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A problem of optimal control of noninertial dynamic systems with delays is treated.

When there is no control, a system of such kind can be considered as a particular
case of functional equations without free variables [1-3]. On the other hand, they are
closely associated with multistage systems, but unlike the latter, the independent variable
in them varies continuously.

The sufficient conditions for global optimality of program control and feedback control
have been obtained. Necessary conditions are also proved when the phase vector and
control vector are finite-dimensional. The first order necessary conditions for local optimality
are also investigated.

Difficulties are discussed in transferring the results onto systems of a more general type.

1. Formulation of the problem and applications

Let X, U be arbitrary non-empty sets with elements x, u respectively,
[te: 5] RE (—o0, 00), ty <t,;. Let there be given functions f:[tg,t;]x
xXxU-—X,f%[ty, 1,]x X xU—>R £ [—c0,0] and 7:[te, t;]— R. Assume
that ¢, < 7 () < 7, for all te[t,, t,], where 7, £ 7 (t;) > ;. Denote 14 £ 7 (t,).
Define also the subset B(t) of X for any te[ty,f;] and the subsets
Q (t,x) of U for any pair (t, x), t€[tg, 1,], x€B ().

Give the system described by the equation

x(t@)=f(t.x0.u@), telt,t], 1)
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the name of noninertial controllable dynamic system with delays.

Then interpret the variable ¢ as time, the function u (-):[ty, 7] = U as
control, x (-):[ty,7,]— X as trajectory, the pair (x(-),u(-)) as controlled"
process, and the element xe X as state.

For all te[ty,t,] impose the following restrictions on the trajectory
x (-) and the control u(-)

x(t)eB (1),

u(t)e (t, x (1).
The restriction (2) includes, in particular, a terminal restriction. If, for
example, the set B{(t) for all te[t;,t;] consists of only one element,
it means that the trajectory x(-) must coincide with the given function

in the interval [t,, 7] :
Besides, the initial condition for equation (1) is given by

)

x({O)=a(), telty,To), ()

where «:[t;,175)— X is a given function such that «(f)eB(t), te[ty, o)
Assume here that [ty, ) £ {t,). Restriction (3) as well as the terminal one,
could be included in (2), but it is convenient to separate it.

Denote by D, a set of control processes v 2 (x (-), u(-)), satisfying the
above requirements and such that the function t — (¢, x (t), u (t)): [to, 7] > R

is summable (i.e. Lebesgue integrable). Define the functional

v J @2 f'fo(r,x(r],u(r})dt:Do-rﬁ. 4)

L)

Here and further the symbol [ denotes the Lebesgue. integral.

In the general case it is required to find the lower bound

do £ inf J (v),
velln
and a sequence {(x,(-),u,(-))} minimizing J on D,, ie a sequence such
that
len;loJ (xs ()r Uy [)) — dOa (x.s ()1 Ug (])EDO

The problem is also solved if a process veD, satisfying the condition
J (v) =d, is found. Let us call such a control process, as it is accepted,
an optimal control process.

The equation of the same kind as (1), containing no control, have been
studied in detail in [1-3] and are called functional equations without free
variables. One of the well known equations of this type is the Abel
equation: x (t () = x () + 1.

The equation (1) is characterized by the fact that the initial condition
is given by the function « (t), defined on [, 7,) as is true for differential
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equations with delays [4]. If the function t(t) is continuous and t(f)>1
for te[ty,1,] then each initial function «(t), with the control u(f) fixed,
defines the only one solution x (tf) (the trajectory) of the equation (1),
defined in the whole interval [i,,7,;]. Unlike the differential equations,
there is no question here about the existence of the solution as a whole.
Yet, this question becomes non-trivial when the condition 7 (t) > t is violated.

The mathematical model (1) is applicable to a somewhat broader
class of situations than a situation with a delay, for when te(t,, t;), not
only the inequality © (¢) = ¢ is permitted but also the inequality 7 (f) < t.

A dynamic system of the kind under consideration resembles a multi-
-stage dynamic system, but the argument ¢ varies here continuously. There-
fore, the optimality conditions thus obtained resemble Krotov’s sufficient
conditions [5] and corresponding conditions of the dynamic programming
method (see, eg. [6]), but for the systems with discrete argument there
are substantial differences because the optimality criterion (4) is written in
integral form.

A distinctive feature of the mathematical apparatus used in this paper
is the use of the one-sided (lower) Perron integral [7, p. 297], defined
not only for measurable integrand. This allows to avoid a contradiction
between bad analytic features of trajectories x (-) of equation (1) and the
integral form of optimality criterion (4), demanding the measurability of the
integrand. This way we also obtain the main results under weaker assumptions
than when using the Lebesgue integral. However, the one-sided lower Perron
integral plays only an instrumental role in argumentation and is lacking,
as a rule, in the final results. Practically, the same results may be obtained
using the one-sided Lebesgue integral although the more general Perron
integral is built more naturally.

The use of the one-sided Perron integrals proved convenient in the
classical optimal control problem [8]. A similar construction (the upper
measure) is used in [9], however, it does not have some features important
here.

A noninertial controllable dynamic system with delays can serve as a
model for remote control process in cases when a delay of the controlling
signal is big in comparison with a transient period in the controlled
object. Such a situation can occur when executing from the Earth control
of the robot operating on the surface of a planet. On Earth this takes
place when conducting remote control using a control signal carrier less rapid
than electromagnetic waves, such as, for example, acoustic waves.

Mathematical models similar to (1) or more general (e.g., with several
delays) may be used in the problems of controlling the dynamics of
biological populations instead of traditional multistage models [10]. The
value 1 (t)—¢ = const > 0 in these models can represent delay between the
moment of reproduction ability of a being and the moment of its birth.
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2. Sufficient optimality conditions

Let us assume that the following conditions are satisfied throughout -
the paper.

1°. The function 1 () is continuous, and nondecreasing, its upper deriva-
tive [7, p. 293] may take the value oo only in a countable set of points
of the interval [t,,t,] and t, < ¢,.

Denote by @, a set of functions ¢:[t,,7,]x X — R, satisfying the fol-
lowing condition.

2°. For any controlled process (x(-),u(-))eD, a summable function
t—7(t):[19, 7,] = R may be found as

lo (&, x )] < 7@, telto, t1l.

Here and in the sequel the notation te[a, b] means that almost every
element of the interval [a, b] is under consideration.

The condition 2° holds, in particular, if for all (x(-),u(-))eD, the
function t — ¢ (¢, x (t)) is bounded on the interval [t,, 7,].

Using the function ¢ let us make up the following constructions

S(t,x,u) 2 e (x@), ft,x,w)7@)—
—o (t,x)+f°(t, x,u), te[ty, t,]; (5)
Go (6, W) E o (z(0), f (.o (), W) 7' (O)+
+1O(¢, x (), w), telto, 7o); (6)
Gi(t, X, W) & — (t,0)+/°(t, x,u), tety, 7,]; )
where xeB (1), ueQ (t, x), 7'(t) £ dz (t)/dt, we Q (¢, o (¢)).

