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A problem of optimal control of noninertial dynamic systems with delays is treated. 
When there is no control, a system of such kind can be considered as a particular 

case of functional equations without free variables [1-3]. On the other hand , they are 
closely associated with multistage systems, but unlike the latter, the independent variable 
in them varies continuously. 

The sufficient conditions for global optimality of program control and feedback control 
have been obtained. Necessary conditions are also proved when the phase vector and 
control vector are finite-dimensionaL The first order necessary conditions for local optimality 
are also investigated. 

Difficulties are discussed in transferring the results onto systems of a more general type. 

1. Formulation of the problem and applications 

Let X, U be arbitrary non-empty sets with elements x, u respectively, 
[t0, t 1] c R ~ (- oo, oo ), t0 < t 1 . Let there be given functions f: [t0, t 1] x 
x X x U-> X,f 0: [t0, -r 1] x X x U-> R ~ [ -oo,oo] and -r: [t0 , t 1]-> R. Assume 

that t0 ~ -r (t) ~ -r 1 for all tE[t0, t 1], where <1 ~ -r {t1) ?: t 1 . Denote -r 0 ~ -r (t0). 
Define also the subset B (t) of X for any t E [t0 , t 1] and the subsets 
Q(t,x) of U for any pair (t,x), tE[t0 ,-r 1], xEB(t). 

Give the system described by the equation 

X(< (t)) = j (t, X (t), U (t)), (1) 
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the name of noninertial controllable dynamic system with delays. 
Then interpret the variable t as time, the function u ( ·): [t 0 , r 1] ----> U as 

control, x (-): [t 0 , r 1]----> X as trajectory, the pair (x ( · ), u (-)) as controlled 
process, and the element x EX as state. 

For all t E [t 0 , r 1] impose the following restrictions on the trajectory 
x (-) and the control u (-) 

X (t)EB (t), 

U (t)EQ (t, X (t)). 
(2) 

The restnctwn (2) includes, in particular, a terminal restnctwn. If, for 
example, the set B (t) for all t E [t 1 , r 1] consists of only one element, 
it means that the trajectory x ( ·) must coincide with the given function 
m the interval [t 1 ,r1]. 

Besides, the initial condition for equation (1) is given by 

x (t) =a (t), tE[t0 , r 0), (3) 

where a: [t 0 , r 0)----> X is a given function such that a (t) E B (t), t E [t 0 , r 0). 

Assume here that [t 0 , t 0 ) ~ {t0 }. Restriction (3) as well as the terminal one, 
could be included in (2), but it is convenient to separate it. 

Denote by D0 a set of control processes v ~ (x (. ), u (. )), satisfying the 
above requirements and such that the function t----> f 0 (t, x (t), u (t)): [t0 , r 1]----> R 
is summable (i.e. Lebesgue integrable). Define the functional 

T I 

v---->1(v)~ J f 0 (t,x(t),u(t))dt:D 0 ---->R. (4) 
to 

Here and further the symbol J denotes the Lebesgue integral. 
In the general case it is required to find the lower bound 

d0 ~ inf 1 (v), 
vel>o 

and a sequence {(xJ ), uJ ))} minimizing 1 on D0 , i.e. a sequence such 
that 

The problem is also solved if a process v E D0 satisfying the condition 
1 (V) = d0 is found. Let us call such a control process, as it is accepted, 
an optimal control process. 

The equation of the same kind as (1), containing no control, have been 
studied in detail in [1-3] and are called functional equations without free 
variables. One of the well known equations of this type is the Abel 
equation: x (r (t)) = x (t)+ 1. 

The equation (1) is characterized by the fact that the initial condition 
is given by the function a (t), defined on [t0 , r 0 ) as is true for differential 
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equations with delays [ 4]. If the function -r (t) is continuous and -r (t) > t 
for t E [t0, t 1] then each initial function a (t), with the control u (t) fixed, 
defines the only one solution x (t) (the trajectory) of the equation (1}, 
defined in the whole interval [t 0 , -r 1]. Unlike the differential equations, 
there is no question here about the existence of the solution as a whole. 
Yet, this question becomes non-trivial when the condition -r (t) > t is violated. 

The mathematical model (1) is applicable to a somewhat ·broader 
class of situations than a situation with a delay, for when tE(t0, t 1), not 
only the inequality -r (t) ;;:, t is permitted but also the inequality -r (t) < t. 

A dynamic system of the kind under consideration resembles a multi­
-stage dynamic system, but the argument t varies here continuously. There­
fore, the optimality conditions thus obtained resemble Krotov's sufficient 
conditions [5] and corresponding conditions of the dynamic programming 
method (see, e.g. [6]), but for the systems with discrete argument there 
are substantial differences because the optimality criterion (4) is written in 
integral form. 

A distinctive feature of the mathematical apparatus used in this paper 
is the use of the one-sided (lower) Perron integral [7, p. 297], defined 
not only for measurable integrand. This allows to avoid a contradiction 
between bad analytic features of trajectories x ( ·) of equation (1) and the 
integral form of optimality criterion (4), demanding the measurability of the 
integrand. This way we also obtain the main results under weaker assumptions 
than when using the Lebesgue integraL However, the one-sided lower Perron 
integral plays only an instrumental role in argumentation and is lacking, 
as a rule, in the final results. Practically, the same results may be obtained 
using the one-sided Lebesgue integral although the more general Perron 
integral is built more naturally. 

The use of the one-sided Perron integrals proved convenient in the 
classical optimal control problem [8]. A similar construction (the upper 
measure) is used in [9], however, it does not have some features important 
here. 

A noninertial controllable dynamic system with delays can serve as a 
model for remote control process in cases when a delay of the controlling 
signal is big in comparison with a transient period in the controlled 
object. Such a situation can occur when executing from the Earth control 
of the robot operating on the surface of a planet. On Earth this takes 
place when conducting remote control using a control signal carrier less rapid 
than electromagnetic waves, such as, for example, acoustic waves. 

Mathematical models similar to (1) or more general (e.g., with several 
delays) may be used in the problems of controlling the dynamics of 
biological populations instead of traditional multistage models [10]. The 
value -r (t)---, t = const > 0 in these models can represent delay between the 
moment of reproduction ability of a being and the moment of its birth. 
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2. Sufficient optimality conditions 

Let us assume that the following conditions are satisfied throughout 
the paper. 

1°. The function t (t) is continuous, and nondecreasing, its upper deriva­
tive [7, p. 293] may take the value ctJ only in a countable set of points 
of the interval [t0 , t 1] and t 0 < t 1 . 

Denote by 1>0 a set of functions cp: [ t 0 , t 1] x X -d~, satisfying the fol­
lowing condition. 

2°. For any controlled process (x ( · ), u ( · )) E D0 a summable function 
t--> y (t): [t0 , t 1]--> R may be found as 

lcp (t, x (t))l ~ y (t), tE[t0 , t 1]. 

Here ,and in the sequel the notation rE: [a, b] means that almost every 
element of the interval [a, b] is under consideration. 

The condition 2° holds, in particular, if for all (x ( · ), u ( · )) E D 0 the 
function t--> cp (t, x (t)) is bounded on the interval [ t 0 , t 1]. 

Using the function cp let us make up the following constructions 

S ( t , X , U) fl cp ( t ( t) ,j ( t , X , U)) t' ( t) -

-cp (t, x)+ f 0 (t, x, u), tE[t0, t 1] ; (5) 

G0 (t, w) !l cp (t (t),f (t , a (t) , w)) t' (t)+ 

+ f 0 (t, a (t), w), t E [t0 , t 0); (6) 

Gdt , x,u)fl-cp(t,x)+f0 (t ,x, u), tE[t1, t 1]; (7) 

where XEB(t), UEQ(t,x), t ' (t) fl dt(t) jdt, WEQ(t,a(t)). 

THEOREM 1. Let the function cp EfP0 and the function t--> f1 (t): [t0 , t 1] --> R 
be such that : 

1) The function f1 is summable, 

2) S(t,x,u)~fl(t), tE[r0 ,t1], xEB(t), uEQ(t ,x), 

3) G0 (t , u) ~ fl(t) , tE[t0 , t 0 ), u EQ(t ,a(t)) , 

4) Gdt,x,u)~fl(t), tE[t 1 ,t1], xEB(t), uEQ(t,x). 
Then 
a) For all (x(-),u(-))ED 0 the inequality 

t I 

J (x (-), u (-)) ~ l (cp) !l J f1 (t) dt , 

'o 

holds. 

