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In order to describe control systems with variable structure, a hierarchical two-level 
model with a discrete time dynamical model at the upper level and a continuous time 
differential model with homogeneous structure at the lower level is considered. New sufficient 
optimality conditions which generalize those developed earlier by the author for such 
systems are proposed. In these conditions at each level the Krotov function is replaced 
by a resolving system which consists of a family of Krotov-type functions and a functional 
over this family. A brief review of earlier theoretical and applied results is given. 

1. Introduction 

Many real systems, continuous by nature, may exhibit different properties 
m different situations. For that reason they are described with difficulties 
or are not described at all in terms of classical differential equations. 
As examples we may consider multioperational technological processes, 
interplanetary space flights, walking robots, etc. They can be conveniently 
described in terms of hierarchical dynamical models that use discrete models 
at the upper level, and continuous differential models with the homogeneous 
structure at the lower level. 

The discrete model is described by the following relations 

X (t + 1) = f (t , X (t), u (t)) , t ET= { t;, t;+ 1, ... , t J}, 

(x (t), u (t))EB (t) c X 0 (t) x U 0 (t) , 

f(t,·): X 0 (t) x U0 (t)-+ X 0 (t+ 1), 

(1) 

(2) 
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(3) 

where X 0 , U 0 are some arbitrary sets and B, r are given sets. Introducing 
the projection X of B on X 0 and its section at given x (t) we can write 
the condition (2) in the following form 

X (t)EX (t), u (t)E U (t, X (t)). 

The chain (1) can be also represented by 

X (t+ l)E V(t , X (t)) = f (t, X (t)) , V(t, X (t)). 

Let us call V the set of possible transitions from the state x or briefly 
the transition set. 

Let us denote by D the set of elements (triplets) m= (T, x (t), u (t)), 
t ET, which satisfy the conditions (1H3). 

The continuous differential model is described by the following relations 

y = h (r, y, w), rE T;, = [r;, r1] ER , 

(y,w)EBe(r) c Y0 xW0 , 

Ye= (r;, y (r;), r1 , y (r1))ETe c (R x Y0)
2

, 

(4) 

(5) 

(6) 

where Y0 is the Euclidean n-dimensional space, W0 is an arbitrary set, 
h:(R"+ 1 x W0 )->Y0 is an operator, Be(r),Te(r) are given sets. 

Let us denote by De the set of triplets me= (T;, , y (r), w (r)), rE T;,, where 
y (r) is an absolute continuous or piecewise smooth function, satisfying the 
conditions (5H6) and (4) (almost everywhere on T;,) and call it the admissible 
set. It is supposed that it is not empty. 

The condition (5) can be written in the form 

yEY(r), wEW(r,y), 

and the equation (4) in the form 

yEYc(r,y)= h(r,y, W(r,y)), 

where Y(r), W(r ,y) are the projection of Be (r) on Y0 and the intersection 

of Be (r) with given yE Y (r), respectively. 

2. The model of the composite process 

Let T* c T\ t,\ t f be some subset of T and assume that there holds 
U 0 (t) = U Od (t ) x U oe on this subset, where U Od is an arbitrary set, U oe is 
an arbitrary set of triplets me and the intersection of the set B (t) c 

c X 0 (t) x U od (t) x U oe (t) of the discrete model with given x (t) EX 0 (t), 
ud (t)E Uod (t) is the admissible set De (t, x (t), ud (t)) of the continuous model. 
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In other words, De is formed at a given t by the parametric family of 
the ordinary differential systems (4}--(6) with x (t) , ud (t) as the parameters. 

Let the operator f (t, ·) be given in the following form 

f (t, X (t), u (t)) = g (t, X (t), ud (t), Ye), 

where Ye is the bound of the corresponding differential system and 
q (t,·):X0 (t) x Uod (t) x (R x Y0 ) 2 --+ X (t+l). 

Let us consider the set (T*, x (t) , ud (t), me (t)) (or more explicitely 
(T*, x (t) , u (t) , I; (t), y (t , r), w (t , r)), t ET* , rE I; (t))) as the solution of the 
itbove combined system. In this case the element m= (T, x (t), u (t)) E D 
on the whole we call the discrete-continuous or alternatively the composite 
process. 