THEOREM 1. Let the function @pe®, and the function t — i (t):[te,7,] = R
be such that:

1) The function u is summable,

2) S (tyx) u) = Ju'('[]! fé[Tos tl.]! xeB (r)s HEQ (tsx)a

3) GD (ts u} 2 .Iu (t): té [":0! TO)! UEQ (ts o (t)))

4) Gl {t’x'l H) = ‘u'(t), ré[[ls Tl]s xeB (EL “EQ (t:x]

Then

a) For all (x(-),u(-))eD, the inequality

Jx()uC)Z @2 | u()at, (8)
holds.
b) If a sequence of controlled processes {(xs(-),us(A})} < D, exists, and
it is such that

lim J(x, (), 4 () = L), (9)
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then (@) is the lower bound of the functional J on Dy (l=d,), and the
sequence {(x,(-),u, ("))} is a minimizing sequence. Besides, any other mini-
mizing sequence satisfies the condition (9).

Before passing to the proof of Theorem 1, let us try to get auxilliary
results, which will be important in further considerations.

Let the function t—g(f):[a,b] >R be given. We call a continuous
function t— 5 (t):[a, b] — R satisfying the condition # (a) =0 and the ine-
qualities D (t) < oo, Dij(t) < g (t) for all te[a, b] a subfunction. Here

By (0) 2 lim (1 (0 —n (@)/1—7),

is the upper derivative of the function 7 (t).
If a set of subfunctions is not empty, then the value

P)[g@)yde 2 s:glpq(b) < 00,

where sup is calculated over the whole set of subfunctions 5 (-) is called
a lower Perron integral (P-integral) [7, p. 297]. Similarly a superfunction
and an upper Perron integral may be defined. ‘

Use then some properties of this integral. Enumerate the most important
of them, assuming, in contrast to [7], the case when the integrand has
the subfunctions only, as a result of which the P-integral can turn
mto -+ oo.

Let the functions t — g (t):[a, b] = R, t = h(t):[a, b] = R be given.

1*. If the function g is Lebesgue integrable, P-integrable, and

b b .
®)fgyde=1{g(t)adr.

2% If the function h is Lebesgue integrable and |g (¢)] < h(t), t€[a, b],
then the function g has a finite P-integral.

3% If g(e)= h(t), t€la,b], and the function h is P-integrable, then
the function ¢ is P-integrable and

b h
® [g@yde=®) | h(t)de. (10)

4* If the assumptions of item 3* are fulfilled and ¢ (t) > h(t) on a set
of positive measure, then the inequality (10) is strict.

5% If the function g is P-integrable, and h is Lebesgue integrable,
then their sum is P-integrable and

b b b
®) [ (g@O+h@)dt=P) [ g@dt+[ h(t)de.

6* If the function h has a finite P-integral and the difference g—h
is P-integrable, then the function g is also P-integrable and
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b
af(t?(t) h(b)d r<{P]fg{t)dt*(P) f h(r) dt. (11)

7% If, in addition to the condition of item 6% the difference g—h is
Lebesgue — integrable, then an equality sign holds in (11).
8% If the functions ¢ and (—g) are P-integrable, then

h b
-® [ (-g)d (P}ajgmdr.

9% If the function ¢ is P-integrable (on [a,b]), then it is P-inte-
grable in any interval [&, ] < [a, b] and for any ce[a, b]

(P) ; g (t)dt = (P) afg (t) dt +(P) ; g (¢) dt.

10*. (Substitution of the variable). If the function ¢ is P-integrable
and finite almost everywhere on [a,b], while the function &:[e«, f]— R
is continuous and nondecreasing, its upper derivative may take the value
+co only in a countable set of points of the interval [«, f] and £ (x)=
=a, ¢ (f)=b, then

b

a
P) jg () dt = (P) j (€ (s))

a o

J

(12)

In the equality (12) and everywhere in the sequel let us suppose that
the integrand is equal to zero if it is not defined.

The properties 1%—9* of P-integrals are proved in [7] or easily
follow directly from the definitions, the properties of lower and upper
derivatives [7, p. 293] and well known theorems of analysis. The possibility
of substituting the variable in the Perron integral is proved in [7, p. 316,
Theorem 47, the result 10* required here has been obtained while proving
the above mentioned theorem from [7].

Lemma 1.
1). For any pe®, and v £ (x (-),u () €Dy the following inequality is valid

Jm=L, (@)= P) fo Gy (t,u () de+

+®) [ S x @ u@)di—®) | (-G, (tLx@),u@)]d.  (13)

£
2). If, in addition, function I-+S(r,x(r],u (®):[to. 11— R is summable,
then

J ()= L, (v). (14)
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Proof Let pe®, and veD,, then the equality

T =®) | o(c0,x(0) 7@ d-

L]

Ty ot

~®) [ o, x@)dt+[ fO(t.x @), u(@®)dr,  (15)
o ty

holds true.

The conditions 1°, 2° and the properties 2%, 10* of the P-integral
are used here. The existence and finiteness of the second addend in (15)
follow from 2° and the property 2*, as well as the existence and finiteness
of the first addend follow from 1° and 10* and also the validity of
equality (15) itself. ' :

Using the property 5% of a P-integral and taking into account the
inequalities t, <15 <t; <71, let us divide the integrals in (15) into the
integrals in intervals [tq, 7o), [7o.%,] and [¢;,7,]. Grouping by means "of
5% and using the equation (1) and the notations of (51—(7), we get

Jug=aq§GO@uanm-m)I[—GngaLumnﬁ+

by
r[ [
+@®) § [S(t,x@,u@)+e (6, x@)]de~®) [ @, x@®)dt.  (16)
T o
Taking 6% into account, unite the last two addends of the right hand
side of (16) and get the inequality (13). If the assumption of item 2) in the
lemma is satisfied, the equality (14) is obtained by 7% from (16).
Let us formulate the condition for the function t— p(t):[ty, 71— R
which 1s different from the assumption 1) of Theorem 1.
3°. The function g on the interval [ty,7;] and the function t— d (¢)
2 ~u(t):[ty,t;]1 =R are P-integrable.
Lemma 2. Let @e'¥,. the condition 3° and the assumptions 2)4) of
Theorem 1 hold.
Then for all v£ (x (-),u(-))eD, the inequality

o

J () = 1 (@) = 15 (9), (17)

is satisfied, where
fdm2®fgmm4mfpﬂMm, (18)
L@)2®) [ ) d. (19)

Proof Let the conditions of the lemma hold and let v be a process
from D,. For function ¢ and process v the inequality (13) holds true
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due to Lemma 1 from which, the conditions 2)-4) of Theorem 1, 3* and 9*
taken into account, follows the validity of the first of the inequalities
in (17). Considering 3* it is easy to observe that [, (¢) =1, (¢) and so the
second inequality in (17) is true. Since values /; and [, are not dependent
of the choice of the element veD,, the inequalities (17) hold for all veD,.
This proves the assertion of the lemma. E

Proof of Theorem 1. The conditions of the theorem and 1* guarantee
the applicability of Lemma 2. Moreover, [, (¢) = [ (¢). So, the assertion a) of
the theorem is true.

