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The Optimal Pole Assignment Problem is concerned with finding the pole assignment 
feedback control which also minimises a certain quadratic performance measure. In this 
paper, a new theorem which lays down the necessary and sufficient conditions for 
optimality of the given closed loop system has been established. Using the theorem, the 
optimal pole regions for single and two pole assignments have been delineated. The design 
freedom thus generated has been utilised in choosing a desired set of poles from correspon­
ding optimal regions. A recursive procedure for optimal pole assignment has been presented 
with a numerical example. 

1. Introduction 

It is well known that for a multi-input system there are many control 
laws which achieve the same closed loop pole configuration. It indicates 
thereby that apart from pole assignment, a state feedback could satisfy 
additional performance requirements such as minimization of a quadratic 
performance index. Such an Optimal Pole Assignment (OPA) amalgamates 
the advantages of improved transient response of pole assignment and the 
feedback properties of linear quadratic design. Recently, Juang and Lee 
(1984) have enunciated a theorem which gave necessary conditions for 
optimal pole assignment. This has been disproved by Amin and Hassan 
(l985). Amin (1985) has extended the mirror image property (Mol~nari, 1977) 
for OP A. But the application of this method is limited to shifting of the 
real parts of open loop poles only. In this paper a new theorem for OPA 
has been esfablisfied. Using the theorem, a number of results on optimal 
I 
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pole locations have been obtained for 2-pole assignment problem which 
led to improved regions for OPA. A recursive procedure for optimal 
pole assignment using real Schur form (RSF) has been presented. 

2. A new theorem on OPA 

Let us consider the reduced order controllable system 

xkL = AkLxk~.+BkL U . 

With control law 

U = - KkL Xkl. , 

the closed loop system becomes, 

(1) 

(2) 

xk~. = Akl. xk~. = (Ak~. -Bkl. Kk1J xkl.· (3) 

In this system X kL and U are Pk x l and m x l state and input vector 
respectively. The remaining matrices are of compatible dimensions. In ad­
dition BkL is of full rank. 

Let the linear quadratic cost function be 
00 

1 = J (XZ~. QkL xk~. +uT RU) dt, (4) 
0 

where, QkL = QJL ~ 0 (positive semidefinite) and R = RT > 0 (positive definite). 
For this cost function to be minimum, the controller for the system is 
given by 

(5) 

where, nL = pk~- > 0 (p.d.) is the solution of the algebraic Riccati equation. 
There is no loss of generality in assuming R = Im (Martin, 1973). Hence 

(6) 

THEOREM. For the controllable system with Pk ~m, the poles of the closed 
loop system can be assigned such that Pk1 = P;~ > 0 and Qkl. = QZ;. ~ iff 

(1) (BkL B[L) - 1 (AkL- A;,L) is positive definite, and 
1'1 - - T Tl -(2) - (BkL Bkd- (AkL - Akd AkL- AkL (BkL Bkd- (AkL- Akd is positive semi-

definite . 

Proof. The closed loop system matrix is given by 

Akl. = AkL - BkL KkL· 

Substituting for KkL from (6) we get, 
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and 

Hence, PkL > 0 iff 

Further, consider 
Tl --- T Tl -

-(BkL BkL)- (Akt- Ak1J Akt- Akt (BkL Bk1T (Akt- AklJ-

Substituting from (7), this becomes 
- T - T 

(-pkL AkL- AkL Pkd = pkL Ak/,- pkL AkL- AkL pkL- pkL AkL = 
- T 

= pkL (AkL -Akd-AkL pkL -PkL AkL = 

= pkL (BkL B[t) (BkL B[d-l (AkL- Akd- A[L pkL- pkL AkL = 

= pk~ BkL B[L pkL- A[L pkL- pkL AkL = QkL' 
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(7) 

which is the matrix Riccati equation in PkL _ (8) 

Thus, QkL ~ 0 iff 

• 
3. Recursive Optimal Pole Assignment 

Consider the controllable system 

X= AX+BU. (9) 

With -control law 

U= -KX , (10) 

the closed loop system is 

X= AX = (A-BK)X, (11) 

wherein Tfie dimensions of state and input vector are n x 1 and m x 1 
·· respectively. The other system matrices are of compatible dimensions. 