(8) 

b) If a sequence of controlled processes [(xs (-) , us (·))} c D0 exists, and 
it is such that 

lim J (xJ ), uJ )) =I (cp), 
s-+ ao 

(9) 
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then l (cp) is the lower bound of the functional J on D0 (l = d0 ), and the 
sequence {(xs (-),us(-))} is a minimizing sequence. Besides, any other mini­
mizing sequence satisfies the condition (9). 

Before passing to the proof of Theorem 1, let us try to get auxilliary 
results, which will be important in further considerations. 

Let the function t -+ g (t): [a, b] -+ R be given. We call a continuous 
function t-+ 1J (t): [a, b]-+ R satisfying the condition 1J (a) = 0 and the ine­
qualities D1J (t) < oo , Dif (t) :( g (t) for all t E [a, b] a subfunction. Here 

Dl] (t) ~ lim (1J (t)-1] (r))/(t-r) , 
r~t 

is the upper derivative of the function 1J (t). 
If a set of subfunctions is not empty, then the value 

b 

(P) J g (t) dt ~ sup 1J (b)< oo , 
a 'I I ·I 

where sup is calculated over the whole set of subfunctions 1J ( ·) is called 
a lower Perron integral (P-integral) [7, p. 297]. Similarly a superfunction 
and an upper Perron integral may be defined. · 

Use then some properties of this integral. Enumerate the most important 
of them, assuming, in contrast to [7], the case when the integrand . has 
the subfunctions only, as a result of which the P-integral can turn 
into + oo . 

Let the functions t-+g(t):[a,b]-+R, t-+h(t):[a,b]-+R be given. 
1 * If the function g is Lebesgue integrable, P-integrable, and 

b b 

(P) J g (t) dt = J g (t) dt. 
a 

2*. If the function his Lebesgue integrable and lg (t)l :( h (t), tE:[a , b] , 

then the function g has a finite P-integral. 
3*lfg(t) ;?: h(t), tE:[a,b] , and the function his P-integrable, then 

the function g is P-integrable and 
b b 

(P) J g (t) dt ;::::: (P) J h (t) dt. (10) 
a a 

4* If the assumptions of item 3* are fulfilled and g (t) > h (t) on a set 
of positive measure, then the inequality (10) is strict. 

5* If the function g is P-integrable, and h is Lebesgue integrable, 
then their sum is P-integrable and 

b b b 

(P) J (g (t)+ h (t)) dt = (P) J g (t) dt+ J h (t) dt. 
a a a 

6* If the function h has a finite P-integral and the difference q- h 
is P-integrable, then the functio~ q is also P-integrable and 
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b b b 

(P) J (g (t)-h (t)) dt:::;; (P) J g (t) dt-(P) J h (t) dt. (11) 
a a 

7* If, in addition to the condition of item 6*, the difference g- h is 
Lebesgue- integrable, then an equality sign holds in (11). 

8* If the functions q and (- q) are P-integrable, then 

b b 

- (P) J (- g (t)) dt ;:;: (P) J g (t) dt. 
a a 

9* If the function q is P-integrable (on [a , b]), then it is P-inte­
grable in any interval [~, ry] c [a, b] and for any cE[a, b] 

b c b 

(P) J g (t) dt = (P) J g (t) dt+(P) J g (t) dt. 
a a c 

10* (Substitution of the variable). If the function q 1s P-integrable 
and finite almost everywhere on [a, b], while the function ~:[a, PJ---+ R 
is continuous and nondecreasing, its upper derivative may take the value 
+eo only in a countable set of points of the interval [a, PJ and ~ (a) = 
= a,~ (p) = b, then 

b p 

(P) I g (t) dt = (P) I g (~ (s)) d~;s) ds. (12) 

In the equality (12) and everywhere in the sequel let us suppose that 
the integrand is equal to zero if it is not defined. 

The properties 1 *-9* of P-integrals are proved in [7] or easily 
follow directly from the definitions, the properties cif lower and upper 
derivatives [7, p. 293] and well known theorems of analysis. The possibility 
of substituting the variable in the Perron integral is proved in [7, p. 316, 
Theorem 4], the result 10* required here has been obtained while proving 
the above mentioned theorem from [7]. 

LEMMA 1. 
1). For any q>E<P0 and v ~ (x (-), u (·))ED 0 the following inequality is valid 

to 

J (v);:;: Lcp (v) ~ (P) J G0 (t, u (t)) dt+ 
to 

cl tl 

+(P) s s (t, X (t), Lt (t)) dt-(P) s [ -Gl (t, X (t), u (t))] dt. (13) 

2). If, in addition, function t---+ S (t, x (t), u (t)): [To, t 1] ---+ R is summable, 
then 

J (v) = Lcp (v). (14) 
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Proof. Let <pEcP0 and vED 0 , then the equality 

,, 
J (v) = (P) J <p (r (t), x (r (t))) ,, (t) dt-

l o 

r 1 r 1 

- (P) J <p (t, X (t)) dt + J j 0 (t, X (t), u (t)) dt, (15) 
to 

holds true. 
The conditions 1°, 2° and the properties 2*, 10* of the P-integral 

are used here. The existence and finiteness of the second addend in (15) 
follow from 2° and the property 2*, as well as the existence and finiteness 
of the first addend follow from 1 o and 10*, and also the validity of 
equality (15) itself. 

Using the property 5* of a P-integral and taking into account the 
inequalities t 0 ~ 'o < t 1 ~ T 1 let us divide the integrals in (15) into the 
integrals in intervals [t 0 , T0], [ 'o , t 1] and [t 1 , ' 1]. Grouping by means ·of 
5* and using the equation (1) and the notations of (5H7), we get 

t o rl 

J(v)=(P) J G0 (t,u(t))dt-(P) J [-Gdt , x(t),u(t))]dt+ 
to r1 

tl ll 

+(P) .f [S(t,x(t),u(t))+<p(t , x(t))]dt-(P) J <p(t,x(t))dt. (16) 

Taking 6* into account, unite the last two addends of the right hand 
side of (16) and get the inequality (13). If the assumption of item 2) in the 
lemma is satisfied, the equality (14) is obtained by 7* from (16). 

Let us formulate the condition for the function t---> f1 (t): [t0 , T 1]---> R 
which is different from the assumption 1) of Theorem 1. 

3°. The function f1 on the interval [t0 , ' 1] and the function t---> (j (t) ~ 
£::, -
= - {L (t): [t 1 , ' 1] ---> R are P-integrable. 
LEMMA 2. Let <p E P 0 . the condition 3°, and the assumptions 2)-4) of 
Theorem 1 hold. 

Then for all v ~ (x (- ), u (-)) E D0 the inequality 

J (v) ): 11 (<p) ): 12 (<p) , (17) 

is satisfied , where 

r 1 r 1 

ld<p) ~ (P) J p(t)dt-(P) J (-p(t))dt , (18) 

'" 
12 (<p) ~ (P) t {t (t) dt. (19) 

'o 

Proof. Let the conditions of the lemma hold and let v be a process 
from D0 . For function <p and process v the inequality (13) holds true 
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due to Lemma 1 from which, the conditions 2)-4) of Theorem 1, 3* and 9* 
t"aken into account, follows the validity of the first of the inequalities 
in (17). Considering 3* it is easy to observe that 11 (<P) ;:?! 12 (<P) and so the 
second inequality in (17) is true. Since values 11 and 12 are not dependent 
of the choice of the element vED0 , the inequalities (17) hold for all vED0 . 

This proves the assertion of the lemma. B 

Proof of Theorem 1. The conditions of the theorem and 1* guarantee 
the applicability of Lemma 2. Moreover, 12 (<P) = l (<p). So, the assertion a) of 
the theorem is true. 

