Control
and Cybernetics

VOL. 17 (1988) No. 2-3

Models and optimality conditions
for discrete-continuous processes

by

V. . GURMAN

Irkutsk Computer Center
Siberian Branch

Academy of Sciences USSR
Lermontova 134

664033 Irkutsk-33

USSR

In order to describe control systems with variable structure, a hierarchical two-level
model with a discrete time dynamical model at the upper level and a continuous time
differential model with homogeneous structure at the lower level is considered. New sufficient
optimality conditions which generalize those developed earlier by the author for such
systems are proposed. In these conditions at each level the Krotov function is replaced

" by a resolving system which consists of a family of Krotov-type functions and a functional
over this family. A brief review of earlier theoretical and applied results is given.

1. Introduction

Many real systems, continuous by nature, may exhibit different properties
in different situations. For that reason they are described with difficulties
or are not described at all in terms of classical differential equations.
As examples we may consider multioperational technological processes,
interplanetary space flights, walking robots, etc. They can be conveniently
described in terms of hierarchical dynamical models that use discrete models
at the upper level, and continuous differential models with the homogeneous
structure at the lower level.

The discrete model is described by the following relations

x(@t+1)=f(t,x@),u@),teT={t;, t:+1, ..., t;}, (1)
(x (), u()eB (t) = X, (1) x Ug (1), (2
f@,): Xo ()xUg (1) > Xo (t+1),
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y=(tx (), tr, x (t))eT, ()

where X,, U, are some arbitrary sets and B, I' are given sets. Introducing
the projection X of B on X, and its section at given x (f) we can write
the condition (2) in the following form

x(t)eX (1), u®eU(t,x ). .
The chain (1) can be also represented by
x(t+DeV(t,x@)=r(t x @), V(,x@).

Let us call V the set of possible transitions from the state x or briefly
the transition set.

Let us denote by D the set of elements (triplets) m = (T, x (), u (¢)),
te T, which satisfy the conditions (1)(3).

The continuous differential model is described by the following relations

J.)=h(‘5,y,W),TET;=[T;,TIJER, (4}
[y,W)EBc{‘E)C YOX WO) (5]
Ye= (rh y [Ti)a Tf! y (tf]]erc = (RX YDJZ'J [6)

where Y, is the Euclidean n-dimensional space, W, is an arbitrary set,
h:(R"*!x W,)— Y, is an operator, B, (1), I, (t) are given sets.

Let us denote by D, the set of triplets m, = (T, y (), w (7)), te T,, where
vy (r) is an absolute continuous or piecewise smooth function, satisfying the
conditions (5)-(6) and (4) (almost everywhere on T;) and call it the admissible
set. It is supposed that it is not empty.

The condition (5) can be written in the form

yeY(r), weW(r,y),
and the equation (4) in the form
PEI’;(T:Y)=’1(T:J’» W(Tsy))&

where Y (t), W(t,y) are the projection of B.(t) on Y, and the intersection
of B, () with given ye Y (1), respectively.

2. The model of the composite process

Let T, = T\t\t;, be some subset of T and assume that there holds
Ug(t) = Uy, (t)x Uy, on this subset, where U,, is an arbitrary set, Uy, is
an arbitrary set of triplets m, and the intersection of the set B(t)<
S Xy () xUpg (t)x Ug. (t) of the discrete model with given x(t)eX, (t),
uy (t)e Up, (1) is the admissible set D, (t, x (t), uy (¢)) of the continuous model.
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In other words, D, is formed at a given t by the parametric family of
the ordinary differential systems (4)6) with x (¢), u, (f) as the parameters.
Let the operator f(t,-) be given in the following form

e x @), u@)=g(t,x@),u @),y

where 7y, is the bound of the corresponding differential system and
g (t.): Xo (1) x Upy () X (R x Yo)* = X (t+1).