Since the inequality (8) holds true for all (x (-),u(-))eD, then dy = (),
from which, taking into account the definition of the lower bound, we obtain

J (% (), u; (-) 2 do > 1 (). (20)

From (9) and (20) follows
SILIE J (xs [)1 g ()) = dU = I(@):

which makes the assertion b) of the theorem obvious. |
The result described below follows directly from item b) of Theorem 1.

CoroLLary 1. If the conditions of Theorem 1 hold and the process
(X (-), @ (-)eDy satisfies the condition J (X (-),i(-))=1(p), then this control
process is optimal.

REMARK 1. It is easy to see that Theorem 1 remains true when the
assumption 1) of the summability of u is substituted by condition 3° and
L(g) by I (p) or I, (o).

Such substitution has not been done directly in Theorem 1 because of
the desire to prevent the inclusion of P-integral in the final results.
However, such a variant of Theorem 1 is necessary to prove Theorem 2,
which is considered below.

THeoreM 2. Let the function @e®y and the process Eg(i[-},ﬂ(‘)]EDo
satisfy the conditions:

1) § (I‘ o (I)’ ﬁ(t]] = xEH(I{}‘lulE {t,x)’

2) Go(t, (@)= n?in }Gg (t,u), te[to; 7o)

weQ (e, a(r)

S (t, x,u), te[1o,1,].

3) Gy (t, X (1), u (1)) = G, (t,x,u},-ré{cl,tl].

mi
xeB(r), uelit,x)

4) The function t— S (I,f(r),ﬁ(r)]:[ro, t,]1— R is summable.
Then the process v is optimal and any other optimal control process
satisfies the conditions 1)-4).

Proof. Let the conditions of the theorem hold true. Define the function
1:[to, T1]1 = R by means of the equalities: u (t) £ Go (¢, u (1)) when teto,To)
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p() &S (t,x (), (1) when te(zo, t), u(t) 2 Gy (t, % (t), @ (t)) when te[ty,7,]
and 4 (10) £ 0 if 7o > to.

The function p satisfies the condition 3° due to the assumption 2°
summability of the function t — f°(t, X (t), # (1)) on the interval [to, t,] and 1*.
Hence, Theorem 1 and Remark 1 taken into account, we can prove the
optimality of the process v by showing that

| J® =1 (o), 1)

where [, (@) 1s defined by equality (18).
Thus, let us prove the validity of (21). Due to the assumption 4) it
follows from item 2) of Lemma 1 that the equality

J@®= Lo @, 22)
holds true.

Thereby, considering the definition of function u

Ta 'II. T
J@=®@) [ u@)dt+®) | p@)di—(P) ]
In To 31

Now, following 9* and (18) it is easy to show that the equality (23)
is equivalent to (21). Hence, the optimality of process v is proved.

Let now vZ (x(-),u(-)eD,, v# 7, be some other optimal control
process such that at least one of the equalities 1)}-3) is violated on the
set of moments ¢t of positive measure after substituting v by wv.

The inequality (13) holds true for the process v by Lemma 1. Taking 4%
into account and comparing (13) with (22) it becomes easy to show that
J (v) > J (). But this contradicts the assumption that the process v is optimal.
Therefore, the conditions 1)-3) for the process v cannot be violated on
the set of positive measure, i.e. the conditions 1)-3) of the theorem hold
true for the process v. This implies, in particular, that S (¢, x (t), u(t)) =
=S (t, X (¢),u (), t€[to,t,], and thus the condition 4) of the theorem also
holds true for the process v. B

[ (0] dt. 23)

3. Dynamic programming

Theorems 1 and 2 contain sufficient optimality conditions for the case
when the initial condition (3) is fixed. One can pose the problem of finding
the universal function ¢, which satisfies all possible initial conditions
simultaneously.

In this part of the paper we shall assume that the following condition
is satisfied.

4°. For all te[ty, t;] the inequality 7 (t) = ¢ holds.

Let B, be a non-empty set of initial elements w, 2 ({ma(A]) such that
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t,€[to, ty), T 2 1(t,) Sty, for the function t— a(f):[1,, 7,)— X for all te
e[t,, 7,) the inclusion « (f)eB () holds true. Assume, as was also done in
Section 1, that [f,,,)2 {1,}. Besides, any additional restrictions may be
imposed on the elements w,. The set of all those restrictions defines B,.

Consider an optimal control problem made from the initial problem by
substituting everywhere in Section 1.1 the moments t4, 4 by t,, 7,, correspon-
dingly, and in particular the initial condition (3) by the condition

X(I): OC(I),IE[III,TJ,W.:EBO, (24}

and a family of such problems with different w,eB,. Taking this into
account, denote a set of admissible pairs (x (-),u(+)) of functions u:[t,,7,]-U,
x:[t,,t,]— X. similar to Dy, by D(w,), and the lower bound of the
functional by d (w,).

Because of the assumption 4° the family of problems with initial elements
from By is defined correctly.

Denote by # a set of various functions (t, x) = u® (¢, x): [ty, 111X X = U
such that u®(t, x)eQ (t, x) for all te[ty, t4], xe B (t).

DerFiNiTION 1. Call the function u®e# a feedback control, if for any
w, from B, there exists a solution x,(:):[t,,7;] = X of the equation

X (¢ (0) = 1 (X (), 10 (2, X, (1)) tE[tas 141, (25)
with the initial condition (24) and
(%2 (+), s (1))€D (w,), (26)
where
Uy (0) 2 U (2, x, (1)), te[t, 71l 27)

Remark 2. To verify the condition (26) we must prove the inclusion
X, (0)eB(t), te[t,, ,], and summability of the function

t= & (02 fO(t, x, (t), t, (0)): [tar 11— R,

ReEMARK 3. The verification of (26) reduces to a verification of summability
of the function &, when a set Q(t,x) is not empty for all te[tg,t,],
xeB(t) and for any te[zq,t1]

M@®2 {yeX:y=f(t,x,u),xeB (), ueQ(t,x)} < Bz (t).

DermniTioN 2. Call the function u®e# an optimal feedback control,
if u° is a feedback control and for any w, from B, the control process
(%4 (+), u, (+)), satisfying the conditions (26), (27), is optimal, i.e. it minimizes
the functional J on the set D (w,).

Introduce the set @ of functions ¢:[to,7;]xX — R, satisfying the
condition 2° for any of the sets D (w,), w,€B,.
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Remark 4. Everywhere in the sequel assume for the function u — gw:Q0-R
that

min g () £ o0
if ¢ (u)=co for all ueQ.