Since the inequality (8) holds true for all (x ( · ), u (-)) E D0 then d0 ;:?! l (<P ), 
from which, taking into account the definition of the lower bound, we obtain 

J (xJ ), uJ)) ;:?! d0 ;:?! l (<p). (20) 

From (9) and (20) follows 

lim 1 (xs (-),Us (-))= d0 = l (<p), 
s~ ao 

which makes the assertion b) of the theorem obvious. • 
The result described below follows directly from item b) of Theorem 1. 

CoROLLARY 1. If the conditions of Theorem 1 hold and the process 
(x( ·),u(-))ED0 satisfies the condition l(x( ·), u(-)) = l(<p), then this control 
process is optimal. 

REMARK 1. It is easy to see that Theorem 1 remains true when the 
assumption 1) of the summability of f1 is substituted by condition 3° and 
l (<P) by 11 (<P ) or 12 (<p). 

Such substitution has not been done directly in Theorem 1 because of 
the desire to prevent the inclusion of P-integral in the final results. 
However, such a variant of Theorem 1 is necessary to prove Theorem 2, 
which is considered below. 

THEOREM 2. Let the function <PE cfJ 0 and the process v ~ (x (- ),u(-))ED0 

satisfy the condit ions : 

1) S(t,x(t) , u(t))= min , S(t , x,u), tE[r0 ,t 1]. 
xe/J(t), ueQ(t,x) 

2) G0 (t ,u (t))= minlG0 (t,u), tE[t0 ,t0). 
uEQlt,o:(t) 

3) Gt(t, x(t) , u(t)) = min Gt(t ,x, u), tE=[t 1 ,r 1]. xe ll(t) , ueQ(t,x) 

4) The function t--> S (t , .X (t) , u(t)): [r0 , t 1]---> R is summable. 

Then the process v is optimal and any other optimal control process 

satisfies the conditions 1 )-4 ). 

Proof. Let the conditions of the theorem hold true. Define the function 
f1 : [t0 , t 1] --> R by means of the equalities: f1 (t) ~ G0 (t , u (t)) when t ,E [t0, T 0 ), 
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p (t) ~ S (t, x (t), ii (t)) when t E (r0 , t 1) , p (t) ~ G1 (t , x (t) , ii (t)) when t E [t 1, r 1] 

and p (ro) ~ 0 if r 0 > t0 . 

The function p satisfies the condition 3° due to the assumption 2°, 
summability of the function t--+ f 0 (t, x (t) , ii (t)) on the interval [ t0 , r 1] and 1 *. 
Hence, Theorem 1 and Remark 1 taken into account, we can prove the 
optimality of the process v by showing that 

(21) 

where /1 (q;) is defined by equality (18). 
Thus, let us prove the validity of (21). Due to the assumption 4) it 

follows from item 2) of Lemma 1 that the equality 

(22) 

holds true. 
Thereby, considering the definition of function p 

ro t I t l 

J (V)= (P) J p (t) dt+(P) J p (t) dt-(P) .f [- p (t)] dt . (23) 
<o <o ,, 

Now, following 9* and (18) it is easy to show that the equality (23) 
is equivalent to (21). Hence, the optimality of process v is proved. 

Let now v ~ (x(·) , u(-))ED 0 , v=l-v, be some other optimal control 
process such that at least one of the equalities 1)-3) is violated on the 
set of moments t of positive measure after substituting v by v. 

The inequality (13) holds true for the process v by Lemma 1. Taking 4* 
into account and comparing (13) with (22) it becomes easy to show that 
J (v) > J (V). But this contradicts the assumption that the process v is optimal. 
Therefore, the conditions 1)-3) for the process v cannot be violated on 
the set of positive measure, i.e. the conditions 1)-3) of the theorem hold 
true for the process v. This implies, in particular, that S (t, x (t) , u (t)) = 
= S (t, x (t), ii (t)) , t E [ r 0 , t 1] , and thus the condition 4) of the theorem also 
holds true for the process v. • 

3. Dynamic programming 

Theorems 1 and 2 contain sufficient optimality conditions for the case 
when the initial condition (3) is fixed. One can pose the problem of finding 
the universal function q;, which satisfies all possible initial conditions 
simultaneously. 

In this part of the paper we shall assume that the following condition 
is satisfied. 

4°. For all t E [t0 , t1] the inequality r (t) ~ t holds. 
Let B0 be a non-empty set of initial elements Wa ~ (ta , rx (-)) such that 
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taE[to,td, '"~ r(ta)~t 1 , for the function t->r:x(t):[t",r")->X for all tE 
E [t", r") the inclusion r:x (t) E B (t) holds true. Assume, as was also done in 
Section 1, that [t", ta) ~ {ta}· Besides, any additional restrictions may be 
imposed on the elements w". The set of all those restrictions defines B 0 . 

Consider an optimal control problem made from the initial problem by 
substituting everywhere in Section 1.1 the moments t0 , r 0 by ta, '"' correspon­
dingly, and in particular the initial condition (3) by the condition 

(24) 

and a family of such problems with different w" E B0 . Taking this into 
account, denote a set of admissible pairs (x (- ), u (-))of functions u : [ta, r 1]-> U, 
s:[t, .r 1]->X. similar to D0 , by D(w"), and the lower bound of the 
functional by d (wa)· 

Because of the assumption 4° the family of problems with initial elements 
from B0 is defined correctly. 

Denote by 111 a set of various functions (t, x)---> u0 (t, x): [t0 , r 1] x X---> U 
such that u0 (t,x)EQ(t,x) for all tE[t0,r1], xEB(t). 

DEFINITION 1. Call the function u0 ell a feedback control, if for any 
w" from B0 there exists a solution Xa ( ·): [ta , r 1] --->X of the equation 

Xa (r (t)) = f(t, Xa (t), u0 (t , Xa (t))) , tE[ta , t1], 

with the initial condition (24) and 

(xa (-), Ua (-)) E D (wa), 

where 

(25) 

(26) 

(27) 

REMARK 2. To verify the condition (26) we must prove the inclusion 
Xa (t) E B (t), t E [ta, ' 1] , and summability of the function 

t ---> ~" (t) ~ j 0 (t, Xa (t), Ua (t)): [ta , r 1J ---> R. 

REMARK 3. The verification of (26) reduces to a verification of summability 
of the function ~" when a set Q (t, x) is not empty for all tE[t0, t 1], 
xEB (t) and for any tE [t 0 , t 1] 

M (t) ~ {yEX:y = f(t, x, u), xEB (t), uEQ (t, x)} c B (c (t)). 

DEFINITION 2. Call the function u0 E 111 an optimal feed back control, 
if u0 is a feedback control and for any w" from B0 the control process 
(xa ( ·), ua (- )), satisfying the conditions (26), (27), is optimal, i.e. it minimizes 
the functional J on the set D (wa). 

Introduce the set !'P of functions cp: [t0 , r 1] x X---> R, satisfying the 
condition 2° for any of the sets D (wa), WaEB0 . 
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REMARK 4. Everywhere in the sequel assume for the function u ---7 g (u): Q ---7 R. 
that 

min q (u) ~ oo, 
ueQ 

if q(u)= oo for all uEQ. 

THEOREM 3. Let B0 be a set of initial elements, let the function cp E <1> 

satisfy the conditions: 

1) cp(t,x)= m<inl[cp(r(t),f(t ,x, u))r' (t)+f0 (t,x , u)J, tE[t 0 , t 1],xEB(t), 
ueQ~t,x 

2) cp(t,x)= min f 0 (t,x,u) , tE:[t 1 ,r 1] , xEB(t), 
uEQ(r, x ) 

and let the function u0 E 111 satisfy the conditions: 

3) u0 (t,x)EArgmin[cp(r(t),f(t ,x, u))r'(t)+f0 (t, x, u)] , tE[t0 ,t1], 
uEQ(r , x) 

XEB (t), 
4) u0 (t, x )EArgminf0 (t, x, u), .tE[t 1 , ri] , xEB(t), 

uEQ(r ,x) 

5) u0 (t, x ) is the feedback control. 
Then 
a) the function u0 (t , x) is the optimal feedback control, 
b) for any Wa from B0 the optimal value of the functional (4) is 

d (wa) = (P) r cp (t, a (t)) dt. 
t, 

(28) 

Proof. To verify the assertion a) of the theorem it is sufficient for any 
wa E B0 to apply Theorem 2 to the process Va ~ (xa (- ), ua (-)) which satisfies 
the conditions (26), (27). In doing this we take as the function cp of the 
Theorem 2 a restriction of a function cp E <1> on [ta, t 1] x X which satisfies 
the conditions 1) and 2) of Theorem 3. Satisfaction of the conditions 
1}--3) of Theorem 2 follows directly from the conditions of Theorem 3. 
T he condition 4) of T heorem 2 is also satisfied because due to the condi­
tions 1) and 3) of Theorem 3 and (27) the equality 

S(t,xa(t),ua(t)) = O, t E[ra , t 1] , (29) 

holds. Equality (29) and item 2 of Lemma 1 imply the equality J (va) = 

= L'P (va ), which by (29), the conditions 2) and 4) of Theorem 3, the 
initial condition (24) and notation (7) can be written 

1 (xa (-), Ua (·)) = (P) t Go (t, Ua. (t)) dt. 