Let us consider the set (T,,x(f),u,(t),m (t) (or more explicitely
(Ty, x (), u(t), T, @), y (t, 1), w(t, 1)), teT,, teT,(t) as the solution of the
above combined system. In this case the element m= (T, x (), u(t))eD
on the whole we call the discrete-continuous or alternatively the composite
process.

3. Sufficient optimality conditions

Let us consider the optimal control problem for the model developed
above in some standard form as the problem of the minimization of a
functional I= F(y) (of the upper level model) with the given ¢;, t,.
Sufficient optimality conditions for this problem can be obtained on the
basis of the principle of extensions [1, 2], which is expressed by the
following abstract lemma.

Lemma 1 (V. F. Krotov, M. M. Khrustalev). Assume that for a given
functional 1:M — R there exist a sequence {mj =D <M, a functional
L:M—R, a set Ec M and a number | such thai 1) meD c E; 2) L(m)<
ST (mVmeD:; 3) | < L(m),meE, 4) I (m)—1L

Then | = ii;l_fL= iﬂf I, !mg} minimizes I on D and I(my)— [ for any mini-

mizing sequence of I on D.

Proof The first assertion of the lemma is evident. Consider the second one.
If {m} is a minimizing sequence, then I(m)—inflI=1 Assume that

L(mg)+ . Then by the definition of [ a number ¢ >0 can be found such
that L(m,) > [+e&. But this contradicts the condition I (my)— [. Therefore
there exists a number s such that I (my) < [+e and consequently I (m,) <
< L{my). But this is impossible by the definition of L (m).

The principle of extensions consists in replacing the initial problem
(D,I) by a similar problem (E, L) which is simpler in some sense but
also gives a solution to the initial problem.

Let us call the problem (E, L) with the conditions 1, 2 an extension
of the initial problem (D, ) and a resolving extension if the conditions 3,
4 of lemma 1 are satisfied.

The second assertion of the lemma means that if a resolving extension
is found for some solution of the initial problem then it is resolving for
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any other solution ie. it permits obtaining all solutions of the initial
problem.

For the problem considered we shall obtain an extension (L, E) in the
following way. Exclude the recurrent chain (1) and differential constraint (4)
from the restrictions of the sets D and D, Introduce functionals we,
@(t,x@,2) (o(,):Xo()x A— R and a parametric family

(#(2)eR,0(z,1,y,0)ekE),
where z = (¢, x (t), uy(t)), 0(z,-): R"" ' x A (z) > R, E —{6 — (@ (r, y (v) = 0.+

b i B 08 af a0 e e Fs _
+9yy,VmceDc}(9y_colon{ayl,.,,,W},Br_a_{), Q={w:R—=R, R

={t:Q—R}, 1(9) <0=w <0, w(0)=0}, and Q is an arbitrary set, Q = 4
.or @=4(z2).

Specify the functional L in the following way

L=G-0(Y K(r,‘)—Z Get,)=x( | K.(z,8.) ),

Telz)
where
G () =F 0+ (¢ (ty, x (). @) — ¢ (t, x (£, %),
K(t,x@),u@),a)=0(+1, 1t x0,u@),0)-¢ ¢ x),a),
CGe(z,750)=—0@(t+1,9(z,7), %)+ (t, x (t), ®)+
+%(0 (2, 17,y (), 8)—0 (2, 7, y (7, 9)),
K.(z,7,y,w,08)=0,(z,7,y,0) h(z,7,y,w)+0,(z,7,y, ).

It is easily seen that L=1 when meD. Actually when meD (m,.(z)e
€D, (z)) and the restrictions (1) and (4) are satisfied, then

L=F () +o (@;—@ik ;T:](w(tﬂ ,x (t+1), 0)—
—@(t,x(t), o) +;(m (t+1), x (t+1), 0)— o (¢, x (1), &) +
(2, O =000) =% (e, | (6 9+05d)) =
=F(y)+w(rpf—cpaa+w(gr(qo(r+1,-)~qo(r,-)}u)=F(~xJ=I.

