.EUe and cp.,(u.) ~ s., for i=l,.:.,1.(1.l?) 
for all other u •. 

The functions f~ and .fe are indeed convex, proper and lower semicontinuous 
in this case. 

ExAMPLE 1.2. Problem (,?}) contains as a special case the problem of 
mrmmrzmg 

N 

L [pt· ut-et · xt_tJ + [p.· u. -c. · xN], 
t= 1 

subject to (1.2), (1.3) and 

et xt_ 1 + Dt ut :;::, qt and ut :;::, 0 for T = 1, ... , N, 

C. xN+De u.:;::, Pe and u.:;::, 0. 

All one has to do is to specialize Example 1.1 to 

ho (ut) =pt · ut and feo (u.) = Pe · u., 

fr, (ut) =qt1-dt,. ut for i = 1, .. . , l., and Ut= R~, 

where dt, is the ith row of Dt and d., is the ith row of D •. Other forms 
of the constraints involving equalities as well as inequalities, or even piece­
wise linear penalties can be set up in this way; also quadratic and piecewise 
quadratic programming models. For this we refer the reader to [3], [4]. 

THEOREM 1.3. The essential objective function .17 being minimized in (:1') is 
convex and lower-semicontinuous (nowhere- oo ). Thus (&) is a convex pro­
gramming problem in the general sense, and its optimal solutions (u, u.), 
if any, form a closed convex set. 

Proof. These properties are elementary consequences of our assumptions 
of .ft and .f.. • 

2. Minimax Representation and the Dual Problem 

Problem (:!-') can be given a minimax representation m terms of multiplier 
vectors 

vt = R1
' for 1: = 1, ... , N; v =(ut, ... , vv), (2.1) 

and v. E R1
•. These will turn out later to be the control vectors in a dual 

dynamical system. To achieve such a representation we must, introduce 
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(2.2) 

(2.3) 

Both formulas merely involve taking conjugates of the lower semicontinuous 
convex functions f, ( · , u,) and fe ( · , ue) along with certain changes of sign. 
They are invertible as 

(2.4) 

(2.5) 

by the rules of convex analysis [1, §12]. 

PROPOSITION 2.1. The function 1, is convex-concave, proper and "upper-closed" 
on R 1

' x R 1
'; likewise for le on Rk, x R 1

'. 

Proof. These are fundamental facts about the correspondence between 
convex functions and convex-concave functions. For the definitions and 
details, we refer to [1, §§34-35]. Ill 

ExAMPLE 2.2. In the case described in Example 1.1 one has 

and analogously 

l, 

f~o (u,)+ I v,Jri (u,) if u,E u" v,ER1+, 
i= 1 

if u,E U" v.'/:R
1+, 

if u, rt u,. 

if UeE Ue, VeER 1+, 

if UeE Ue, verf=R1+, 
if uerf= Ue. 

(2.6) 

(2.7) 

Incidentally, something like the structure in this example can be shown 
to hold for 1, and le in general. There always exist nonempty convex sets 
U, and v; (uniquely determined) such that 1, is finite on U, x v; and 

l,(u"v,)= -oo when u,EU" v,rf=cl v;, or when u,EriU., v,rtv;, (2.8) 

l,(u.,v,)= 00 when v,Ev;, u,rf=cl U" or when v,Eri v;, u,r/=U,. (2.9) 

(Here "ri" denotes the relative interior of a convex set [1, §6]). The 
set U, x v; is called the effective domain of 1,; see [1, §34]. Similarly, 
le has an effective domain Ue X V:,. 

DEFINITION 23. The Lagrangian function associated with problem (1') is 

.V 

,j(u,ue;v,ve)= I l,(u"v,)+le(ue,ve)-[(u,ue),(v,ve)J, (2.10) 
r= 1 
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where 
N 

[(u,u.),(v,v.)]= L x,_ 1 ·[C:v,+c,]+xN·[C;v.+c.]. (2.11) 
t= 1 

(The convention oo- oo = oo is used to resolve conflicts in the extended 
arithmetic in (2.10). The asterisk * in (2.11) marks the transpose of a 
matrix). 

PROPOSITION 2.4. The Lagrangian function ,I is convex-concave, proper and 
"upper closed". 