'" 
Hence, by (6) and condition 1) of Theorem 3 we get the equality (28). • 
It is interesting to note that function cp E <1> satisfying the conditions 

of Theorem 3 is not an analogue of the Bellman function of the classical 
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optimal control problem. The role of the Bellman function here is played 
by the functional 

w" -d (w") ~ (P) r <p (t, a (t)) dt:B0 ~ R. 
la 

The element w" E B0 plays for the system (1) the role of the initial 
position. 

In this connection we shall give the following definition. 

DEFINITION 3. Call a function <p E rp satisfying the conditions 1 ), 2) of 
Theorem 3 and for which there exists at least one function u0 E Jlf satisfying 
the conditions 3)---5) of this theorem an originative function. 

A pleasant feature of the problem under consideration is that values 
of the functional I ( ·) can be calculated constructively with the known 
originative function. 

ExAMPLE. Let the controlling and controlled objects be placed in the same 
point at the moment t = 0 and let them move apart at a speed half of 
that which the control signal spreads. Thereby, -r = 2t. Taking this into 
account, let the equation (1) have the following appearence 

X (2t) =X (t)+u (t), X, UERi, tE [0 , t 1]. 

A method of dynamic programming kept in mind, consider not only the 
trajectories beginning at t0 = 0 but also these with other t" E [0, t tf2]. 
Therefore, for tE[t" ' 2t") the function x (t) is defined as x (t) =a (t) (condi­
tion (24)). The criterion (4) is like 

2t, 

J = J (x 2 (t)+u 2 (t)) dt. 

Apply Theorem 3. Taking advantage of the condition 2) of the theorem, 
it is easy to show that u (t) = 0, <p (t, x) = x 2 on the interval [t 1 , 2t 1]. 

When t E [0, t t) we find the function <p in the form <p (t, x) = CJ (t) x2 

Then, using the condition 1) of Theorem 3, we obtain the following equation 
for the function CJ (t) 

CJ(t) = 1+a(2t)(1+CJ(2t))- 1
. 

Since a (t) = 1 at t E [t 1 , 2t 1] , one can see that function CJ (t) is constant, 
CJ (t) = CJk> on each of the intervals [2-kt 1 , 21 -kt 1), k = 1, 2, ... ,the number 
of which is infinite and accumulates in approaching the point t = 0. A few 
of the first values of (Jk are as follows: CJ 1 = 1.5, CJ 2 = 1.6, CJ 3 = 1.615, .... 
If k becomes infinite, CJk ~ (1 +.J5)/2. An optimal feedback control is the 
linear regulator u(t)= -a(2t)(l+CJ(2t)t 1 x(t) when tE[O,t 1] and u(t)=O 
when t E [t 1 , 2t 1]. It is interesting to note that the feedback factor in the 
regulator is piecewise-constant, which is not obvious from the formulation 
of the problem. 
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4. The existence of originative function. 
Necessary and sufficient optimality conditions 

267 

Let us study the question on the existence of originative function and 
necessity for conditions of the theorem 2. 

Naturally, the question cannot be answered at such an abstract level, 
at which the theorems 1-3 have been proved. Therefore, assume in this 
part of the paper that X, U are finite-dimensional Euclidean spaces, Q is 
a non-empty compact subset of U independent of the point (t, x), the 
functions f , f 0 are defined on [t0 , r 1] x X x Q only (earlier they were 
defined on [t 0 , r 1] x X x U). The following assumptions will be required with 
respect to the functions f, f 0

, the sets B (t) and the initial elements 
Wa ~ (ta, a(-)) E Bo. 

5°. The set V~ {(t,x):tE[t0 ,r 1],xEB(t)} is closed. 
6° The function f is continuous. 
7° The function f 0 is lower semi-continuous (l.s.c.) and finite . 
8°. The function r is continuously differentiable. 
9°. For all t E [t0 , t 1] the inequality r (t) > t holds. 

10° The function a is Borel-measurable. 
11°. There exists a constant cER such that !la (t)!l ::::;; c for all tECta, ra)· 
12°. There exists at least one process (x (-), u (- )) with the initial element 

wa satisfying phase restrictions 

X (t)EB (t), t E [ta, r1J. (30) 

THEOREM 4. If the assumptions 5°-9° hold true and for any wa E B 0 the 
assumptions 10°-12° hold. then an oriqinative function exists. 

THEOREM 5. Let the assumptions 5°-9° and 10°-12° hold for the fixed 

initial element (to , a ( · )). 

In order for the control process (.X ( · ), ii ( · )) E D0 to minimize the functional 
J on D0 it is necessary and sufficient that ihere exists a function q; E <!> 0 

satisfyinq the conditions 1}-4) of Theorem 2. 
Before turning to a proof of Theorems 4, 5 let us set some auxilliary 

assertions associated with the properties of l.s.c. functions. 
In what follows we assume that A, K are non-empty closed subsets 

of finite-dimensional Euclidean spaces. 

LEMMA 3. Let the function g: K ~ R be l.s.c. and the function h: A ~ K 
be continuous. 

6 -
Then the function x ~ T (x) = g (h (x)): A~ R is l.s.c. 

Proof. Let xEA, then y~h(X)EK. Since h(A)cK and h(x)~y for 
x~x, 

lim r (x)): lim g (y) , (31) 
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if X E A and yE K. 
But it follows from the definition of the l.s.c. function g that 

lim g (y)?: g (.Y) = r (x). (32) 

Comparing (31) and (32) one can see that the function r is l.s.c. • 

LEMMA 4. Let K be a compact set and the function h: A x K ~ R l.s.c. and 
not attaining the value - oo. 

Then the function 
!:::, -

x ~ g (x) = min h (x, u): A~ R, 
UEK 

(33) 

is l.s.c. 

Pro of. As K is a compact set, the equality (33), by Remark 4, holds true. 
Let the sequence { xs} c A converge to an element x EA. Choose a sub­
sequence {xs} c {xs} such that 

For any s' choose an element u,- such that q (x5 ) = h (x5 , u5 ). 

Since K is a compact set, it is possible to choose a subsequence 
{us"} c {us} converging to an element ii E K. Since the function h is l.s.c. on 
A xK, we have 

lim h (x 5 .. , us")~ h (x, ii). (35) 
s" -4 oo 

But h (xs", Us·) = g (x 5 .. ), and 

Fm g (xs·) = ~im g (xs), 
s ~ eo s - eo 

therefore 

lim h (x " u .. ) = lim g (x ·). 
s"-. oo 5 

' 
5 

s'-+ co 
5 

(36) 

Taking into account that h (x, ii) ?: g (X), by (35) and (36), we obtain 

~im g (xs) ?: g (X). 
s-+oo 

(37) 

Comparing (34) with (37) and taking into account that the sequence 
{xs} c A is arbitrary, we can conclude that the function g is l.s.c. 8 

To prove Theorem 4 we have to use the theorem on measurable choice, 
which is somewhat different from those traditionally used [11, p. 236], 
[12, p. 59]. 

THEOREM 6. Let K be a compact set and let the fimction h: A x K ~ R 
be l.s.c . 