3. Sufficient optimality conditions 

Let us consider the optimal control problem for the model developed 
above in some standard form as the problem of the minimization of a 
functional I= F (y) (of the upper level model) with the given ti> t1 . 

Sufficient optimality conditions for this problem can be obtained on the 
basis of the principle of extensions [1, 2], which is expressed by the 
following abstract lemma. 

LEMM A 1 (V. F. Krotov, M . M. Khrustalev). Assume that for a given 
functional I: M --+ R there exist a sequence {m.} c D c M, a functional 
L:M--+R, a set EcM and a number l such that 1) mEDcE ; 2) L(m)~ 
~I(m)'imED; 3) l ~L (m),mEE, 4) I(m.)--+1. 

Then I = i~f L= i~f I, [ms} minimizes I on D and I (m.)-+ l for any mini-

mizing sequence of I on D. 

Proof. The first assertion of the lemma is evident. Consider the second one. 
If { ms} is a minimizing sequence, then I (m.)--+ i}}f I = l. Assume that 

L (m.) f> l. Then by the definition of l a number c: > 0 can be found such 
that L (m5 ) > l + c:. But this contradicts the condition I (ms)--+ l. Therefore 
there exists a number s such that I (ms) < l+c: and consequently I (ms) < 
< L (m.). But this is impossible by the definition of L (m). 11 

The principle of extensions consists in replacing the initial problem 
(D, I) by a similar problem (E, L) which is simpler in some sense but 
also gives a solution to the initial problem. 

Let us call the problem (E , L) with the conditions 1, 2 an extension 
of the initial problem (D, I) and a resolving extension if the conditions 3, 
4 of lemma 1 are satisfied. 

The second assertion of the lemma means that if a resolving extension 
IS found for some solution of the initial problem then it is resolving for 



250 W. l. GURMAN 

any other solution 1.e. it permits obtaining all solutions of the initial 
problem. 

For the problem considered we shall obtain an extension (L, E) in the 
following way. Exclude the recurrent chain (1) and differential constraint (4) 
from the restrictions of the sets D and De. Introduce functionals wE Q, 
<p (t, x (t), er:) (<p (t, ·)): X 0 (t) x A--? R and a parametric family 

(x (z)EQ, 8 (z , r, y, b)ES), 

~ { d where z = (t , x(t) , ud(t)), B(z,-):w+l X Ll (z)-? R , .!:l = e: dr (e (r, y (r)) = Br+ 

e, . v. } ( - {.l!L ae} - ae) Q = {w. R--? R R = + yy, mcEDc By-colon oyl'·· ·' oy" ,er-a,' . ' 

= (r: Q--? R}, r (q) ::; 0 => w ::; 0, w (0) = 0}, and Q is an arbitrary set, Q =A 
or Q = Ll (z). 

Specify the functional L in the following way 

L=G-w(} K(t , ·)-}Gc(t,·)-x( f Kc(z,b,·)dr), 
TfO.tf T: Tctz) 

where 

G (y) = F (y)+w (<p (t1 , x (t1 ) , er:) - <p (ti , x (t;) , a)), 

K (t, X (t) , u (t), a)= <p (t+ 1,f(t, X (t) , u (t) , a))-<p (t, X (t) , er:) , 

G c (z , Y c, IX) = - <p ( t + 1 , g ( z, y c), a) + <p { t , X ( t) , a) + 

+x (e (z, r1 , y (r1), c:5)-e (z , ri> y (ri), c:5)) , 

K C (z , r , y, w, c:5) = e~ (z' r, y, c:5) h (z, r , y, w) +et (z, r, y, c:5). 

It is easily seen that L= I when mE D. Actually when m ED (me (z)E 
EDc (z)) and the restrictions (1) and (4) are satisfied, then 

L = F (y)+w (<p1 - <pJa-W (} (<p (t+ 1, x (t + 1), a)-
t\4:r*\t, 

-<p (t , x (t), a)+ I (<p (t+ 1) , x (t+ 1), a) - <p (t, x (t), a)+ 
T* 

+x (z, (81 - 8i)0)-x (z, J (8~ y+8r)cdr)) = 
T , (z) 

= F (y)+w (<pf-<pJa-W ( L (<p (t+ 1,·)-<p (t,·))a) = F (y) =I. 
T .tf 

From this fact and the principle of extensions (lemma 1) we come to 
the following statement. 