Proof. This is immediate from the corresponding properties in Proposition 
2.1, since the term [(u, u.), (v , v.)] is merely affine separately in (u, u. ) 
and in (v, v.). • 

THEOREM 2.5. The essential objective § in (9') can be expressed by 

.'#' (u, u.) = sup,l(u, u.; v, v.). 
(v, v,) 

Thus (:3") is the primal problem associated with f 
Proof. Formulas (2.10) and (2.11) allow us to write 

N 

,l (u,u. ; v,v.)= L [J,(u.,v,)-(C,x ,_ d·v, - c,·x, _ 1]+ 
t= 1 

It follows that 
tY 

supj (u , u. ; v, v.) = L [sup {J, (u" v,)-(C, x,_1) · v,} -C,·x,_ 1]+ 
(u, l'e) t = 1 v,E R1< 

+[sup {J. (u. ,v. )-(C.xN) ·v.}-c.·xN] , 
tJ,.e Ri.· · 

and this reduces by (2.4) and (2.5) to the given definition of .'#' (u, u.). • 
Theorem 2.5 points the way towards setting up as dual to ~o/) the 

problem of maximizing in (v, v.) the infimum of ,l (u, ue; v, ve) with respect 
to (u, u.). As the first step in that direction we show that the form 
[(u, ue), (v, v.)J has an alternative expression in terms of the dual dynamical 
system 

y, = Vi Y,+ 1 +Ci v,+c, for -r = 1, .. . , N, 

YN+1 = c:ve+c., 

which involves the state vectors 

(2.12) 

(2.13) . 

This system can be integrated backward in time. The transformation 
( v , v .) ~--> y is affine. 
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PROPOSITION 2.6. The expression (2.11) can be written equivalently in terms 
of the dual dynamical system as 

N 

[(u,ue),(v,ve)J= I Yt+l'[B,u,+b,]+y1·[Beue+be]. (2.15) 
t= 1 

Proof. The right side of (2.11) can be written by way of (2.12}--{2.13) as 
N 

I x,-1 · [y,-A: Yt+1] +xN · YN+1, 
t= 1 

while the right side of (2.15) can be written by way of (1.2}--{1.3) as 
N 

I Yt+1·[x,-A,x,_1J+y1·[xoJ. 
-r= 1 

These expressions both reduce to 
N 

Xo·Y1+x1·Yz+ ... +x,v·YN+1- I Yt+!·A,x,-1, 
t= 1 

and are therefore equal. • 
Next in constructing the dual of ~~ we need functions g, and ge whose 

relationship to J, and le is dual to that off, and fe in (2.4}--{2.5): 

(2.16) 

(2.17) 

PROPOSITION 2.7. The function g,: Rk, x R 1'-> R for r = 1, ... , N and ge: Rk• x 
x R1•-> R are concave, proper and upper semicontinuous. They are paired 
directly with the functions J. and fe by the formulas 

(2.18) 

(2.19) 

and 

J. (s., u,) =sup {g, (r., v,)- s, · v,+ u, · r,}, (2.20) 
,.p u, 

fe (se, ue) =sup {ge {re, ve)-se· ve+re·ue}· (2.21) 
r .. , v~ 

Proof. The first pair of formulas is obtained by substituting (2.2) and (2.3) 
into (2.16) and (2.17). In terms of the conjugate functions f,* and f/, 
these say that 

g,(r.,v,)= -f,*(-v.,r,) and ge(re,ve)= -f.*(-v.,re). 

Inasmuch as (J.*)* = J. and (f.*)* = fe (because J. and fe are convex, 
proper and lower semicontinuous), we then have (2.20) and (2.21). • 
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We are able now to formulate the problem that in relation to the 
Lagrangian function ,! will be shown to be dual to (.9'), namely 
(£0) maximize the expression 

N 

Cil(v, v.) = L [g, (B1 Y., + 1 , v,)-b,· y,+ 1]+[g. (B: Y1, u.) - b.· Y!] 
t= 1 

over all v=(v1, ... ,v,y)ER11 x ... xR1
" and v.ER1

•, 

where y = (y1, ... , y,y, YN+ 1 ) is given by (2.12}--(2.13). 

The nature of this problem will be elucidated in a moment, but first 
we record a crucial fact. 

THEOREM 2.8. The essential objective ~t} in (£0) can be expressed by 

<;{j (v, v.) = inf ) (u, u. ; v, v.). 
(u, u~) 

Thus (f0) is the dual problem associated with,/. 

Proof. Using (2.15) as the alternative expression for (2.11) in the definition 
(2.10) for ,!, we obtain 

,y 

,f (u, u. ; v, v.) = L [J, (u, v,)-(B~ y,+ 1)·u,-b,· y,+ 1]+ 
t= 1 

This yields 
.'1 

inf I (u , ue ;v,v.)= L [sup{J,(u.,v,)-(B~Y, + 1)·u,}-b.-y,+ 1]+ 
(u. u~) r= 1 uteRkr 

+ [sup {1. (u., v.)-(B: Yd · u.}- be· Yll 
u~ ER ,. 

The definitions (2.16) and (2.17) of g, and g. turn this into '§ (v, v.). • 

THEOREM 2.9. The objective function ~g being maximized in (f0) is concave 
and upper semicontinuous (nowhere + oo ). Thus (.0!) is a convex programming 
problem in the general sense, and its optimal solutions (v, v.), if any, form 
a closed convex set. 