From this fact and the principle of extensions (lemma 1) we come to
the following statement.

THEOREM 1. Assume that we have a sequence of composite processes {mg < D
and functionals @,0eE, weQ, »eQ such that

1) sup K.(z,1,y,w,8)=0VteT,, ded(z),
(y,w)eBlz)
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teT,(2), x()eX (1), ug (Ve U, (t, x ());
2) G(Tj KC(ZS!t’ys (T],WS[T], a)d‘f]ﬂo,

3) infG.(z,7.,20)=0 VteT,, uacAd;
ycerc{z)n{yc:yiey(zati)i J’fEY(zan?}:
ug ()€ Uy (¢, x (1), x ()X (),
4) sup K(t,x(t),u(),e)=0 YteT\T,, acA;
tihe B ()

[ (), u

3 @ (ﬂ;‘! K (t, %, (0, 4, (), 2)= 3 Ge (2, Ve, @) 0;

6) Gy)—l=infG(y),yelN{p:x (t)eX (1), x (t)eX (t))}.

Then the sequence {m,} is minimizing for the functional I on D and any
minimizing sequence for this problem satisfies the conditions 2, 5, 6.
This theorem gives general optimality conditions for composite processes.
They can be specified according to a resolving extension defined by
functionals w, ¢, x, 6. This makes it possible to generate different approaches
to given problems under investigation. One of these approaches leads to
the well-known dynamic programming procedure.

4. Sufficient conditions in the Bellman form

Let x(t;) and X (t) = X, (¢), teT\t;, t;, ¥ (r;) be given for the given z:

T =17 (2), y (v = y: (2), (Tf‘ ¥ (Tf)}ercf (2),g9(z,7) =g [z, Trs Y (Tf)],
where I, (z) is a surface in R"*' not containing (1;, y;), F (y) = F (x ().
Define w, x to be identical and define ¢, 6 by the following conditions:
for teT,
sup K,(z,t,y,w)=0,

weWi(z,t,¥)
—o(t+1,9(z,tp, ) +0(z, 1, y,) =0 when (tp, y,) el (2);
inf G, (Z, ?c] =0;

ugel’glt,x(t))
for te T\T,
sup K (t,x(t),u(®)=0, G(x ()= —o(t;, x (&)

ultelU (t, x (1))

Considering the left parts of these equations we come to the following
recurrence chain for ¢, 0:

@ty x () = —F (x (t);
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p(t,x@®)= sup ¢ (t+1,f(r, x (), u (t)]), teT\T,,

well (¢, x (1))
6.4 sup (0, h(z,t,y,w)=0, @ -
weWiz.1. )
ﬁ(zsTf!yf)Iqo(t-'-l:g(zlrfsyf)),
when (t;, yp) el (2), teT,,
@, x@®)= sup 0(z,7(2), (), teT,,

uge Uy (1, x (1))

which is solved from ¢, to ;.

Assume that the solution of this chain ¢ (¢, x (2)), 0 (z, 7, ) exists and
moreover that the functions # (¢, x (t)), @, (¢, x (¢)), W (2, 7, ) which are obtained
as results of maximization can be supplied. After inserting these functions
into the right-hand parts of the initial discrete and continuous time relations
we obtain

x(t+1)=f(t,x @), a(t,x @), x @u) = xy, te T\T;
x(H—l]:g(E, T (t,x(r))),y(‘cf (r,x{r)]),
y=h(Z t,p,WE1,)y @)=y, teT,,
Z=(t,x (1), (t, x 1))

Then the solution of this discrete-continuous chain meD is an optimal
composite process satisfying all the conditions of theorem 1, because
conditions (7) hold.

Actually the solution of the problem is obtained for any combination
of initial condition with the same functions (@ (-), u,(-),Ww(-)) and such
result we shall call a traditionally optimal control synthesis.