THEOREM 3. Let By, be a set of initial elements, let the function @e®
satisfy the conditions:

D .=, in, [0 (£ 00,7 (€.x, 0) T O+ £°(t, x, 0], tElto, £1], x€B (1),
2) ¢ (t,x)= min fO(, x,u), té[ts, 7,], xeB(t),
and let the function u®e ¥ satisfy the conditions:
ull(t, x}eArgmm[qo (z @), f(t, x,w) T (O)+1°(@, x, w)], t&[to, t1],

xe€ B (1),
4) u°(t, x)e Arg min f°(t, x, u), te[ty, 74], xeB (1),
us(t, x)
5) u°(t, x) is the feedback control.
Then :

a) the function u°(t, x) is the optimal feedback control,
b) for any w, from By the optimal value of the functional (4) is

d (w,) j o(t,x()d (28)

Proof. To verify the assertion a) of the theorem it is sufficient for any
w,€ B, to apply Theorem 2 to the process v, 2 (%« (+), u, (-)) which satisfies
the conditions (26), (27). In doing this we take as the function ¢ of the
Theorem 2 a restriction of a function @€® on [t,,",]x X which satisfies
the conditions 1) and 2) of Theorem 3. Satisfaction of the conditions
1)-3) of Theorem 2 follows directly from the conditions of Theorem 3.
The condition 4) of Theorem 2 is also satisfied because due to the condi-
tions 1) and 3) of Theorem 3 and (27) the equality

St %, (1), 4, (1) =0, t&[1,, t4], (29)

holds. Equality (29) and item 2 of Lemma 1 imply the equality J (v,) =
=L, (v,), which by (29), the conditions 2) and 4) of Theorem 3, the
initial condition (24) and notation (7) can be written

J (% (-)s e (-)) = (P)I Go (t, uy (1)) dt.
Hence, by (6) and condition 1) of Theorem 3 we get the equality (28). E

It is interesting to note that function @e@® satisfying the conditions
of Theorem 3 is not an analogue of the Bellman function of the classical
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optimal control problem. The role of the Bellman function here is played
by the functional

w, = I (w,) £ (P) Jf @ (t, (1)) dt: By — R.

The element w,eB, plays for the system (1) the role of the initial
position.
In this connection we shall give the following definition.

DerFiniTioN 3. Call a function @e@® satisfying the conditions 1), 2) of
Theorem 3 and for which there exists at least one function u®e# satisfying
the conditions 3)-5) of this theorem an originative function.

A pleasant feature of the problem under consideration is that values
of the functional I(-) can be calculated constructively with the known
originative function.

ExampLE. Let the controlling and controlled objects be placed in the same
point at the moment t=0 and let them move apart at a speed half of
that which the control signal spreads. Thereby, t = 2t. Taking this into
account, let the equation (1) have the following appearence

x(2t)=x (O)+u(t), x,ueR’, te[0,t,].

A method of dynamic programming kept in mind, consider not only the
trajectories beginning at ¢, =0 but also these with other t,e[0,t,/2].
Therefore, for te[t,, 2t,) the function x (t) is defined as x (f) = « (t) (condi-
tion (24)). The criterion (4) is like
2t
J= [ (x*(@)+u?() dr.
iy ;
Apply Theorem 3. Taking advantage of the condition 2) of the theorem,
it is easy to show that u(t)=0, ¢ (t, x) = x* on the interval [t,2t,].
When t€[0,t,) we find the function ¢ in the form ¢ (¢, x)= o (1) x*
Then, using the condition 1) of Theorem 3, we obtain the following equation
for the function o (t)

o ()= 140 (2t) (L+0 (20)) "

Since o (t)=1 at te[ty,2t,], one can see that function o (f) is constant,
o (t) = o, on each of the intervals [27%¢,,2'"*t,), k= 1,2, .., the number
of which is infinite and accumulates in approaching the point t =0. A few
of the first values of o, are as follows: o; = 1.5, o, = 1.6, g5 = 1.615, ...
If k becomes infinite, o, — (1 +\/§)/2. An optimal feedback control is the
linear regulator u (t) = —o (2t) (1+0 (2¢)) " x (t) when t€[0,¢,] and u(t)=0
when telt;,2t;]. It is interesting to note that the feedback factor in the
regulator is piecewise-constant, which is not obvious from the formulation
of the problem.
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4. The existence of originative function.
Necessary and sufficient optimality conditions

Let us study the question on the existence of originative function and
necessity for conditions of the theorem 2.

Naturally, the question cannot be answered at such an abstract level,
at which the theorems 1—3 have been proved. Therefore, assume in this
part of the paper that X, U are finite-dimensional Euclidean spaces, Q is
a non-empty compact subset of U independent of the point (t,x), the
functions f, f° are defined on [to,7;]xXxQ only (earlier they were
defined on [ty, 7,] x X x U). The following assumptions will be required with
resaect to the functions f, f° the sets B(t) and the initial elements
Wy = (t,, o (+)) € By.

5°. The set V2 {(t,x):te[to, 7,], xeB(f)} is closed.

6°. The function f is continuous.

7°. The function f° is lower semi-continuous (l.s.c.) and finite.

8°. The function 7 is continuously differentiable.

9° For all te[tg, t;] the inequality 7 (¢) >t holds.

10°. The function o is Borel-measurable.

11°. There exists a constant ceR such that |« ()] < ¢ for all te[t,, 7,).

12°. There exists at least one process (x (), u(-)) with the initial element
w, satisfying phase restrictions

x(@)eB(), telt,, 111 (30)

Turorem 4. If the assumptions 5°-9° hold true and for any w,e B, the
assumptions 10°-12° hold, then an originative function exists.
Tueorem 5. Let the assumptions 5°-9° and 10°-12° hold for the fixed
initial element (to, o (-)).

In order for the control process (x (), u (-))eDg to minimize the functional
J on Dy it is necessary and sufficient that there exists a function @ed,
satisfying the conditions 1)-4) of Theorem 2.

Before turning to a proof of Theorems 4, 5 let us set some auxilliary
assertions associated with the properties of ls.c. functions.

In what follows we assume that A, K are non-empty closed subsets
of finite-dimensional Euclidean spaces.
LemMMA 3. Let the function g:K — R be lsc. and the function h:A— K
be continuous.

Then the function x> T (x)£ g (h(x)):A— R is Ls.c.

Proof Let xeA, then j2£ h(x)eK. Since h(A)= K and h(x)—j for
X=X,

lim I' (x) = lim ¢ (y), G1)

X*Xx y*y
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if xeA and yeK.
But it follows from the definition of the ls.c. function g that

limg(y)Zzg =T (x). (32) -
¥Y
Comparing (31) and (32) one can see that the function I' is ls.c. =

LemMA 4. Let K be a compact set and the function h:Ax K — R Ls.c. and

not attaining the value —oo.
Then the function

x—»g[x]ém,i"nh(x,a):fl—rﬁ, (33)

is Ls.c.
Proof As K is a compact set, the equality (33), by Remark 4, holds true.
Let the sequence {x,} = A converge to an element xeA. Choose a sub-
sequence {xy} < {x,} such that

lim g (x,) = lim g (x,). (34)

For any s’ choose an element u, such that g (xg) = h(xg, ug)

Since K is a compact set, it is possible to choose a subsequence
{ug} = {uy} converging to an element ue K. Since the function 4 is l.s.c. on
Ax K, we have

Hm h (g, ug) = h (%, ). (35)

But h (x;, ug) = g (x,), and
lim g (xg) = lim g (x,),
therefore
m h (xg:, ug) = lim g (xy). (36)

it 5]

Taking into account that h (X, u) 2 g (x), by (35) and (36), we obtain
lim g (x,) > g (9. (37)

Comparing (34) with (37) and taking into account that the sequence
{xs} = A is arbitrary, we can conclude that the function g is ls.c. |

To prove Theorem 4 we have to use the theorem on measurable choice,
which is somewhat different from those traditionally used [11, p. 236],
[12, p. 59].