P roof. This follows at once from the properties of g, and g. in Proposi­
tion 2.7. • 

Problem (£1), like (.~) , implicitly involves constraints of"t)Je form 

(B~y,+ 1 ,v,)EG, forT = l, ... ,N, and (B:y 1 ,v.)EG., (2.22) 

where G, and G. are the effective domains of the concave functions g, 
and g. : 

G,= {(r.,v,)ERk'xR1'ig,(r.,v,)> -oo}, 

G.= {(r.,v.)ERk•xR1•ig.(r.,v.) > - oo}. 

(2.23) 

(2.24) 
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One has '!} (v , ve) > - co if and only if (2.22) is satisfied. The sets Gt and Ge 
are convex and nonempty, but they need not be closed (even though 9t 
and 9e are upper semicontinuous). 

ExAMPLE 2.10. In the case of the convex programming model m Examples 
1.1 and 2.2, one has 

'· 
{ 

min Ueo (ue)+ I Vei Uei (ue)-reJ} 
( ) 

_ u,E U, i ; 1 
9e re, Ve -

-oo 

if Ve ~ 0, 

Thus in (D) one seeks to maximize the expressiOn 

N L, 

I inf{(fro+ I Vt;h;)(ut)-Yt +1.Btut}+ 
r=l ufeU, i == 1 

subject to vt ~ 0 for -r = 1, ... , N and ve ~ 0. This corresponds to the ordinary 
Lagrangian duality scheme in convex programming and suffers from the 
drawback that unless further assumptions are made about the functions 
involved, one cannot proceed to a level where the "inf' terms can be made 
more explicit. The linear case is an exception, as demonstrated in the 
example that follows. Other cases can be worked out too, but the real 
point is that the duality scheme plugs in at this stage to everything in 
the convex programming literature on ordinary duality. 

ExAMPLE 2.11. In the linear programming case in Example 1.2, the dual 
problem consists of maximizing 

N 

I [qt· Vt-bt·Yt+l ] + [qe·Ve-be·Yl], 
t; 1 

subject to (2.12), (2.13) and 

B7 Yt+ 1 + D7 vt :::; Pt and ut ~ 0 for T = 1, .. , N, 

B:yl+D:ve::;; Pe and ve~O. 

This can be seen by first calculating the Lagrangian terms 

-{ Pt ·ut+qt· Vt - Vt· Dtut 
Jt (u., vt)- - co 

CO 

if ut ~ 0 , ut ~ 0 , 
if ut ~ 0 , vt 1 0 , 
ifut ;f O, 
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-{ p. ·u.+q.·v.-v.·D. ue 
J. (u., v.)- - 00 

CfJ 

if u. ): 0, v. ): 0, 
ifu.):O, v. ';{ O, 
if u. ';{ 0, 

from (2.2), (2.3), and then using the definitions (2.16), (2.17) to obtain 

( ) {
q,·v, ifr, + D:v, :::; p., 

g, r" v, = 
-CIJ . ifr,+Div,f:.p" 

( ) {
q.·v. 

g. r., v. = 
-CIJ 

if r.+D:v.:::;p., 

if r.+ D:v. :::; p •. 

235 

See [ 4] for extensions of this pattern to piecewise linear and quadratic 
programming. 

3. Duality Relations 

Theorems relating the optimal valm~s in (.:1') and (~), namely the quantities 

inf(~) = inf F(u,u.), sup(.f0)= sup rtJ(v,v.), 
(11 , 14) (v , 1~ ) 

are the key to deriving optimality conditions for these problems, because 
of convexity. They also furnish criteria for the existence of optimal solutions. 

The inequality 

inf ( .. 1') ? sup (91-), 

always holds by virtue of the formulas for f and 'tJ in terms of the 
Lagrangian j as demonstrated in Theorems 2.5 and 2.9: 

inf( .1' ) = inf sup I (u, ue; v, vJ ? sup inf / (u , ue; v, ve) = sup('/). 
(u. 11,.) (r. r,.l . (r. r,.fu- u,.) 

Our interest lies in the circumstances under which inf (.1') = sup (0:: ) holds 
and one or both of these extrema is attained. We use the convention 
of writing min (. ~) in place of inf (:P), or max (0: ) in place of sup (.0:), 
to indicate attainment. In the general convex case we are dealing with, 
additional assumptions in the form of "constraint qualifications" are needed 
for the results we want. 

DEFINITION 3.1. We shall say that the primal constraint qualification holds 
if for some choice of (u, u. ) and the corresponding primal trajectory x 
determined from (1.2H1.3) one has 

(C, x,+1 ,u,)EriF, for r=l, .. . ,N, and (Cex.v , ue)EriF., (3.1) 

where F, and Fe are the convex sets in (1.8)-{1.9) and "ri" denotes relative 
interior. (See [1, §6] for a discussion of relative interiors and how they 
can be calculated in various situations). Similarly, we shall say that the 
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dual constraint qualification holds if for some choice of (v, v.) and the 
corresponding dual trajectory y determined from (2.12)-{2.13) one has 

(B'( Yr+1 , vr)Eri Gr for r = 1, ... , N, and (B: y1 , v.)Eri G. . (3.2) 

THEOREM 3.2. If the primal constraint qualification holds, one has 

co > inf (.1') = max (.~) ~ - CD, 

while if the dual constraint qualification holds one has 

co ~ min (.1') = sup (9 ) > -CD. 