Then . there exists a Bore/-measurable (Bore/ian) function u*: A ~ K, 
sati~fyinq the conditions 
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h (x , u*(x)) = min h (x, u), xEA. 
ueK 

Proof. The epigraph epi h c R x A x K of function h is a closed set [11 , 
p. 19], hence it is Borelian. Then, according to the Novikov theorem 
· [13, Theorem 1.5] the projection H of the set epi h on R x A is a Borelian 
set. According to the Louzin-Yankov theorem [13, Theorem 1.2] there 
exists a Borel-measurable function (~ , x)---* u0 (~, x): H---* K*l. 

By Lemma 4 the function 

x---* g (x) ~ min h.(x, u):A---* R, 
ueK 

is l.s.c. Since for the l.s.c. function g the Lebesgue sets S (YJ) ~ {yE A: g (x) ::;; YJ }, 

YJ ER, are closed [ 11, p. 19] then g is Borelian. 
Thus, the functions u0 and g are Borelian. Then, their superposition 

x ---* w (x) ~ u0 (g (x), x): A---* K is also Borelian. But 

w (x)E{vEK: h (x , v) = min h (x, u)} , 
ueK 

for all xEA. Therefore, we can take u*(x)=w(x), xEA. ll 

Proof of Theorem 4. The outline of the proof for the theorem is as 
follows. Since the function r is continuous and r (t) > t for all t E [t0 , t 1], 

we apply the well-known step method. Using this method, by the condi­
tions 1)--4) of Theorem 3 we build the function cp and the control u0 

of separate pieces, moving from the end of the inter:val [t0 , r 1] to the 
beginning. We will show later that functions cp and u0

, constructed in 
such a way, satisfy all conditions of Theorem 3. 

We form a finite system of intervals Lli £; [ti, ti+ 1
] , i = 0, N such that 

i + 1 £::, ( i) . 1 N d 0 £::, N £::, s h . . h t =r t , r= , an t = t0 , t =t1 . uc a system exists smce t e 
assumption 9° holds. Note that t 1 = r (t 0 ) is not necessary and the left 
end interval may be shortened. 

£::, \ --Introduce the system of sets W;* = {(t, x)E V: t ELl if, i = 0, N. The sets 
W;* are closed by the assumption 5°. Further, for any i = 0, N form the 
sets w; defined as 

w; ~ {(t, x)E W;* :(t,f(t, x, Q))n Wi+t # 0}, 

for i = 0, N - 1 and WN ~ W,VI'. The sets W; must be formed recurrently, 
beginning from W,y. Since the set Q is compact, the function f by the 
assumption 6° is continuous and W;*, i = 0, N are closed, and the sets w;, 
i = 0, N, are also closed. 

*> Theorem 1.2 from [13] demands that the set R x A be compact ; however, it is not 
important here, for R x A can be presented as a union of not more than a countable 
number of compact sets. 
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The set W ~ Ui'=o W; has the following property: for any initial element 
(ta, a ( · )) such that 

(38) . 

the condition 12° holds. Violation of the condition (38) at least at one 
point of the interval [ta, Ta) contradicts 12° Violation of the condition (38) 
on a set of positive measure leads to a violation of phase constraints (30) 
also on a set of positive measure of the interval [ta, T 1]. 

Denote }i ~ .::1; x X. For any i = 0, N and for any k = 1, N build the 
functions <p;: }i--> R and Xk: J:k x Q--> R, taking advantage of the equalities 

<fJN (t, x) ~ minf0 (t, x, u), (t, x)d~v, 
ueQ 

<p,v(t,x)g eo, (t,x)El;'v \ WN, 

Xk (t , X, u) g <fJk (1: (t),f(t, X , u)) T'(t)+ j 0 (t, X, u). 

<pdt,x)~minx;+ 1 (t,x,u),(t,x)E}i, i=O,N-1. 
uE(J 

It follows from 7o and Lemma 5 that <p,v is l.s.c. on W,v, and as the 
set Wv is closed, also on the whole domain of definition YN. Hence, by 
6c-8" and Lemma 4, the function /.Y is also I.s.c. on the whole domain 
of definition, and, by Lemma 5, the function <p,v _ 1 is also l.s.c. 

In a similar way we may prove that the functions XN _ 1 , <p,v _ 2 are l.s.c. 
Repeating the process we may conclude that each of the functions Xk, 
k = 1, N and <p; , i = 0, N is i.s.c. 

It is also easy to see that functions <p; are finite on VY;. Moreover, 
they are bounded on any bounded subset of W; 

Define the function <p: [t0, T 1] x X--> R by the equalities 

<p (t, x) ~ <p; (t, x), (t, x)E[ti, ti+ 1)x X, i = 0, N -1, 

<p (t, x) g <fJN (t, x), (t, x)E YN. 

It is important that the function <p is bounded on any bounded subset 
of W and turns into + oo outside W. 

The function <p built above evidently satisfies the conditions 1), 2) of 
Theorem 3. 

We show that <p is an originative function. For this purpose we build 
the control u0

, satisfying the conditions 3)- 5) of Theorem 3. 
Form the functions u?: }i--> Q, i = 1, N, for which the following inclusions 

hold: 
ug (t, x) E Arg min f 0 (t, x, u), (t, x) E Yv, 

ue(! 

ub (t, x) E Arg mln X; (t, x, u), (t, x) E }i, i = 0, N -1. 
ue(! 

The function f 0 is l.s.c. and finite (condition 7°) Each of the 
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functions X;, i = 1, N , is also l.s.c. , finite on the closed subset W; x Q of 
its domain of definition and takes the value + oo outside this subset. 
With this in mind and making use of the theorem on measurable choice 
(Theorem 6), choose all the functions u?, i = 0, N, in such a way that 
they are Borel-measurable. In this case the control u0 

E Jl! defined by the 
equalities 

u0 (t, x ) ~ uf(t, x), (t, x )E[ti, ti+ 1
) xX, i = 0, N -1 , 

u0 (t, x) ~ uZ (t, x), (t, x)E YN, 

is also a Borel-measurable function. 
The function u0 thus constructed evidently satisfies the conditions 3), 

4) of Theorem 3. 
Now let us show that the condition 5) of Theorem 3 for the control u0 

constructed holds too. 
To do this, it is sufficient to prove that for the initial element, 

satisfying the conditions 10°-12°, there exists a solution Xa (t) of the 
equation (25) with the initial condition (24), where ua (t) is defined by the 
equality (27), satisfying the phase constraints (30) and it is such that the 
function 

is summable. 
Thus, let wa ~ (ta, a (. )) be an arbitrary initial element satisfying the 

conditions 10°-12°. As has already been mentioned, the structure of the 
set W is such that the condition 12° implies (38). Since W c V, for the 
initial function a ( ·) the phase constraints (30) hold. Applying a step method 
(from left to right), it is easy to see that for the bounded initial function 
a(-) (condition 11°) the trajectory xa (t) is defined on the whole interval 
[ta, -r 1] and it is bounded. Besides, since the initial function a (-) is Borel­
-measurable, the whole trajectory xa (t), t E [ta, -r 1] , is also Borel-measurable. 
Next, the function f defining the equation (1) and thus forming the 
trajectory xa ( ·) maps the point (t , x ) E W, t E [ta, t 1], of the graph of the 
trajectory 

into the point 

y (t , x) ~ (-r (t) , J(t, x, u0 (t , x)))Ena. 

The point y (t , x) E W, because otherwise, q> (y (t , x)) = oo. 
But this is impossible because of the structure of the function u0 and 

the set W. Hence, the control u0 does not drive the trajectory from the 
set W, nor from the set V. 
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It is clear that the trajectory xa (t) is defined on the whole interval 
[ta, r 1] and, as was just ascertained, 

(39) 

The inclusion (39) implies that the phase constraints (30) hold true. 

Now we prove the measurability and boundedness of the function ~a· 
The functions f 0 (t, x, u) and u0 (t, x) are Borelian and, therefore, the function 
(t,x)--->f 0 (t,x,u 0 (t,x)) is Borelian too. Moreover, since the trajectory xa(·) 
is also Borel-measurable, the function 

t ---> (a (t) = f 0 
( t, Xa (t), u0 (t, Xa (t))), 

is Borel-measurable as welL Besides, owing to the boundedness of the 
function xa ( ·) the function ~a ( ·) is bounded. The summability of the 
function ~a follows from its measurability and boundedness. 