THEOREM 1. Assume that we have a sequence of composite processes {m,} c D 
and functionals <p , 8ES, wEQ, xEQ such that 

1) sup Kc(z , r , y , w,c:5)=0 'rf t ET* ' bELl (z), 
(y,w)eH,(z) 
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2) 

3) 

4) 

5) 

6} 

TE T., (z), X (t)EX (t), Ud (t)E Ud (t, X (t)) ; 

e( s K,(z., T,Ys (-r),ws(T) ,b)d-r)~o ; 
Tcs 

infG,(z ,y,,a)=O 'iltET*, ctEA; 

y,E T, (z)n {y,: YiE Y(z, -ri), YJE Y(z, -r1)}, 

Ud (t)E Ud (t, X (t)), X (t)EX (t), 

sup K(t,x(t),u(t),a)=O 'iltET\ T* , ctEA; 
(x (<), u (cj)eB(c) 

eo() K(t ,X5 (t) , u5 (t),a)-L:G,(z.,ycs,a))~o; 
1\Btr T. 
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Then the sequence {ms} is minimizing for the functional I on D and any 
minimizing sequence for this problem satisfies the conditions 2, 5, 6. 

This theorem gives general optimality conditions for composite processes. 
They can be specified according to a resolving extension defined by 

functionals eo, rp, x, e. This makes it possible to generate different approaches 
to given problems under investigation. One of these approaches leads to 
the well-known dynamic programming procedure. 

4. Sufficient conditions in the Bellman form 

Let x (ti) and X (t) = X 0 (t) , t ET\ti , Ti, y (-ri) be given for the given z: 

-ri = -ri (z) , y (-r;) = Yi (z), (-r1 , y (-r1))ET,1 (z) , g (z , y) = g (z , -r1 , y (-r1)) , 

where r,1 (z) is a surface in w+t not containing (-ri, Yi), F (y) = F (x (t1 )). 

Define w, X to be identical and define rp, e by the following conditions : 

for tE T* 
sup K, (z, -r , y, w) = 0, 

WE W(z ,t, y) 

-rp (t+ 1, g (z, -r1 , y1 ))+8 (z, -r1 , y1) = 0 when (-r1 , y1 )ET,1 (z); 

inf Gc (z , Ye)= 0 ; 
Ud El'd(c,x(t)) 

for tET\ T* 

sup K (t , x (t) , u (t)) = 0 , G (x (t1)) = -rp (ti> x (ti)) . 
ll(t)eU(i , x(t)) 

Considering the left parts of these equations we come to the following 
recurrence chain for rp, e: 

rp (t1 , x (t1 )) = -F (x (t1 )); 
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cp (t, X (t)) = sup cp (t+1,f(t, x (t), u (t))), tET\ T*, 
ueU (t , x(tl) 

8r+ sup (e~h(z,r , y,w)) = O, 
wEW(=.r.y) 

8 (z, rf, YJ) = cp (t+ 1, g (z, rf, YJ)), 

when (rf, YJ)ETcf (z), tE T*, 

cp(t,x(t))= sup 8(z,rdz),ydz)), tET* , 
u,eU,(r.x(t)) 

which is solved from t f to ti. 

W.l. GURMAN 

(7) 

Assume that the solution of this chain cp (t, X (t)), e (z, r, y) exists and 
moreover that the functions u (t , x (t)) , Ltd (t , x (t)), w (z, r , y) which are obtained 
as results of maximization can be supplied. After inserting these functions 
into the right-hand parts of the initial discrete and continuous time relations 
we obtain 

X (t+1) = .f(t , X (t), u(t , X (t)), X (tll) = X11, tET\ T*; 

X (t+ 1) = g (z, !f (t, X (t))) , y (rf (t , X (t))), 

y = h (z, r, y , w (z, r, y)), y (ri) = Yi (Z) , tET*, 

Z = (t , X (t), Ud (t , X (t))). 

Then the solution of this discrete-continuous chain mE D is an optimal 
composite process satisfying all the conditions of theorem 1, because 
conditions (7) hold. 

Actually the solution of the problem is obtained for any combination 
of initial condition with the same functions (it ( ·), ud (-), w ( · )) and such 
result we shall call a traditionally optimal control synthesis. 