If both hold, one therefore has 

CD > min (.1') = max (9 ) > -CD . 

(3.3) 

(3.4) 

(3.5) 

Proof. The general duality theory for optimization problems of convex 
type will be applied as in [2] and more specifically [1, §30]. This requires 
the introduction of primal perturbations w = (w 1 , ... , wN) and w. with 

and the function 

tP (u , u.; w, w.) =sup {J (u , u.; v, v. )-(w, w.)·(v, v.)}, (3.6) 
(v, v.) 

as well as dual perturbations z = (z1 , .. . , zN ) and z. with 

ZrERk, 

and the function 

for r = 1, ... ,N, and z.ERke, 

P (v, v.; z , z.) = inf {j (u , u.; v, v.)-(z, z.)·(u, u.)}. (3.7) 
(tl,llJ 

Clearly from Theorems 2.5 and 2.9 one has 

:F (u , u. ) = tP (u, u.; 0 , 0) and '§ (v, v.) = P (v, v.; 0 , 0). (3.8) 

In fact the calculations in these theorems give 
N 

<I>(u,u.;w,w.)= I [.fr(C,xr- 1 +w" ur) -c,· xr_ 1]+ 
t= 1 

+[fe(C.x.v+ w., u.)-c.· xN] , (3.9) 
N 

P (v, v.; z, z.) = I [gr (B7 Xr+ l +z" v,)-b,· y,+ 1]+ 
t = 1 

+ [g. (B: y.v+z., v.)-b. ·y 1], (3.10) 

where as always, x is determined from (u , u.) by the primal dynamics 
(1.2)-{1.3) and y from (v, v.) by the dual dynamical (2.16)-{2.17). The functions 
tP and rp, the latter defined by 

rp(w,w.)= inft:P(u , u.;w , w.) [rp (O,O) = inf(-1')] , (3 .11) 
(u,uJ 
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are convex, while the functions lJI and 1/J, the latter defined by 

1/J (z, ze) =sup lJI (v, ve; z, ze) [1/J (0, 0) =sup (.stl)], (3.12) 
(v, v,) 

are concave. 
Duality theory centers on the properties of these perturbation functions, 

in particular their effective domains, which are the convex sets 

dom r:p = {(w, we)lr:p (w, we)< eo}= {(w, we)l:l (u, ue) such that 

(C,x,_ 1 +w0 u,)EF, for .r= 1, ... ,N, and (CexN+we,ue)EFe}, (3.13) 

doml/J={(z,ze)ll/J(z,ze)> -oo}={(z,zei:J(v,ve) such that 

(B;y,+ 1 +Z0 V,)EG, for r= 1, ... ,N, and (B:y 1 +ze,ve)EGe}· (3.14) 

These are important because of the conjugacy relations 

':§(v,ve)= -r:p*(v , ve)= inf {r:p(w,we)-(v,ve)·(w,we)}, (3.15) 
(w,w,) 

ff (u, ue) = -l/J* (u, ue) =sup {l/1 (z, ze)-(u, ue) · (z, ze)}. (3.16) 
· (z, z,) 

These relations can readily be verified directly from our formulas, but they 
also hold by the general duality scheme being employed [1, Thm. 30.2]. 

One knows from conjugate function theory that 

oo > r:p (0, 0) = max { -r:p*} if (0, O)Eri dom r:p, (3.17) 

(because cp is convex), and 

-co<l/J(O,O) = min{-1/J*} if (O,O)Eridoml/J, (3.18) 

(because ljJ is concave) [1, Thm. 27.1]. The equation in (3.17) corresponds 
to the duality assertion (3.3), and the equation in (3.18) to (3.4). The proof 
we are faced with reduces then to the verification that 

(0, 0) E ri do m cp=- the primal constraint qualification is satisfied, (3.19) 

(0, 0) E ri do m 1/J =-the dual constraint qualification is satisfied. (3.20) 

To calculate the set ri dom r:p we define the convex set 

F = Fl X ... X F N X Fe, 

the affine transformation 

and the linear transformation 

S:(w, We; u, ue)f---+(W, we). 