TueoreM 6. Let K be a compact set and let the function h:Ax K— R
be ls.c. :

Then. there exists a Borel-measurable (Borelian) function u*: A — K,
satisfying the conditions




Global optimality for systems with delays 269

h(x, u*(x)) = r&l{l hx,u), xeA.

Proof. The epigraph epihc Rx Ax K of function h is a closed set [11,
p- 19], hence it is Borelian. Then, according to the Novikov theorem
[13, Theorem 1.5] the projection H of the set epi h on Rx A is a Borelian
set. According to the Louzin-Yankov theorem [13, Theorem 1.2] there
exists a Borel-measurable function (£, x)— ug (¢, x): H — K*.

By Lemma 4 the function

x =g (x) £ min h(x,u):A> R,

is L.s.c. Since for the ls.c. function g the Lebesgue sets S (1) £ {yEA:g (x)<n},
neR, are closed [11, p. 19] then g is Borelian.

Thus, the functions u, and g are Borelian. Then, their superposition
x—=w(x) £y, (g (x),x): A— K is also Borelian. But

w(x)e{veK:h(x,v)= m}{n h(x,u)},
for all xe A. Therefore, we can take u*(x)=w (x), xe A. [ ]

Proof of Theorem 4. The outline of the proof for the theorem is as
follows. Since the function 7 is continuous and 7 (t) >t for all te[tg,t,],
we apply the well-known step method. Using this method, by the condi-
tions 1)}-4) of Theorem 3 we build the function ¢ and the control u®
of separate pieces, moving from the end of the interval [¢g,1,] to the
beginning. We will show later that functions ¢ and u° constructed in
such a way, satisfy all conditions of Theorem 3.

We form a finite system of intervals 4;2 [¢,¢"1], i=0, N such that
1&g, i=T N and t°2¢,, t"2¢,. Such a system exists since the
assumption 9° holds. Note that ' =1 (t,) is not necessary and the left
end interval may be shortened.

Introduce the system of sets W* £ {(t,x)eV:ted;}, i=0, N. The sets

W#* are closed by the assumption 5°. Further, for any i=0, N form the
sets W, defined as

W2 {(t, x)e Wi*:(t, f (¢, x, Q) Winy # 0},
for i=0,N—1 and W" 2 Wj#. The sets W, must be formed recurrently,

beginning from Wj. Since the set @ is compact, the function f by the
assumption 6° is continuous and W;*, i=0, N are closed, and the sets W,

i=0, N, are also closed.

* Theorem 1.2 from [13] demands that the set Rx 4 be compact; however, it is not
important here, for Rx A can be presented as a union of not more than a countable
number of compact sets.
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The set W £ U}, W, has the following property: for any initial element
(t,, o (+)) such that

(t,x(O)eW, te[t,, t.l, (38) -

the condition 12° holds. Violation of the condition (38) at least at one
point of the interval [t,,t,) contradicts 12°. Violation of the condition (38)
on a set of positive measure leads to a violation of phase constraints (30)
also on a set of positive measure of the interval [t,, 7]

Denote Y;2 A,xX. For any i=0,N and for any k=1, N build the
functions @;: Y;— R and y,: Y, x Q — R, taking advantage of the equalities

on(t,x) 2 miélfo (t, x,u), (t, x)€ Wy,
HE

on (t, %) £ oo, (t, x)e Y\ Wh,
1t x,u) 2 @ (v (0, f t, x, w) T @)+ 0, x, u).

It follows from 7° and Lemma 5 that ¢y is Ls.c. on W, and as the
set Wy is closed, also on the whole domain of definition Yy. Hence, by
68" and Lemma 4, the function yy is also Isc. on the whole domain
of definition, and, by Lemma 5, the function ¢y_, is also lLs.c.

In a similar way we may prove that the functions yy_i, @y—, are ls.c
Repeating the process we may conclude that each of the functions yx,
k=1,N and ¢;, i=0,N is [s.c

It is also easy to see that functions ¢; are finite on W, Moreover,
they are bounded on any bounded subset of W,

Define the function ¢:[ty, 7,]x X = R by the equalities

(P (f, x) é QJ‘N (r!x)l{r$ x)e YN‘

It is important that the function ¢ is bounded on any bounded subset
of W and turns into +oco outside W.

The function ¢ built above evidently satisfies the conditions 1), 2) of
Theorem 3. ;

We show that ¢ is an originative function. For this purpose we build
the control u®, satisfying the conditions 3)-5) of Theorem 3.

Form the functions u: ¥;— @, i = 1, N, for which the following inclusions
hold: ’

ul (t, x)eArg Izlsiélfo(r, x,u),(t, x)e Yy,

ub (£, x)eArg m'iél vi(t,x,u),(t,x)eY;, i=0,N—1.

The function f° is lsc. and finite (condition 7°). Each of the
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functions y;, i= 1, N, is also ls.c, finite on the closed subset W;x(Q of
its domain of definition and takes the value +oco outside this subset.
With this in mind and making use of the theorem on measurable choice
(Theorem 6), choose all the functions uf, i=0,N, in such a way that
they are Borel-measurable. In this case the control u®e % defined by the

equalities
wl(t, x) 2 ud (t, x), (¢, x)e[t, ) x X, i=0,N—1
W (t, x) 2 ud (¢, %), (t, )€ Yy,

is also a Borel-measurable function.

The function u° thus constructed evidently satisfies the conditions 3),
4) of Theorem 3.

Now let us show that the condition 5) of Theorem 3 for the control u°®
constructed holds too.

To do this, it is sufficient to prove that for the initial element,
satisfying the conditions 10°—12° there exists a solution x, () of the
equation (25) with the initial condition (24), where u, () is defined by the
equality (27), satisfying the phase constraints (30) and it is such that the
function

]

L= ‘Ea (t}éfo(£= Xa {t)a U, (I)):[ta, Tl] =2 R!

is summable.

Thus, let w, £ (¢,,«(-)) be an arbitrary initial element satisfying the
conditions 10°—12°, As has already been mentioned, the structure of the
set W is such that the condition 12° implies (38). Since W< V, for the
initial function « (-) the phase constraints (30) hold. Applying a step method
(from left to right), it is easy to see that for the bounded initial function
o () (condition 11°) the trajectory x,(t) is defined on the whole interval
[t,,7,] and it is bounded. Besides, since the initial function o (-) is Borel-
-measurable, the whole trajectory x, (t), te[t,, t;], is also Borel-measurable.
Next, the function f defining the equation (1) and thus forming the
trajectory x,(-) maps the point (¢t,x)eW, te[t,,t,], of the graph of the
trajectory

m, 2 {(t, x)elt,, 111 x X 1x = x, (1)},
into the point
y(t,x)& (r @, f (¢, x, uo(t,x]))ena‘
The point y (¢, x)e W, because otherwise, ¢ (v (t, x)) = 0.
But this is impossible because of the structure of the function u° and

the set W. Hence, the control u° does not drive the trajectory from the
set W, nor from the set V.
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It is-clear that the trajectory x,(t) is defined on the whole interval
[t,,7,] and, as was just ascertained,

(£, % () eV, telty, 4]. (39)
The inclusion (39) implies that the phase constraints (30) hold true.