Thus, the condition 5) of Theorem 3 holds true and, so, all the 
conditions 1)-5) of this theorem are satisfied. 

To complete the proof it is sufficient to check the validity of the 
inclusion q>EP, i.e. the condition 2o for all (x(-),u(-))r=D(wa), where wa 
satisfied 10°~12°. 

Using a step method (from left to right) it is easy to demonstrate 
that all the trajectories x ( · ), corresponding to the processes (x (- ), u (- )E D (wa), 
are jointly bounded. At the same time all those trajectories lay in the set W 
(otherwise they violate the phase constraints). Since the function q> is bounded 
on any bounded subset of W, there exists a constant c* ER such that 
lcp(t,x(t))l::s;c*, tE[ta,T 1], for all (x(-),u(-))r=D(wa)· But this means that 
the condition 2° holds, i.e. the inclusion q> E <P is valid. • 

Proof of Theorem 5. The sufficiency of the conditions of the theorem 
follows directly from Theorem 2. 

Let us prove the necessity. For this we have to apply the Theorem 4, 
already proved, to the one-element set B0 = { (t0 , rx (- ))} . The restriction (j5 
of the originative function cp: [t0 , ' 1] x X---> R, whose existence is guaranteed 
by Theorem 4, on [r0 , cJ xX, and the process va ~ (xa (-), ua (-)), defined 
by the conditions (24), (25), (27), ta = t 0 , satisfy all the conditions of 
Theorem 2. The proof of this fact repeats the proof of assertion a) of 
Theorem 3. 

But the conditions of Theorem 2 are satisfied not only by the pair 
( (j5, va) but also by a pair ( (j5, V), where v ~ (x (-), u (- )) is any other optimal 
process. This is the fact which guarantees the necessity of the conditions 
of Theorem 5 for optimality of the process v. Ill 

REMARK 5. It is easy to notice that the proof of Theorem 4 contains a 
constructive way of building the originative function cp in the most general 
case. This method can be used for solving particular problems. 
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REMARK 6. One and the same originative function cp built while proving 
Theorem 4 is acceptable for different sets B0 . It is only needed that 
their elements satisfy the conditions 10°-12°. Therefore this function cp is 
also an originative one for a maximal set B 0 which includes all initial 
elements wa satisfying the conditions 10°-12° 

REMARK 7. Let the set B0 , whose elements satisfy the conditions 10°-12°, 
be such that the constant c in the condition 11 o may be chosen the same 
for all its elements. Then, with the assumptions of Theorem 4 true, there 
exists an originative function bounded on any bounded subset from 
[t0 ,r1]xX. 

This result is obtained in the following way. Under the assumption 
made with respect to the set B0 , the trajectories of the system are uniformly 
bounded, i.e. there exists a compact ~ c [ r 0 , r 1] x X, such that for all 
wa E B0 and for any process (x ( ·), u (-)) E D (wa) the inclusion (t , x (t)) E ~, 
t E [ r 0 , r 1], holds true. 

Let cp be an originative function built while proving Theorem 4. Then 
the function cp 0

: [t 0 , r tJ x X-+ R, defined by the equalities 

cp 0 (t, x) ~ cp (t, x), (t, x)E W, 

cp 0 (t ,x)~c0 +1, (t,x)E([t0,-z;1]xX}\ W, 

where 

c0 ~ max [cp (-z; (t),f (t , x, u)) r' (t)+ f 0 (t, x, u)] , 
(t , x) e wn w.,. ue Q 

is also an originative function, containing the required property of boun­
dedness on the compact subsets of the area of definition. 

5. Local optimality conditions 

Theorem 5 contains necessary and sufficient conditions for global opti­
mality of noninertial dynamic systems with delays. Along with them we 
may find local optimality conditions similar to Pontryagin maximum principle 
in classical optimal control problem or its analogue for discrete controllable 
systems [14]. 

We can obtain these local conditions as necessary conditions for existence 
of the function cp in Theorem 5, differentiable with respect to x. Note that 
the theorem 5 guarantees the existence of the function cp but not its 
differentiability, which appears here as an additional assumption. In this 
connection such a method of obtaining local optimality conditions is not 
rigorous. Yet it is possible to give a rigorous proof applying the technique 
well elaborated for discrete systems [15]. The restricted size of the paper 
does not allow to include this proof here. 

--------------------
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Let us take for granted that the assumptions of Part 4 and these to 
follow are satisfied. 

13°. The functionsf(t,·,·):XxQ--*X for tE:[t0 ,t1] and f 0 (t,·,·):Xx 
x Q --* R for t E: [t0 , r 1] are continuously differentiable. 

THEOREM 7. Let the assumptions of Theorem 5 and 13o hold true. Let also 
the function <p, whose existence is guaranteed by Theorem 5, be such that 
the function <p (t, ·):X--* R for t E [t<P, t 1] is continuously differentiable. 

Then for the process (x(-), ii(·))ED0 to be optimal it is necessary that 
the following condition 

1) f 0 (t,x(t),ii(t))=minf 0 (t,x(t),u), tE:[t 1 ,r 1], 
ueQ 

holds true and that a vectorjunction t--* ljJ (t): [t 0 , r 1]--* X exists, satisfying 
the conditions 

2) [Hx(l/J(r(t)),t,x(t),ii(t))-l/J(t)Ybx~O, 
bxEKx (x (t)), tE: [r0 , t1]; 

3) H" (l/1 (r (t)), t , x (t), ii(t)V bu ~ 0, 

buEKu (ii(t)), tE[to, t1]; 

4) [ -ljJ(t)+fx0 (t,x(t), ii(t))JY 3x~O, 

bxEKx(x(t)), tE:[t 1 ,r1]. 

Here Kx (x (t)) ~ {bxEX:x (t)+6bxEB (t), 0 < 6 < 6 1}, K" (ii (t)) ~{DuE U: 
ii (t) + 6 bu E Q, 0 < 6 < 6 t} are the cones of permissible variations with respect 
to a phase vector and the control correspondingly [15] ; H(tj;,t,x,u)~ 
~ tf;T f(t, x , u) r' (t)+ f 0(t, x, u) , l/1 ~ (l/11, .. . , l/Jnf ER"= X, f ~ (f1, ... ,j,,f, 
fx0 ~ (3f 0 /3x1, ... , 3f0/3xnf, Hx ~ (3Hj3x 1, ... , 3Hj3xnf, H" ~ (3H/3u 1, ... ,3H/ 
/3umf ERm = U, bx~(bx 1 , ... ,3xJER", bu~(bu 1 , ... ,bumfERm, (f is the 
transposition operation. 

Proof. Let (x(·),ii(·)) be an optimal control process. According to 
Theorem 5 there exists a function <p E 1])0 , satisfying the conditions 1)-3) of 
:Theorem 2. • 

The conditions 1)-4) of Theorem 7 are the first order necessary 
conditions [15] for extremal problems, contained in the conditions 1)-3) of 
Theorem 2. In writing them down it is necessary to take into account the 
notations l/1 (t) ~ CfJx (t, x (t)), t E [t0 , T 1], <px ~ (3cp /3x 1 , ... , 3cp/3xnf ER" = X, 
and set tf; (t) ~ 0 for such t where the derivative <px is not defined. 

In case when the restrictions on x and u are absent the following 
result is evident. 

CoROLLARY 2. If. in addition to the conditions of Theorem 7, B (t) =X, 
t E [t 0 , -r 1], Q = U, then the conditions 2)-4) of the theorem take the form 

2? Hx (t/1 (-r (t)), t, ~(t), ~(t))-t/1 (t) ~ 0, tE[r0 , t 1], 

3) H" (t/1 (r (t)), t, X (t), u (t)) = 0, tE[t0 , t 1], 

4') l/1 (t) = fx0(t, x(t), ii(t)), tE=[t1, r1]. 
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6. Generalization of the optimality conditions 
to the case of several delays 

275 

There are some generalizations for a dynamic system model (1) to the 
case of several delays of the argument. They are of interest from the 
viewpoint of their applications. For simplicity, let us confine ourselves to 
a consideration of the case when two delays are available and, therefore, 
instead of the equation (1) we take the equation 

X (r (t)) = f(t, X (t), U (t) , X (( (t) , U (( (t))) , tE[t0, t 1] , (40) 

where (: [t 0 , t 1] ~ R, the rest of the notation having the same meaning as 
before. 