These allow us to write (3.13) in the form 

dom cp = S (T- 1 (F)). 
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The calculus rules for relative interiors of convex sets in [1, Thms. 6.6, 6.7] 
then yield 

ri dom cp = S (T- 1 (ri F)) , 

where 

ri F = (ri F1) x ... x (ri FN) x (riFe)· 

This is precisely what (3.19) means. The verification of (3.20) follows the 
same lines. ll 

REMARK 3.3. The proof of Theorem 3.2 provides a basis for interpreting 
the optimal solutions to (.0:i) relative to (.Jil ). It shows through (3.15) and 
(3.19) that under the primal constraint qualification one has 

ocp (0, 0) = arg max (.0:i), (3.21) 

cp' (O, 0; w, we)= sup {(w, we)· (v, ve)l (v, ve)Earg max (.0:i)} , (3.22) 

[1, Thms. 23.4, 23.5]. Similarly it shows through (3.16) and (3.20) that under 
the dual constraint qualification one has 

alj; (0 , 0) = arg min (.!fl), (3.23) 

lj;' (0, 0; z, ze) = inf {(z, z.) · (u, u.) l(u , ue) E arg min (.:Y')}. (3.24) 

Although the significance of the primal and dual constraint qualifications 
can be brought into sharper detail in a particular instance of problem (.!fl) 
by the use of the calculus of relative interiors, both conditions can also 
be stated in another form that in some situations could be easier to verify. 
This other form involves the recession funct ions . 

fr (s., fir)= lim [fr (sr+A.s, ur+A.fir) - fr (so ur)J /A. for (so ur)EF0 (3.25) 
!.f 00 

gr (r" ut)= lim [gr (rr +A.rr, vr+A.vt)-gt (rt> vr)]fA. for (r., vr) EGr, (3.27) 
A Too 

g. (r., v.) = lim [g. (re+A.re, v.+A.v.)-g. (r ., v.)]/A. for (re, v.) EG. . (3.28) 
I.Trx. 

(These formulas are instensitive to the choice of the base point, as long 
as it belongs to the effective domain in question. Thus in (3.25), for instance, 
one gets the same function J, regardless of the particular choice of 
(so ur) E Fr; see [1, Thm, 8.5]). In terms of these functions we define 

N 

.fr (u,u.)= I [l,(Crxr- 1 ,fir) - cr·Xr- 1]+[.J:(C.x.v,fi.)-c.·x,v] , (3 .29) 
-r ;;;: l 

where .X is the state trajectory generated from (fi, u.) by the "homogenized 
primal dynamics": 
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x, = A,x,_ 1 +B,u, for 1=1, ... ,N, with x 0 =B.u., (3.30) 

(where b, and b. have been suppressed). We also define 

N 

@ (v ,v.)= L [g,(B~Yr+[ ,v,) - b,·y, + 1]+[§.(B:.Yt,v.)-b.·hJ , (3.31) 
-r== 1 

where y is the state trajectory generated from (v' v.) by the "homogenized 
dual dynamics" : 

y,=A~y,+ 1 +C~v, for 1=1, ... ,N, with YN+ 1 =C: v •. (3.32) 

PROPOSITION 3.4. 
(a) The dual constraint qualification holds if and only if every (u, u.) satisfying 

.# (u, u.) ~ 0 actually satisfies :# (u, u.) = 0 = .# ( -u , -u.). 
(b) The primal constraint qualification holds if and only if every (v, v.) satisfying 

@ (v , v.):::;, 0 actually satisfies @ (v , v.) = 0 = @ ( -v, -v.). . 

Proof. We shall demonstrate that .# is the support function of the convex 
set dom 1/J , 

:# (u ' u. ) = sup { (u' u. ). (z' z.) I (z' z.) E do m 1/J}, (3.33) ' 

and similarly for @, with a change of signs for the sake of concavity: 

@ (v, v.) = inf {(v , v.)· (w, w.)l(w , w.)Edom cp} . (3.34) 

The desired conclusions will then be immediate from (3.19), (3.20), and the 
basic theory of support functions [1, Cor. 13.3.4]. 

The conjugacy between fr and g, as expressed by (2.18) and (2.20) yields 
by [1, Thm. 13.5] the support function formulas 

!. (so u,) = sup { u, . r t- s,. v, I (r t' v,) E G ,} ' 

g, Wo v,) = inf {v,. s,- r, . u,l(sp v,) E F,}. 

Likewise from (2.19) and (2.21): 

fe (s., u. ) =sup {u. -r. - s. · v.l(r., v.)EG.}, 

g. (r., v.) = inf {ve · se - re· u.l(s., v.) E F.} . 