Now we prove the measurability and boundedness of the function ¢,
The functions f°(t, x, u) and u°(¢, x) are Borelian and, therefore, the function
(t,x)— (¢, x,u(t, x)) is Borelian too. Moreover, since the trajectory x, (-)
is also Borel-measurable, the function

t— & (0) = £, %, (1), 10 (¢, x, (1)),

is Borel-measurable as well. Besides, owing to the boundedness of the
function x, () the function &, (-) i1s bounded. The summability of the
function &, follows from its measurability and boundedness.

Thus, the condition 5) of Theorem 3 holds true and, so, all the
conditions 1}-5) of this theorem are satisfied.

To complete the proof it is sufficient to check the validity of the
inclusion @e®, ie. the condition 2° for all (x(-],u(‘))eD(wa), where w,
satisfied 10°-12°.

Using a step method (from left to right) it is easy to demonstrate
that all the trajectories x(-), corresponding to the processes (x(-),u(-)eD (w,),
are jointly bounded. At the same time all those trajectories lay in the set W
(otherwise they violate the phase constraints). Since the function ¢ is bounded
on any bounded subset of W, there exists a constant c*eR such that
lo (£, x )] < ¢*, telt,, 7,], for all (x(-),u(-))eD (w,). But this means that
the condition 2° holds, ie. the inclusion @e® is valid. 2

Proof of Theorem 5. The sufficiency of the conditions of the theorem
follows directly from Theorem 2.

Let us prove the necessity. For this we have to apply the Theorem 4,
already proved, to the one-element set B, = {(to, «(-))}. The restriction &
of the originative function @:[tq, t,] % X — R, whose existence is guaranteed
by Theorem 4, on [t4,7,]x X, and the process v, = (xa(.)jua(.)], defined
by the conditions (24), (25), (27), t,=to, satisfy all the conditions of
Theorem 2. The proof of this fact repeats the proof of assertion a) of
Theorem 3.

But the conditions of Theorem 2 are satisfied not only by the pair
(@, v,) but also by a pair (@, 5), where v £ (X (-), i (-)) is any other optimal
process. This is the fact which guarantees the necessity of the conditions
of Theorem 5 for optimality of the process u. B

RemARK 5. It is easy to notice that the proof of Theorem 4 contains a
constructive way of building the originative function ¢ in the most general
case. This method can be used for solving particular problems.

i
!
:
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Remarx 6. One and the same originative function ¢ built while proving
Theorem 4 is acceptable for different sets B,. It is only needed that
their elements satisfy the conditions 10°-12°. Therefore this function ¢ is
also an originative one for a maximal set B, which includes all initial °
elements w, satislying the conditions 10°-12°

Remark 7. Let the set B,, whose elements satisfy the conditions 10°-12°,
be such that the constant ¢ in the condition 11° may be chosen the same
for all its elements. Then, with the assumptions of Theorem 4 true, there
exists an originative function bounded on any bounded subset from
[to,T1]1% X.

This result is obtained in the following way. Under the assumption
made with respect to the set B, the trajectories of the system are uniformly
bounded, i.e. there exists a compact W, < [7,,7,]x X, such that for all
w,€B, and for any process (x(-),u(-))eD (w,) the inclusion (t,x (£))e W,
te[tg, 7], holds true.

Let ¢ be an originative function built while proving Theorem 4. Then
the function ¢°:[ty, 1,]x X — R, defined by the equalities

P°(t,x) 2 ¢ (r,x), (t, x)eW,
@°(t, %) & 41, (t, x)e([to, T1] X X\W,

where

Py

3 ' 0
comax Lo (@, f @ x,uw) 7O+ x,u],
is also an originative function, containing the required property of boun-

dedness on the compact subsets of the area of definition.

5. Local optimality conditions

Theorem 5 contains necessary and sufficient conditions for global opti-
mality of noninertial dynamic systems with delays. Along with them we
may find local optimality conditions similar to Pontryagin maximum principle
in classical optimal control problem or its analogue for discrete controllable
systems [14].

We can obtain these local conditions as necessary conditions for existence
of the function ¢ in Theorem 5, differentiable with respect to x. Note that
the theorem 5 guarantees the existence of the function ¢ but not its
differentiability, which appears here as an additional assumption. In this
connection such a method of obtaining local optimality conditions is not
rigorous. Yet it is possible to give a rigorous proof applying the technique
well elaborated for discrete systems [15]. The restricted size of the paper
does not allow to include this proof here.
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Let us take for granted that the assumptions of Part 4 and these to
follow are satisfied.

13°. The functions f (t,-,"): X xQ— X for t&[ty,t;] and fO(t,-,-): X x
x Q- R for t&[ty, 7,] are continuously differentiable.
Tueorem 7. Let the assumptions of Theorem 5 and 13° hold true. Let also
the function ¢, whose existence is guaranteed by Theorem 5, be such that
the function ¢ (t,-):X — R for t€(t,, t;] is continuously differentiable.

Then for the process (x(-),u(-))€Dy to be optimal it is necessary that
the following condition

D ot x@),u@)= Igleiélfo(f,f(t),u), tefty, 4],

holds true and that a vector-function t = (t):[ty, 1,]— X exists, satisfying
the conditions
2) [H, (¥ (c ), £, % (0, it ()~ ()] " 6x >0,
dxeK, (X (1), té[to,t.];
3) H (¢ (x (), 1, % (1), @ (1)) 6u>0,
dueK, (u(t), t&lto, t1];
4 [y O+, x @), a(@®)] ox =0,
oxeK, (x(t), t&fty, t,].

Here K, (X (t) £ {oxe X :X (t)+edxeB (1), 0 <& <&}, K, (@ (1) £ {SueU:
u(t)+edueQ, 0 <e<e ) are the cones of permissible variations with respect
to a phase vector and the control correspondingly [15]; H (y,t, x,u) 2
SYTfe, x, u) 7 @+S00 x, W, Y2 Wy, ., Y) €R" =X, f2(fy,.,£),
f2e(af°ox,y,..,af%ax,)", H, £ (0H/ox,, .., 0H/ox,)", H, £ (8H/du,, ...,6H/
/0u,)" €R™=U, 6x 2 (0x,, ..., 6x,)" €R", 6u £ (Suy, .., u,) €R™, (-)7 is the
transposition operation, :

Proof. Let (x(:),u(-) be an optimal control process. According to

Theorem 5 there exists a function @e @, satisfying the conditions 1)-3) of
Theorem 2. |

The conditions 1}4) of Theorem 7 are the first order necessary
conditions [15] for extremal problems, contained in the conditions 1)-3) of
Theorem 2. In writing them down it is necessary to take into account the
notations Y (¢) £ ¢ (1, X (1)), t€lte, 1], @x £ (9p/dx,, ..., dp/ox,) €R" = X,
and set i (t) 2 0 for such ¢ where the derivative ¢, is not defined.

In case when the restrictions on x and u are absent the following
_result is evident.