A maximum of Pk ( ~ m) poles can be optimally assigned using our 
theorem stated in Section 2. In practice, n > m and a recursive process 
for OPA becomes necessary for complete pole assignment. Let Pk ( ~ m) 
poles be assigned at kth recursion and let all the poles be assigned in 
say, q recursions. The real Schur form (RSF) has been used since it has 
a number of computational advantages such as speed ;;tnd stability. At the 
kth recursion the system matrices in RSF are 



294 A. SAMBANDAN, S. L. HAKKAPAKKI 

(12) 

The dimensions of AkL and BkL are respectively Pk x Pk and Pk x m and 
Pk ~m (Juang and Lee, 1984). 

Let the controller be given by 

(13) 

where KkL IS m x Pk, and the closed loop system matrix is given by 

- [AkH ak- BkH KkL J Ak = Ak- Bk Kk = O 
AkL- BkL KkL . 

(14) 

Thus the Pk ( ~ m) poles of AkL can be assigned optimally using our theorem 
with the eigenvalues of AkH undisturbed. At each recursion Pk> Kk and Qk 
can be calculated. Finally from these values, overall P, K and Q can be 
calculated as (Solheim, 1972) 

q k 0 

p = I n ui pk n ur. (15) 
k=l i=O i=k 

q 0 

K = L Kk n UT, and (16) 
k = 1 i=k 

q k 0 

Q = I n u i Qk n ur. (17) 
k=l i=O i=k 

where Uk is the kth unitary similarity transformation matrix which transforms 
the system matrices of (k -1)th recursion to RSF. 

4. Optimal pole regions for two pole assignment 

The transient response of higher order systems is mostly decided by a 
dominant pole pair. Hence, by a two pole assignment, it is possible to 
improve the response. With this in view, the OPA for a second order 
subsystem has been studied in detail in this section. The optimal pole 
regions for various cases have been delineated. 

Let the open loop system matrices be 

and 

where the dim [bk;] ~ 2, i = 1, 2 and BkL IS of full rank. 
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Substituting u = bk 1 b[1, v = bk1 b[2 = bk 2 b[1, w = bk2 b[2 and inverting we get 

(B BT )- 1 = L1-1 [ w -V] 
kl. kL ' -v u 

(18) 

where L1 = (uw- v2
) > 0 

The inner products u and w are positive constants while v can be positive, 
zero or negative. 

Let the closed loop system be 

Akl. = [?
2 
!:J 

From equation (7), PkJ. is given by 

For PkJ. to be symmetric 

- v (cx 1 -iXI)+u ({3 2 - iJz) = w ({31- iJ1)- v (cx 2 -iiz) . (19) 

Rearranging the terms we get, 

(wiJ1-uiJ2 ) = v {(cx 1-iXI)-(cxz-iXz)}+wf31-uf3z, 

and 

Thus the elements of PkL are given by 

and 

P11 = w (rx1 -ii1)- v (f3z- iJz) , 

P1z= -v(cx1-iXI)+u(f3z-iJz), 

Pzz= -v(f31-iJ1)+u(cxz-iXz). 

Substituting from (21) for (/31 - iJd and simplifying 

V ,1 -
Pzz = -~ P12 +- (cxz -CXz) . 

w w 

(20) 

(22) 

(23) 

(24) 

:For IlL to be positive definite the leading principal minors should be positive. 
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Thus 

which implies 

(25) 

Further 

(p11 Pn -PI2) > 0. 

Substituting from (22), (23), (24) and simplifying 

la2 - - - f32 <la2 - --f32. 
1 

_ P12 -) 
1 

P12 ) 
\ Pu \ P22 

(26) 

Furthermore QkL is given by 

Substituting from (21) and (24) for fJ1 and p22 respectively, 

-[ P.11 P12 ]. [ii1 
Q ·-1 . . 

kL = - Ll V ,1 X 

. P12 --;- P12 +-;- (a2- ii2) _ ii1 

- P12 V -1 f31 - - - -(a2 - a2) 
w w 

ii2 

where 

qu = Pu (a1 +ii1)+P12 (f32+fJ2), 

. V - L1 -
d = Pu /31 +P12 (ii1 +a2)-- P12 /32 + - ct.2 /32, 

w w 

P12 e = --(2wf31 - p12 -2va2) . 
w 

(27) 

(28) 

(29) 

(30) 

For QkL to be positive semidefinite, by considering the leading principal 
minors, we can show that 
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(31) 

and 

(32) 

4.1. To shift a complex conjugate pair of poles (a ±j/3) to a pair of real poles 

The system matrices are given by 

AkL = [~: ~:J 
where 

Ill:= and 

P2 = - { ( 01:1 ~01: 2 r +P1 P2} > o 

- [a1 P1J 
AkL = o a2 . 