(3.35) 

(3.37) 

(3.38) 

Working first toward (3 .33), we use the description of dom 1/J in (3.14) with 

to write 
N 

sup {(u, u.)·(z, z.)l(z, ze)Edom 1/1} =sup { L u,· [r,-B~ Yr+tJ+ 
r= 1 

+ u.·[r. -B:y 1]l(r"v,)EG, for some V0 (r.,ve)EG. for some v.} . (3.39) 

The equation 
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N N 

L y,+ 1 ·B, u,+y1 ·B. u. = L x ,_ 1 · [Civ, +c,]+x0 · [C: v. +c.] , 
t=1 t=1 

is true as a special case of the Ol)e in Proposition 2.6, namely where 
the b, and be terms are omitted so that ' the primal dynamics is given 
by (3.30). The value i~ (3 . 39~ can therefore be written also as 

N 

sup { L (u,·r,-x ,_ 1 · [Ci' v,+c,])+(u. · r. -xN ·cc: v.+c.J)i(r" v,)E G, 
t= 1 

N 

for'= 1, ... , N, and (r . , v.) EG.} = L [sup {u,·r,-
t=1 (r,.v,)E G, 

which by (3.35) and (3.37) turns out to be # (u , u.), as defined in (3.29). 
Thus (3.33) is true. The verification of (3 .34) follows the same pattern. • 

PROPOSITION 3.5. If (.Jll) has at least one f easible solution, i.e. there ex ists 
(u, u.) such that the implicit constraints (1.7) are satisfied, then for any such 
(u, u.) one has the formula 

.# (u, u. ) = lim [.? (u+ . .W, u.+ Au.)- .'1' (u, u.)J/A. (3.41) 
!.Too 

In other words, .# is the recession fun ction associated with :IF. Duality, 
if (0i) has at least one (v, v. ) satisfying the implicit constraints (2.22), then 

@ (v , v.) = lim ['09' (v+ Av , v.+ J,v.)- \# (v, v.)]/A. 
J.foo 

(3.42) 

Proof. These expressions can be calculated directly from the definitions of 
# and I? those of the functions/. , g" /., and §. . • 

CoROLLARY 3.6. The dual constraint qualification is satisfied in particular if 
for some number a the level set {(u, u.)l .? (u , u.) ~a} is nonempty and 
bounded, as for instance when the set of optimal solutions to (.J') is nonempty 
and bounded (the case of a = inf (21)). 

Similarly, the primal constraint qualification is satisfied in particular if for 
some number fJ the level set {(v , v.)l ~§ (v , v. ) ~ fJ} is nonempty and bounded, 
as for instance when the set of optimal solutions to (0i) is nonempty and 
bounded (the case of fJ = sup (£0)). 

Proof. The first of the level set properties corresponds to .? being a proper 
convex function whose recession function is positive except at the origin; 
cf. [1, Thm. 8.7]. Similarly for the second property. • 

EXAMPLE 3.7. In the . ordinary convex programming case described in 
Examples 1.1 and 2.2, the primal constraint qualification holds in particular 
if there exists (u , u. ) satisfying (with the corresponding x): 
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hi(u,)<c,i·x, _ 1 for i=1, ... ,1., and u,EU,, (3.43) 

fe;(ue) < Cei · XN for i = 1, ... , /., and Ue E U e· (3.44) 

This can be seen right from Definition 3.2 and the fact that U, c cl [ri U,] 
and Ue c cl [ri UeJ. (Actually the primal constraint qualification is more 
subtle than (3.43)--(3.45) and nicely covers cases where linear equations have 
been represented by pairs of inequalities). The dual constraint qualification, 
on the other hand, can be analyzed in the form provided by Proposition 3.4(a). 
Let us introduce the recesssion functions 

and similarly .f.i (ue). (These functions might be extended-real-valued even 
though f,i and fei are finite everywhere). Let us also denote by U, and Ue 
the recession cones of U, and Ue [1, §8]. Then 

if u, E fJ, and 
jci (ur) ~ Cri X,-1 for i = 1, ... , /., 

otherwise, 

if UeE [Je and 
J.i (ue) ~ c ei .XN for i = 1, ... , le, 
otherwise. 

The dual constraint qualification is therefore satisfied in particular if the 
only choice of (fi, ue) such that 

N 

I [].0 (ur)-c,·x,_ 1] + [.f.o (ue)-ce·xN] ~ 0, 
t = 1 

for 

for 

i = 1, ... , l., 

i = 1, ... , !., 

and 

and 

UrE U., 
UeE U., 

is (u, ue) = (0 , 0). This is trivially true, for instance, if the sets U, and Ue 
are bounded (because then U, = {0} and Ue = {0}), and this case is also 
obvious from Corollary 3.6. More generally, however, the functions J.i 
and .f.i express the growth properties of hi and fei, which can lead to the 
dual constraint qualification being easily verifiable in cases where U, and 
U e are not necessarily bounded. 

4. Saddle Point Conditions and Decomposition 

The Lagrangian f which we have introduced in representing problem 
(.:I') and constructing its dual (~) has the important property that 
f (u, ue; V, Ve) is Separable in the u, and Ue components for fixed (v , Ve) 
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but also separable in the v< and v. components for fixed (u , u.). This is 
true because of the alternative formulas for the term [(u , u.), (v , v.)] provided 
in (2.11) and (2.15). We shall demonstrate in this section that such separability 
leads to a primal-dual decomposition scheme in the form of a "minimaximum" 
principle like the one recently derived for the special case of piecewise 
linear-quadratic optimal control in [3], [ 4]. This principle gives a joint 
decomposition of (&') and (.~) with respect to time. A predecessor in 
"continuous-time programming" can be seen in the work of Grinold [6, p. 46] 
and another in a context of optimal control and the calculus of variations 
in Rockafellar [7, Thm. 6]. 