CoroLLARY 2. If. in addition to the conditions of Theorem 7, B(t)= X,
telty, 1,1, Q= U, then the conditions 2)-4) of the theorem take the form

2) He (¥ (), ¢, % (0), @ (0)) =¥ (1) = 0, t€&[ro,1,],

3) H,(y (x (1), ¢, X (), (1)) =0, t&[to,,],

) ()= £2(6. % 0, 7@), &0t 7.
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6. Generalization of the optimality conditions
to the case of several delays

There are some generalizations for a dynamic system model (1) to the
case of several delays of the argument. They are of interest from the
viewpoint of their applications. For simplicity, let us confine ourselves to
a consideration of the case when two delays are available and, therefore,
instead of the equation (1) we take the equation

x (2 0) = £ (6% 0, u (0, x (€ 0, u € ©)), telto, t], (40)

where £:[ty,t;]— R, the rest of the notation having the same meaning as
before. ;
Introducing the notation y (f)2 x (¢ (1), v(t) £ u (€ () we can rewrite
(40) as a system of equations
x(c(0) = f(t,x @), u ), y ©), v (),
y(O)=x (), (@1)
v()=u(& ),
or as a system
x (v @)= f(t,x @, u),y@),v@)),
y (@) =x (¢ (), 42)
v (e (6) = u (& (x ().

In the case when & (t (1)) = ¢ for te[to, t;], the model (42) of the dynamic
system evidently has the form (1). Therefore, the problem reduces to that
already considered. Such a reduction is possible in a somewhat general
case when there exists a n:[ty,t;]— R and the integers k, s > 0 are such
that

fao (T (1) = t, My ()= € (1), telto, t4].
Here 5 (-) is the t-times superposition of the function 7 (e.g. 7, ()=
=n(n (). In particular, the reduction described is possible if

T (t) = t+kdr, & =t—sdt, At = const > 0.

The given method for reducing the model (40) to the model (1) may
demand addition of a considerable number of auxilliary equations. Their
total number can be up to 2(k+s)—1. Besides, the method is evidently
far from being always applicable. That is why it is of interest fo study
more closely the model (40) or the model (41).

Following the representation (41) of the equation (40) consider a some-
what general model
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x(t ()= f(t,x @),z @), u),
z(t)=g (¢ @), x (&), u(E W), telto, 1],

and study the problem of minimum of the functional

v—J(v) 2 'jED S(t, x (), u (b)) de+

<0

@3)

ty #
+ 0 O x @, 20, u@)dt+ | f2(t,x (), u()dt:Dy—>R.  (44)
to Iy

Here xeX, ueU, zeZ where X, U, Z are metric spaces; f:[fq,t;]X
xXxZxU—X,9:[E0,E Ix X xU—Z,f3:[E0,te] x X X U = R, f°:[to,t1]%
xXxZxU— R, fP:[t;, 1y ]xX xU - R; 1, E:[tg, 11] = R; Eg 2 E (t,) <
StoSt2t(te) <& 2E() <ty <1, 2 1(t); the functions 7 (-), &(-) are
absolutely continuous and non-decreasing. For all te[&,, ;] the restriction
x (t)e B (t) must hold, for all t€[t,,t,] the restriction z (f)e C (t) must hold
and for all te[&;,7,], xeB(t) the restriction u(t)eQ (t,x) must hold.
The sets B(t)c X,C ()= Z,Q (t,x) = U are known beforechand. The
initial condition is of the form: x (t) = « (), t€[&y, 10). Here, as has been
assumed earlier, suppose [&g,&) £ {¢,). The function a:[&,To)— X is
defined and it satisfies the restriction: a (t)e B (t) for t&[&,, 1)

The elements of the set D, here are the control processes v&
2 (.\' ()2 (), u(-)), x:[€o, 11l = X, z:[to, t,1— Z, u:[&,, 741 — U for which
the functional (44) is defined and all the conditions enumerated hold true.
Denote the lower bound of the functional (44) by d, as before.

In transferring the optimality conditions into the case considered in this
section two main complications occur.

In formulating the optimality conditions, similar to those of Theorems 1, 2,
a natural desire is to use the function (¢, x, z) = ¢*(t, x, z) instead of the
function ¢. But it is impossible. The fundamental role in the proof of
Theorems 1 and 2 was played by the equality

iy T
®) | o(c@),xE0)@Od=®) [ o x)d,
To to

(see the proof of Lemma 1), based on deformation of the interval of
integration. In the case under consideration the functions z(f) and & (t)
give rise to various deformations. Thereby, we are forced to confine
ourselves to the functions @¥, representable as: @*(t, x, z) = ¢ (t, x)+y(t, 2).
To be more precise, two functions ¢:[7,7;]xX =R and y:[&, &,]x
x Z — R are used.

Naturally, this results in more strict sufficient conditions of optimality.
In particular, these optimality conditions, generally speaking, cannot be used
for constructing a feedback control. They are intended mainly for solving
a program control problem (with the initial condition fixed).
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The second complication is the following. The use of the lower Perron
integral in proving the theorems 1—3 enabled us to minimize the assumptions
on the problem. It became possible because the inequalities, arisen when
using the lower Perron integral instead of the Lebesgue integral, enabled
us to estimate the lower bound d,. However, some of the inequalities
have a sign different from that which would have been desirable. This
circumstance necessitates contraction of the class of problems in order to
guarantee the possibility of using the Lebesgue integral.

Some of the restrictions on the problem have already been observed
(X,Z,U are metric spaces; 7, ¢ are absolutely continuous). Now let us
formulate some additional assumptions.

14°. The admissible control processes (x (-),z(-), u(-)) (elements of the
set Dy) are such that:

a) the functions x (-), z(-) are Borel-measurable and bounded

b) the function ¢ — f (¢, x (£), u (£): [Eq, to] = R, t = £O(t, x (¢), z (¢), u(t):
[to, ti] =R, t— fL(t, x (6), u(t):[ty, ;] = R is (Lebesgue) summable.

The condition 14° holds true trivially, provided that the following asump-
tions 15°-17° are valid, while for any element (x (-),z(-), u(-))eD, the
assumption 18° is valid. '

15° 2 (t) >t > & () for all te[ty,ty].

16°. The functions f, g, f, f° f{ are Borel-measurable and bounded
on any subset of domain of definition.

17°, The initial function o (-) is Borel-measurable and bounded.

18°. The function u(-) is Borel-measurable and bounded.

Note that for the control u(-):[¢,, 7] — U fixed and the initial function
o () defined the conditions 15°-18° guarantee the existence and uniqueness
of the functions x(-):[&e, 71— X, z(:):[te,t,]— Z, Borel-measurable,
bounded and satisfying (43). This fact, as well as the sufficiency of 15°-18°
for 14°, can easily be proved using a step method and taking into account
the superpositional measurability of Borelian functions.

To formulate the optimality conditions introduce a class ®° of functions
®:[t0,71]1x X = R and a class I' of functions y:[&,, &,]xZ — R, satisfying
the condition:

19°. Functions ¢e®® and yel® are Borel-measurable and bounded on
any bounded subset of the domain of definition.