Introducing the notation y (t) ~ x (( (t)), v (t) ~ u (( (t)) we can rewrite 
(40) as a system of equations 

or as a system 

X (r (t)) = j (t, X (t) , U (t) , y (t) , V (t)) , 

y (t) =X ( ( (t)) , (41) 

V (t) = U (( (t)), 

X (r (t)) = j (t , X (t), U (t), y (t), V (t)), 

y (-r (t)) = x (( (r (t))), 
v (-r (t)) = u (( (r (t))) . 

(42) 

In the case when ( (-r (t)) = t for t E [t 0 , t 1], the model (42) of the dynamic 
system evidently has the form (1). Therefore, the problem reduces to that 
already considered. Such a reduction is possible in a somewhat general 
case when there exists a 17: [t0 , t 1] ~ R and the integers k, s > 0 are such 
that 

Y/(k) (-r (t)) = t, 17(s) (t) = ( (t) , t E [to , t 1J. 

Here 17t,l ( ·) is the <-times superposition of the function 17 (e.g. 17< 2> ( ·) = 
~ 17 (17 ( · ))}. In particular, the reduction described is possible if 

-r (t) = t+ kLlt, ( = t-sLlt, Llt = const > 0. 

The given method for reducing the model (40) to the model (1) may 
demand addition of a considerable number of auxilliary equations. Their 
total number can be up to 2 (k + s) -1. Besides, the method is evidently 
far from being always applicable. That is why it is of interest to study 
more closely the model (40) or the model (41). 

Following the representation (41) of the equation (40) consider a some­
what general model 
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X (-r (t)) = f(t, X (t), Z (t), U (t)), 

z(t)=g(~(t),x(~(t)),u(~(t))), tE[t0 ,t1], 

and study the problem of minimum of the functional 
'o 

v ->} (v) ~ J f 0° (t, x (t), u (t)) dt + 
~0 

t 1 rl 
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(43) 

+ J f 0 (t,x(t),z(t),u(t))dt+ J f?(t,x(t),u(t))dt:D 0 ---'>R. (44) 
to ,, 

Here xEX, UE U, zEZ where X, U, Z are metric spaces; f: [t0 , t 1] x 
x X x Zx U ---'>X-'-g:[~ 0 ,~ 1 ] x Xx U---'> Z,frf_:[~ 0 ,t0 ] x X x U ---'>R,f 0 :[t0 ,t 1] x 
x X x Z x U ---'> R, f 1°: [t 1 , 1: 1] x X x U ---'> R; 1:, ~: [t0 , t 1] ---'> R; ~ 0 ~ ~ (t0 ) o( 

o( too( 'o g 1: (to)< ~1 g ~ (t 1) o( t1 o( 1:1 g '(t1); the functions '(- ), ~ (-) are 
absolutely continuous and non-decreasing. For all t E [ ~ 0 , ' 1] the restriction 
x(t)EB(t) must hold, for all tE[t0 ,t 1] the restriction z(t)EC(t) must hold 
and for all tE[~ 0 ,-r 1 ], xEB(t) the restriction u(t)EQ(t,x) must hold. 
The sets B (t) c X, C (t) c Z , Q (t, x) c U are known beforehand. The 
initial condition is of the form: x (t) = a (t), t E [~ 0 , 7:0 ). Here, as has been 
assumed earlier, suppose [~ 0 ,~0)~{~ 0 }. The function a: [( 0 ,,0 )---'>X is 
defined and it satisfies the restriction: a (t)EB (t) for tE[( 0 , T 0 ). 

The elements of the set D0 here are the control processes v g 
g(x(·),z(-) , u(-)), x:[~ 0 ,T 1 ]---'>X , z:[t0 ,t1]---'>Z, u:[~ 0 ,T 1 ]---'> U for which 
the functional (44) is defined and all the conditions enumerated hold true. 
Denote the lower bound of the functional (44) by d0 as before. 

In transferring the optimality conditions into the case considered in this 
section two main complications occur. 

In formulating the optimality conditions, similar to those of Theorems 1, 2, 
a natural desire is to use the function (t, x, z)---'> rp* (t, x , z) instead of the 
function cp. But it is impossible. The fundamental role in the proof of 
Theorems 1 and 2 was played by the equality 

lt 't' l 

(P) l rp (T (t), X (T (t))) T
1 (t) dt = (P) l rp (t, X (t)) dt, 

ro to 

(see the proof of Lemma 1), based on deformation of the interval of 
integration. In the case under consideration the functions T (t) and ~ (t) 
give rise to various deformations. Thereby, we are forced to confine 
ourselves to the functions (p*, representable as: rp* (t, x, z) = rp (t, x) + y (t, z). 
To be more precise, two functions rp:[T0 , T 1]xX---'>R and y:[( 0 , ( 1]x 
x Z ---> R are used. 

Naturally, this results in more strict sufficient conditions of optimality. 
In particular, these optimality conditions, generally speaking, cannot be used 
for constructing a feedback control. They are intended mainly for solving 
a program control problem (with the initial condition fixed). 
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The second complication is the following. The use of the lower Perron 
integral in proving the theorems 1-3 enabled us to minimize the assumptions 
on the problem. It became possible because the inequalities, arisen when 
using the lower Perron integral instead of the Lebesgue integral, enabled 
us to estimate the lower bound d0 . However, some of the ine<qualities 
have a sign different from that which would have been desirable. This 
circumstance necessitates contraction of the class of problems in order to 
guarantee the possibility of using the Lebesgue integral. 

Some of the restrictions on the problem have already been observed 
(X, Z, U are metric spaces; r, ~ are absqlutely continuous). Now let us 
formulate some additional assumptions. 

14°. The admissible control processes (x(-),z(·) , u(-)) (elements of the 
set D0 ) are such that: 

a) the functions x (- ) , z (-) are Borel-measurable and bounded 
b) the function t -+ f0°(t,x(t),u(t)) : [~ 0 ,t0]-+R , t-+ f 0 (t,x(t), z (t),u(t)): 

:[t0 ,t 1]-+R, t-+R(t ,x (t),u(t)):[t 1 , r 1]-+R is (Lebesgue) summable. 
The condition 14° holds true trivially, provided that the following asump­

tions 15°-17° are valid , while for any element (x (- ), z (- ), u (- ))ED0 the 
assumption 18° is valid. · 

15°. r (t) > t > ~ (t) for all t E [t0 , t 1]. 

16°. The functions f, g, f 0°, f 0
, J? are Borel-measurable and bounded 

on any subset of domain of definition. 
17°. The initial function a (-) is Borel-measurable and bounded. 
18°. The function u ( ·) is Borel-measurable and bounded. 
Note that for the control u (-): [~0 , r 1] -+ U fixed and the initial function 

a ( ·) defined the conditions 15°-18° guarantee the existence and uniqueness 
of the functions x (-) : [ ~ 0 , r 1] -+ X, z (-): [t0 , t 1] -+ Z, Borel-measurable, 
bounded and satisfying (43). This fact , as well as the sufficiency of 15°-18° 
for 14°, can easily be proved using a step method and taking into account 
the superpositional measurability of Borelian functions. 

To formulate the optimality conditions introduce a class <1> 0 of functions 
cp: [ r 0 , r 1] x X-+ R and a class r 0 of functions y: [~0 , ~ 1] x Z-+ R, satisfying 
the condition: 

19°. Functions cp E <1> 0 and yE r 0 are Borel-measurable and bounded on 
any bounded subset of the domain of definition. 