To i:et the stage, we begin with a fundamental fact about the relationship 
between (t?J) and (.~ ). 

THEOREM 4.1 . One has min (&) = max (.~) if and only if cl has a saddle 
point, in which event the saddle points of cl are precisely the elements 
(il, u.; v, v.) such that (u, u.) is an optimal solution to (:?l) and (v, v.) is an 
optimal solution to (.~). Then 

min (&') = max (.03) =" (u , u.; v , v.) [finite]. 

Proof. We get this immediately from the representations established in 
T heorems 2.5 and 2.9. We need only invoke elementary and well known 
facts of general duality theory (cf. [2, Thm. 2], for instance). B 

CoROLL ARY 4.2. 
(a) If the primal constraint qualification holds, then a necessary as well as 

sufficient condition for (u, u.) to be an optimal solution to (9 ) is the 
ex istence of some (v, v.) such that (u , u.; v, v. ) is a saddle point of f 

(b) If the dual constraint qualification holds, then a necessary as well as 
sufficient condition for (v , ve) to be an optimal solution to (.03) is the 
ex istence of some (u, u.) such that (u , u.; v , v.) is a saddle point of f 

Proof. This combines Theorem 4.1 with Theorem 3.2. B 

THEOREM 4.3. ("Minimaximum Principle"). In order that (u , ue; v, ve) be a 
saddle point of cl, it is necessary and sufficient that the f ollowing conditions 
in terms of the corresponding state trajectories x and y hold at each time T: 

(u<,-v<) is a saddle point of 

J< (uo v<) = J< (uo v<)-il<. Bi Y<+ 1- V<. c< X<_ 1' (4.1) 
and 

(ue, v.) IS a saddle point of 

J. (ue, ve) = I. (u., v.)-ue · B: y1 - v. · Ce XN . (4.2) 

P roof. The saddle point condition for (u, u.; v, v.) consists of the two 
relations 

(it, u.)Eargmin c/ (u , ue; v, v.), (4.3) 
(u , 11 ~ ) 
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(v, Ve)Eargmax ,j. (ii, iie; V, Ve). (4.4) 
(v, t•,) 

Expressing f (u, ue, v, ve) first in terms of (2.11), we see that (4.3) is equi­
valent to 

ii,Eargmin {J, (uo v,)-u,·B: Y<+l-v, · c, X,-d, (4.5) 
u, 

for -r = 1, ... , N, and 

iieE argmin {le (ue, ve)- Ue. B~ Yl- ve. ce .XN}. (4.6) 
"· 

Expressing cl (u, ue; v, ve) then in terms of (2.15), we see on the other hand 
that (4.4) is equivalent to 

(4.7) 

for -r = 1, ... , N, and 

ve Eargmin {le (iie, ve) -iie. B~ Yl- ve. Ce .XN}. (4.8) 
v, 

The combination of (4.5) and (4.7) is equivalent to (4.1), while the combination 
of (4.6) and (4.8) is equivalent to (4.2). • 

CoROLLARY 4.4. Consider relative to a given (ii, iie; v, ve) and the corresponding 
trajectories .X and y the following subproblems: 

(Y,) 

(~,) 

minimize fr(C,x,_ 1 ,u,)-u,·B:y,_ 1 in U0 

maximize g, (B: y,+ 1 , v,)- v, ·,C, x,_ 1 in V0 

for -r = 1, ... , N and also 

o~e) 

(.0Je) 

minimize fe ( ce XN' ue) - u •. B~ Y1 in Ue' 

maximize 9e(B:yN,ve)-ve·C:x1 in Ve· 

Then in order that (ii, u.; v, ve) be a saddle point of f the following 
conditions are necessary and sufficient: 

u, is optimal .for (fi,), v, is optimal for (.03,), and inf (:~,) = sup (.03,) (4.9) 

.for 1: = 1, ... , N, and 

ue is optimal .for (.~e), v. is optimal .for (f0e), and inf C;;;e) = sup (2&.). (4.10) 

Proof. For the convex-concave function J, in (4.1) we have by (2.4) that 

.f, ( C, .X,_ 1 , u,)- u, · B: y, + 1 = sup J, ( u" v,), 

and by (2.16) that 

g, (B: Y<+ 1 , v,)-v,· C, x,_ 1 = inf J, (uo v,). 
u, 

Therefore (.cfi,) and (~,) are the primal and dual problems associa~ed with J. 
The saddle point condition (4.1) can thus be written equivalently as (4.9) 
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By a parallel argument, the saddle point condition (4.2) is equivalent 
to (4.10). B 