5. Conclusions

The hierarchical description of the class of processes considered, with
the proper interpretation of the elements of the abstract discrete process,
was previously proposed in [3] In this approach sufficient optimality
conditions were developed as a combination of known Krotov’s conditions
for continuous and discrete processes. These conditions were then used for
developing the first order control improving algorithms with applications
in some problems of space flight and walking robot control [4-7]. Advantages
of the proposed approach become apparent particularly in the latter work
which dealt with an area of control problems which was new at that time.
Initial control strategies defined intuitively from practical considerations were
improved from 4 to 5 times with respect to some typical criteria.

In this work new generalized sufficient optimality conditions are proposed.
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The resolving Krotov functions (¢, 0) for “discrete” and “continuous” levels
are replaced accordingly by resolving systems. Eeach of them consists of
some family of Krotov-type functions ¢,, 6, and a functional over this
family [2]. In [8] the new technique of investigation of continuous systems
connected with new conditions is demonstrated on some clear examples.
But on the whole the algorithmic development of these conditions is at
the beginning.

Notice that a continuous process can be represented as a particular
case of a discrete-continuous process by dividing the given time interval
into some final number of stages. As a result the conditions of Th. 1
become sufficient for optimality of continuous processes. They are more
general than the conditions [8] because they permit the change of the
resolving system (x,0) in time and state as opposed to the constant
resolving system in [2, 8]. This feature is advantageous when optimal
sliding regimes are investigated.

Th. 1 can be generalized practically without any change to the case
when Y, is an arbitrary linear normed space.

In some practical cases it is convenient to use models, describing
so-called composite discrete processes where the continuous model in the
lower level is replaced by the discrete one. A modification of theorem 1
in such cases is not difficult. ;
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Modele i warunki optymalnosci dla systeméw
dyskretno-ciaglych

Do opisania sterowanych systeméw ze zmienna struktura rozwazono model hierarchiczny
o dwoch poziomach. Na wyZszym poziomie znajduje si¢ model dynamiczny z czasem
dyskretnym, a na nizszym ciagly model rézniczkowy o jednorodnej strukturze. Zapropono-
wano nowe dostateczne warunki optymalnodci dla takich systemoéw. Uogdlniaja one warunki
wyprowadzone wczesniej przez autora. Wystepujace poprzednio na kazdym poziomie funkcje
Krotova zamieniono systemami rozwiazujacymi, ktore skladajg si¢ z rodzin funkcji typu
Krotova i funkcjonalu okreslonego na tej rodzinie. Podano krotki przeglad wezesniejszych
wynikow teoretycznych i praktycznych.

Mojean u yc/I0BHSI ONTHMA/ILHOCTH
AHCKPETHO-HENPPEPHIBHBIX MPOLECCOB

Jlna onucadus yNpasifeMBIX CHCTEM C [EPEMEHHON CTPYKTYPOil paccMaTpUBaeTcs Mepap-
Xilueckas [BYXYPOBHEBAS MOJENb, HA BEPXHEM YPOBHE KOTOPOH HCHOMB3YETCs JHCKPETHas
AHHAMHYECKAA MOJENb, 4 HA HUKHEM -— HenpephisHas mupdepeHiuanbHas cucTeMa OIHO-
poaHoit cTpykTyphl. [lpennaratoTcs HOBble HOCTATOMHEIE YCNOBHS ONTHMAJABHOCTH TakKux
cucTeM, obobuiaroime paHee BriBeAeHHblE aBTOpoM. B nux Bmecro (ynkmuii Kpotosa Ha
K2KIOM YPOBHE (JUIYPHDPYIOT pa3pellajollue CHCTEMBI, COCTOALME K3 cemeHcTsa (GyHKUMH
tuna Kporopa u (ynxumonana nag 5TuM cemeitctsom. [laetcs kpaTkuit 0030p npeamiect-
BYIOLIMX TEOPETHYECKHX M MPHKIAAHBIX DE3yIbTATOB.