By means of the functions ¢ and y construct the equations similar to

(5}—(7):
GS (£, w) & —y (¢, g (¢, (6), W)+ /8 (¢, e (6), W), re[én,toj;
Go(r,z,w)é ( I)ftot(r z, w)) r)+J (t) z) &
v—J(r g {t, o )+f° (t, (1), z, w), re[ro,to];
S(r,x,z,u}é(p(r(;),f(:.,x,z,u))T(c)+J( :),z)g’(r)—
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—y(t, g (t, x, W)~ (t,x)+f°(@t, x, z,u), te[to, &,];
Gy (t,x,z,W2 @z (@), f(t,x,z,w) T O)+J (), 2) & ()—
—@t,x), te[&y, t4];
Gi(t,x, W& —¢(t, )+ f2(t, x,u), te[t;, 1];
where
xeB(t), zeC (1), weQ (t, o (1)),
ueQ(t,x), €'(t)=dé/dr.

THEOREM 8. Let the assumption 14° hold true and the functions ¢e®°,
yel® and t— u(t):[&, t1]— R be such that:

1) The function p is summable;

2) Go(t,u) = ple), té[&ostol, ueQ (¢, o (1));

3) Go(t,z,u)= u(t), t&[to, 7o), z€C (1), ueQ (¢, x (t));

4) S(t,x,z,u) = u(t), t&lzy, &), zeC (t), xeB(t), ue (t, x);

5) Gy (t,x,z,u) = u(t), té[&,,t,], xeB(t), zeC (t), ueQ (r, x);

6) G (t,x,u)=u(t), téfty, 1], xeB(t), uel (t, x).

Then:

a) For all v2 (x(-),z(-),u(-)eD, the following inequality holds true:

TO=1@.02 | p@at.

0

b) If there exists a sequence of control processes {v;f = D, such that
lim J (v,) = (¢, 7), (45)
8=+ 0

then I(¢p,y) is the lower bound of the functional J on D, (I =d,) while
the sequence {v,} is a minimizing sequence.
Besides, any other minimizing sequence satisfies the condition (45).

THEOREM 9. Let the assumption 14° hold true and let the functions @e®°,
yeI'® and the control process U2 (x(-), 7z (:), i (-))€Dq satisfy the conditions:

l) Gg [f, ﬁ(t)) = wel fi»ELIn GS (ta u): té[éﬂa l"‘l’.'!:l;
2) Go(t,z2(),u (@)=, min
3) S(t, %), 2(0), @ (1) =

4) Gy (6, X (1), Z(0), (1) =

GO (£721 ﬂ)! Ié[I(],TD);
S(t}xs Z, u)s ré[T09 él];
xeB{[},:EIE'](IrEuGQ[:..r]Gl (t,x,Z,M], ‘:E[gldtl];

5} Gi (t,J_C(t),lI(t))= mi G} (t}xau)) té[ti’tlj'

xeB (1), us (1. x)

min
xeB(t),zeC (1), ued (1, x)

Then the process U is optimal and any other optimal control process
satisfies the conditions 1)-5).
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The outline of the proof of Theorems §, 9 is the same as in the
Theorems 1, 2. The equality below plays the role of equality (15)

Tz u()= | £t x ©,u)di+
&o

+ jclf"(r, x (t), z (t), u (t) dt+ jfl S, x (0), u (@) de+

ty

+ jlgo(r (), x (z (1)) 7' () dt — I!¢(t,x(£})dt+
1 7(20. (0, %€ 0),u € 0) 0 de-

é]-
—J (gt x@,u@)de, (15

; %
which, by (43) and the notations introduced, can be rewritten as follows:

Jx()z()hu()=Lx()z()u(-)2

= jm GO (t,u () di+ It“ Go (¢, z (1), u (1)) dt+
&o ty

&y iy
=[] S(t,x@,z@),u@)dt+ ] Gy (t,x@),z@),u)dt+
£1

To

£
+] G (t, x (), u(0)dt. (46)
h

The role of equality (46) here is the same as that of (13), (14) in the
proof of Theorems 1, 2.

In principle it is possible to formulate an analogue of Theorem 3.
However, the functions @e®® and yel® have quite a few “degrees of
freedom” to provide in the general case a solution of the optimization
problem for an arbitrary initial element. As has been already mentioned,
the optimality conditions obtained in this part of the paper are effective
only for an optimal control problem in the program form (with a fixed
initial condition).
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Warunki globalnej optymalnosci dla sterowanych systemow
bezinercyjnych z opéznieniami

W pracy rozpatrzono zadanie sterowania optymalnego bezinercyjnymi systemami dyna-
micznymi z opoZnieniami. ) :
Przy braku sterowania systemy takie sa specjalnym przypadkiem réwnan funkcjonalnych
bez swobodnych zmiennych [1—3]. Z drugiej strony, sq one blisko zwiazane z systemami
wieloetapowymi. W odréznieniu jednak od nich zmienna niezalezna zmienia sie tu w sposob
ciagly.
Wyprowadzono warunki dostateczne optymalnosci globalnej dla sterowania programowego
1 sterowania w zamknigtej pgtli. W przypadku, gdy wektory stanu i sterowania sa skonczenie
wymiarowe, przy slabych zaloZzeniach wykazano, Zze sa one takze warunkami wystarczajacymi.
Przebadano tez lokalne warunki wystarczajace pierwszego rzedu. :
Oméwiono trudnosci zwiazane z przeniesieniem otrzymanych wynikéw na systemy ogdl- '
niejszego typu. ’

YcioBusi rnodasibHoil ONTHMAJIBHOCTH YNPABJIAEMbIX
De3HHEPIHOHHBLIX CHCTEM C 3ama3[ibIBaHHeM

Paccmarpusaerca jagada OnTHMANbHOIC YNOPaBICHHSA GBBHH.&]JU.HOHHHMH AHHAMHYECKHMH
CHCTEMaMHK C 3ana3fbiBaHHEM.
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an OTCYTCTBMH YHNpPAaBNEHWA Takue CHCTEeMEBl HBNAKITCA Y4CTHBIM CITYUYaeM (1])I’HKLIH0‘

HANBHBIX ypasuenud Oes cwobommwix nepemenunix [1—3]. C apyrofi CTOpOHEI, OHM TECHO
CONPHKACKIBAKOTCH ¢ MHOIOMIArOBBIMU CHCTEMAMH, HO B OT/AHYME OT NOCNEIHHX HE3ABHCHMAL

nepeMeHHad 30CCh HIMEHACTCA HETIPEPLIBHO.

TMony4eHe! AOCTATOYHbIE YCMOBMA T©NnoGanbHON ONTHMANBHOCTH NPOTPAMHOTO YIpAaR-
fevus W ynpaeneHua ¢ obparHofl cea3wio. B ciywae, worga ()asoBblil BEKTOp YNpasieHHs
KOHEHOMEpPHBI, IpH BechbMa CcnabwIX MpennonoweHHAX YCTAHOBIEHA H HeoDXOAWMOCTE 3THX
yenosuwit. Mecnenyiotes HeoOXommmple YCNOBHSA NOKANbHOH ONTHMANBHOCTH [EPBOTO MO-

pAIKa.
ObcyxnarTea TPYAHOCTH NEPEHECEHHS Pe3yNbTATOR Ha cucTeMbl Donee obwero Buaa.