ExAMPLE 4.5. In the ordinary convex programming model in Examples 1.1 
and 2.2, the saddle point conditions in Theorem 4.3 reduce to the following. 
The pair (u" vt) is a saddle point of the expression 

l, 

Lfro (ut)- ut· Si Yt+ 1J + L vti [fti (ut)- cti · Xt-1], 
i= 1 

relative to ut E Ut and vt ~ 0, while the pair (u., v.) is a saddle point of the 
expressiOn 

l, 

[!eo (u.)- u •. B: Y1] + L Vei Uei (u.)- Cei. xN]' 
i = 1 

relative to u.E u. and v.): 0. These conditions mean that ut is an optimal · 
solution to, and vt a Kuhn-Tucker vector for, the problem 

(:Jiit) mmimize !to (ut)- ut· B: Yt+ 1 subject to 

ut E Ut and hi(ut) :::::; cti ·xt_ 1 fori= 1, ... , 1" 

while u. is an optimal solution to, and v. a Kuhn-Tucker vector for, · 
the problem 

(#.) mimmize !eo (u.)-u.·B: y1 subject to 

u. EUe and fei(u.):::::c. i·xN for i= 1, .. . ,1 •. 

ExAMPLE 4.6. The linear programming model in Examples 1.2 and 2.11 gives 
the subproblems 

(.Yt) minimize [Pt- B: y + 1l ut subject to ut ): 0, D! ut ): [qt- Ct xt_ 1] , 

· (.~t) maximize [q, - Ct x,- 1] · vt subject to vt ): 0, D: vt:::::; [pt-B: Yt+ 1] , 

and 

(:#,) m1mmize [p. -B:u1]·u. subject to u.):O, D.u.): [q.-CexN], 

(~,) maximize [q. - c. xN]. v. subject to v., D: u. :::; [p. - B: Yll 

For such problems the linear programming duality theorem tells us that 
the equations inf (.)t) = sup (.9,) in ( 4.9) and inf ( Y'J = sup (.03.), in ( 4.1 0) are 
redundant. Corollary 4.4 thus characterizes the optimal solutions (.11' ) in 
terms of optimal solutions to certain temporal linear programming problems 
(#t) and (;#.) and their duals. 

This pattern extends to problem models in piecewise linear-quadratic 
programming. See [4] for details. 

REMARK 4.7. The patterns developed here show that not just linear-quadratic 
programming or ordinary convex programming fit this situation. Any primal­
-dual pair of problems in the literature of finite-dimensional convex optimi-

--- ----------------------------------------------------------------------
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zation can be set up to appear as the subproblems of Corollary 4.4 and 
yield a corresponding version of (-!f') and (.~). 
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Wieloetapowe programowanie wypukle 
a sterowanie optymalne z czasem dyskretnym 

W pracy przedstawiono nowe sformulowanie zadania optymalizacji wypuklej na skon­
czonej liczbie etap6w. Pozwala ono na potraktowanie zadania jako zadanie sterowania 
optymalnego a takze wprowadza pewne cechy istotne dla programowania matematycznego. 
Warunki optymalnosci wyprowadzono z rozwaza1\ dotyczqcych zadania dualnego. Ze wzgl«du 
na wlasciwosci sformulowania warunki optymalnosci przyjmujq postac zasady ,minimaksi­
mum", kt6ra prowadzi do dekompozycji wzgl«dem czasu zar6wno zadania pierwotnego jak 
i dualnego. 

MHoro:nanuoe BhiDYKJioe nporpaMMHposauue 
11 )J,HCH:peTHOe ODTUMaJihHOe ynpaBJieHne 

B pa6oTe npe).\CTaBJleHa HOBail cjlOpMyi1HpOBKa 3a).\a'lH BblflYKJlOH OIITHMH3al.(HH 1.\Jlil 
KOHe'lHOfO 'll1CJ1a 3Ta!10B. 0Ha II03BaJ15leT BOCllpHHHMaTb IIp06J1eMy B BH).\e 3a).\a'lH OIITH­
MaJibHOfO yrrpaBJleHIUI, a TaK)I(e BBO).\HT HOBble cyll.(eCTBeHHble cjJaKTOpbl ).\J15! MaTeMaHI­
'IeCKOfO rrporpaMMccpoBaHHil. YcnOBH51 orrTHMaJlbHOCTH BbiBOI.\i!TCi! rc3 paccMoTpeHHH , Ka­
caiOLUHXCil ,ayanbHOH 3<t).\a'IH. Y'IHTbiBa51 csoiiCTsa cjJOpMym1pOBKH ycJIOBHil onTHMaJcbHocnc 
IIpHHHMaiOT BH).\ IIpHHUilfla ,MHHHMaKca", KOTOpblH Be).\eT K ).\eKOMIJ0311UHH 110 BpeMeHH 
KaK rrepBH'IHOH TaK 11 AyaJibHOH 3a).\a'IH. 