5. Conclusions 

The hierarchical description of the class of processes considered, with 
the proper interpretation of the elements of the abstract discrete process, 
was previously proposed in [3]. In this approach sufficient optimality 
conditions were developed as a combination of known Krotov's conditions 
for continuous and discrete processes. These conditions were then used for 
developing the first order control improving algorithms with applications 
in some problems of space flight and walking robot control [4-7]. Advantages 
of the proposed approach become apparent particularly in the latter work 
which dealt with an area of control problems which was new at that time. 
Initial control strategies defined intuitively from practical considerations were 
improved from 4 to 5 times with respect to some typical criteria. 

In this work new generalized sufficient optimality conditions a re proposed . 
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The resolving Krotov functions ( cp, 8) for "discrete" and "continuous" levels 
are replaced accordingly by resolving systems. Eeach of them consists of 
some family of Krotov-type functions CfJa, ea and a functional over this 
family [2]. In [8] the new technique of investigation of continuous systems 
connected with new conditions is demonstrated on some clear examples. 
But on the whole the algorithmic development of these conditions is at 
the beginning. 

Notice that a continuous process can be represented as a particular 
case of a discrete-continuous process by dividing the given time interval 
into some final number of stages. As a result the conditions of Th. 1 
become sufficient for optimality of continuous processes. They are more 
general than the conditions [8] because they permit the change of the 
resolving system (x, 8) in time and state as opposed to the constant 
resolving system in [2, 8]. This feature is advantageous when optimal 
sliding regimes are investigated. 

Th. 1 can be generalized practically without any change to the case 
when Y0 is an arbitrary linear normed space. 

In some practical cases it is convenient to use models, describing 
so-called composite discrete processes where the continuous model in the 
lower level is replaced by the discrete one. A modification of theorem 1 
in such cases is not difficult. 
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Modele i warunki optymalnosci dla systemow 
dyskretno-ci:tglych 

W.l. GURMAN 

Do opisania sterowanych system6w ze zmienn~ struktuq rozwazono model hierarchiczny 
o dw6ch poziomach. Na wyzszym poziomie znajduje si~ model dynamiczny z czasem 
dyskretnym, a na nizszym ci~gly model rozniczkowy o jednorodnej strukturze. Zapropono­
wano nowe dostateczne warunki optymalnosci dla takich systemow. Uogolniaj~ one warunki 
wyprowadzone wczesniej przez autora. Wyst~puj~ce poprzednio na ka:i:dym pdziomie funkcje 
Krotova zamieniono systemami rozwi~zujqcymi, kt6re skladaj~ si~ z rodzin funkcji typu 
Krotova i funkcjonalu okreslonego na tej rodzinie. Podano krotki przegl~d wczesniejszych 
wynik6w teoretycznych i praktycznych. 

MonenH H ycnoBHR onTHManhHOCTH 
nHcKpeTuo-uenppephiBHhiX npoQeccoo 

,ll,mr OilHCaHHl! yrrpaBJil!eMbiX CHCTeM C nepeMeHHOH CTpyKTypoH paCCMaTp11BaeTCl! 11epap­
XII'IeCKal! AByxyposHesal! MO.Qeiib, Ha sepxHeM ypOBHe KOTOpOH HCllOI!b3YeTCl! AHCKpeTHal! 
AHHaMWieCKal! MO.Qeiib , a Ha HHlKHeM - - · Henpepb!BHal! AHcpl\JepeHQHaJibHal! CHCTeMa OAHO­
pOAHOR cTpyKTYPbi. Dpe.QIIaraiOTCl! HOBble AOCTaTO 'IHbie yciiOBHl! onTHMaiibHOCTH TaKHX 
CHCTeM, o6o6maiOmHe paHee BbJBe.QeHHbie aBTOpOM. B HHX BMeCTO cpyHKL\HH KpoTOBa Ha 
KalKAOM ypOBHe l\JMrypHpyiOT pa3pewa!OmHe CHCTeMbl, COCTOl!lijHe 11 3 CeMeHCTBa <llYHKl\HH 
nma KpoTosa 11 fjJyHKl\HOHaiia HaA 3THM ceMewcTsoM. ,D,aeTcl! KpaTKHil o63op npe.Q!liecT­
syiOmux TeopeTWieCKHX H llpHKIIa.QHbiX pe3yiibTaTOB. 