By means of the functions cp and y construct the equations similar to 
(5H7): 

Gg (t, w) ~ - y (t , g (t , a (t) , w))+f0°(t , a (t), w) , tE[~0 , t0 ]; 

Go ( t, z, w) g cp ( r ( t) , f ( t , a ( t) , z , w)) r ' ( t) + J ( ~ ( t) , z) ~' ( t) -

- J (t , g (t, a (t), w))+ro(t, a (t) , z, w), tE[t0 , r 0 ) ; 

S (t, x, z, u) g cp (r (t),f(t, x, z, u)) r'(t) + J (~ (t), z) ('(t)-
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-y (t, g (t, x, u))-cp (t, x)+ f 0 (t, x, z, u), tE[r0 , ~ 1]; 

G1 (t, x, z, u) ~ q> (< (t),f(t, x, z, u)) <'(t)+J (~ (t) , z) C (t)-

-q> (t,x), tE[~ 1 , t 1]; 

Gi (t,x,u)~ - q>(t,x)+f1°(t,x,u), tE[t 1 ,< 1]; 

where 
xEB(t), zEC(t), wEQ(t,a(t)), 

UEQ (t, x), ~'(t) = d~jdt. 

THEOREM 8. Let the assumption 14° hold true and the functions q> E <1> 0
, 

yET0 and t-4,u(t):[~ 0 ,c 1]-4R be such that: 
1) The function ,u is summable ; 

2) G8(t,u) ?: ,u(t), tE[~0 , t 0] , uEQ(t,a(t)); 

3) G0 (t,z,u) ?: ,u(t), tE=[t0 ,<:0), zEC(t), uEQ(t,a(t)); 

4) S (t, x, z, u) ?: .u (t), tE[<:0 , ~ 1 ), zEC (t), xEB (t), uEQ (t, x); 

5) Gdt,x,z , u) ?: ,u(t), tE=[~ 1 ,t 1 ], xEB(t) , zEC(t), uEQ(r,x); 

6) Gi (t, x, u) ?: !L (t), tE=[t 1 , 1: 1], xEB (t), uEQ (t, x). 
Then: 
a) For all v~ (x(·),z(-),u(-))ED0 the following inequality holds true: 

r, 
J(v) ?: l(cp,y)~ J ,u(t)dt. 

~0 

b) If there exists a sequence of control processes {vs} c D0 such that 

lim J (vs)= l (q>, y), (45) 
s~oo 

then l (q>, y) is the lower bound of the functional J · on D0 (l = d0 ) while 
the sequence {vs} is a minimizing sequence. 

Besides, any other minimizing sequence satisfies the condition (45). 

THEOREM 9. Let the assumption 14° hold true and let the functions q> E <1> 0
, 

y E T 0 and the control process v ~ (x ( · ), z (-), u ( · )) E D0 satisfy the conditions: 

1) G8(t,u(t))= min G8(t,u) , tE[~0 , t0]; ue Q (t,a (t l) 

2) G0 (t,z(t),u(t))= min G0 (t,z;u), tE=[t0 ,c0); 
zeC (!) , ue Q (< ,a (<)) 

3) S(t,x(t),z(t),u(t))= min S(t,x,z,u), t E= [< 0 ,~ 1 ]; 
XE 8 (! ) , ZE C (1), ueQ (1, X) 

4) G1 (t,x(t),z(t),tl(t))= min G1 (t,x ,z ,u), tE[~ 1 ,t 1]; 
xe B (!), ze C (1), ue Q (1 , x ) 

5) Gi(t,x(t) , u(t))= min Gi(t,x,u), tE=[tl,,l]. 
xeB (1), u e Q (!, x) 

Then the process v is optimal and any other optimal control process 
satisfies the conditions 1)-5). 
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The outline of the proof of Theorems 8, 9 is the same as m the 
Theorems 1, 2. The equality below plays the role of equality (15) 

to 

J (x (-), z (- ), u (-)) = f f 0° (t, x (t), u (t)) dt+ 
~0 

t I rl 

+ s j 0 (t, X (t), Z (t), U (t)) dt+ s f2(t, X (t), U (t)) dt+ 

c 1 ! l 

+J cp(r(t),x(r(t)))r'(t)dt- J cp(t,x(t)}dt+ 
to ro 

tl 

+ s J (~ (t), g (~ (t), X(~ (t)), U (~ (t)))) ~' (t) dt-
to 

~I 

- s J (t, g (t, X (t), U (t))) dt, (15) 
~0 

which, by (43) and the notatiorts introduced, can be rewritten as follows: 

J (x (·), z (· ), u (-)) = L(x (-), z (-), u (-)) ~ 

to -ro 

~ J G8 (t, u (t)) dt+ J G0 (t, z (t), u (t)) dt+ 
~o to 

~I t1 

J s (t, X (t), z (t), u (t)) dt+ J Gl (t, X (t), z (t), u (t)) dt+ 
'o ~~ 

., 
+ s G i ( t ' X ( t)' u ( t)) d t . ( 46) 

t, 

The role of equality (46) here is the same as that of (13), (14) in the 
proof of Theorems 1, 2. 

In principle it is possible to formulate an analogue of Theorem 3. 
However, the functions qJ E <P0 and yE T 0 have quite a few "degrees of 
freedom" to provide in the general case a solution of the optimization 
problem for an arbitrary initial element. As has been already mentioned, 
the optimality conditions obtained in this part of the paper are effective 
only for an optimal control problem in the program form (with a fixed 
initial condition). 
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Warunki globalnej optymalnosci dla sterowanych systemow 
bezinercyjnych z opoznieniami 

W pracy rozpatrzono zadanie sterowania optymalnego bezinercyjnymi systemami dyna­
micznymi z op6znieniami. 

Przy braku sterowania systemy takie Sf! specjalnym przypadkiem r6wnan funkcjomilnych 
bez swobodnych zmiennych [1-3]. Z drugiej strony, Sf! one blisko zwiqzane z systemami 
wieloetapowymi. W odr6:i:nieniu jednak od nich zmienna niezale:i:na zmienia si« tu w spos6b 
ciqgly. 

Wyprowadzono warunki dosta teczne optymalnosci globalnej dla sterowania programowego 
i sterowania w zamkni«tej p«tli. W przypadku, gdy wektory stanu i sterowania Sf! skonczenie 
wymiarowe, przy slabych zalo:i:eniach wykazano, :i:e Sf! one tak:i:e warunkami wystarczajqcymi. 
Przebadano te:i: lokalne warunki wystarczajqce pierwszego rz«du. 

Om6wiono trudnosci zwiqzane z przeniesien iem otrzymanych wynik6w na systemy og6l- · 
niejszego typu. 

Y CJIOBIUI r JI06aJihHOH OUTHMaJihHOCTH ynpaBJIHeMhlX 

6e3HHepQHOHHhiX CIICTeM C 3aUa3,ll,hiBaHHeM 

PaccMaTpH saeTcH 3aAa~a onTHManbHoro ynpasneHH5! 6e3HHepUHOHHhiMH Al-!HaMH'IeCKHMH 
CHcTeMaMH c 3ana3AbrsamreM. 
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I1pH OTCYTCTBHH ynpaBJieHHll TaKYte CHCTeMbl l!BJ!li!OTCll •taCTHb!M CJ!y•taeM I~YHKL\HO­

HaJ!bHb!X ypasHeHHH 6e3 CB060.UHb!X nepeMCHHblX (J - 3]. C .UpyrOH CTOpOHbl , OHH TeCHO 

COIIp!1KaCb!Ba!OTCl! C MHOfO!llarOBblM!1 CHCTeMaMH, HO B OTJIWIHe OT DOCJ!e):\HHX He3aBHCY!Mal! 

nepeMeHHal! 3):\eCb H3MeHl!eTCll Henpepb!BHO. 

I1ony'leHbl .l\OCTaTO'!Hble YCJTOB!1ll rno6aJTbHOH ODTHMaJ!hHOCTH nporpaMHOfO ynpaB­

JieHHll H ynpasnemtll c o6paTHOH CBll3h!O . B cny •rae, Kor.ua c!Ja30BhiM seKTop y npasJTeHHll 

KOHe•!HOMepHbl, DpH BeChMa CJ!a6hlX npe,UDOJIOJKeHHl!X ycT3HOBJ!eHa H He06XO.l\HMOCTh 3THX 

YCI!OBHM . l1CCJTeJ:(y!OTC>I Heo6XOAHMhie YCJIOBHll JIOKaJThHOll OIITHM3hbHOCTH nepsoro DO­

pli,UKa. 

06cyJKA31DTC51 TPYAHOCHI nepeHecemrl! pe3yJihTaTOB Ha CHCTeMbl 6oJiee o6utero BHJ:(a. 