Substituting 7J2 = 0 in equations (25) and (31) 

li1 <(01:1 -: P2} (33) 

I V )2 L1 
ar ~ ~ 01:1 --;- P2 + w2 P~. (34) 

From these two equations, the optimal pole region for a1 IS 

I[ I V )2 L1 ]! I a1;:; - ~01:1 - -;- P2 + w2 P~ · (35) 

Further, from equations (26) and (32) 

01:2 <I 01:2 - - - P2 , -
1 

P12 ) 
\ Pu 

(36) 



298 A. SAMBANDAN, S. L. HAKKAPAKKI 

and 

a~~ {a~+w~- 1 (e- :2

1
) }· (37) 

Hence, optimal region for a2 is 

(38) 

Thus for a given open loop system the optimal pole region (OPR) can be 
determined from equations (35) and (38) as illustrated in Figure 1. 

I m 

0 Re 

a) OPR of a, (hatched) 

I m 

Re 

b) OPR of a2 (hatched l 

Fig. 1. OPR - complex to real pole shift 

Continuing further !11 is obtained from equation (21) as 

Substituting /3 2 = 0 in constraints (33), (34), (36) and (37) we get 

(39) 

(40) 

(41) 
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Figure 2 illustrates the OPR delineated using these equations. 
The Jj1 is given by 

I m 

----a, 
a, 0 

I m 

a 2 0 

f-1 fa;+ ,f1 
( ~~- Ci~)2 (w {l,+va,-valr~ 
a, -a1 

a l stable open Loop system 

-a, 
;$SSSHSSSHHmsssmfSSHHHHSSSSmSSSSSS~f~ 

-a, 

b l unstable open Loop system 

Fig. 2. OPR real to real pole shift 

I m 

0 

299 

(42) 

(44) 

Re 

Re 

I ,. 
a1 Re 

Re 

4.3. To shift a complex conjugate pair of poles (ex ±j/3) to a complex conjugate pair (i'i ±//1) 

The open loop system matrix is 
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where 

r:x= and 

Let the closed loop matrix be 

A = - [(i !Jl] 
kL p

2 
(i , 

where 

Ci = ri1 = CXz and fJ2 = - fJ1 fJ2. 

We have from equation (20) 

wfJ1-ufJz = v(r:xl-r:xz)+wf31-uf32· 

Substituting for fJ1 from (45) and rearranging the terms we get 

- 1 - w -2 
/3i+ - {v (rx1 -rx 2)+wf3t -u/32} f3z +- f3 = 0. 

u u 

The roots of this quadratic equation are 

fJ2 = b±c, 

where 

and 

c = (b2-: fJ2y. 

Since c2 should be a positive constant 

(b2-: fJ2) > 0, 

which implies 

(45) 

(46) 

(48) 

(49) 

This places an upper limit on imaginary part of the pole being assigned 
and fJ2 is obtained from (46) by choosing the value of fJ within this limit. 
From constraints (25) and (31) 

---------------------------------------- ------
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(50) 

{(a-~P2y+:2 Pi}~{(~~-:P2)
2 +:2 p~, (51) 

a is chosen to satisfy the above constraints along with the constraints (26) 
and (32). OPR of the closed loop complex poles ii±JP is graphically 
illustrated in Figure 3. 

@ - open loop pole 

Figure 3 OPR- complex to complex pole shift. 

4.4. To shift real poles (ctt. ct 2) to a pair of complex conjugate poles (FJ. ±JfJ) 

I m 

~max 

{J 

- fJmax 

The constraint equations for this case are obtained by putting P2 = 0 
in the equations of section 4.3 as follows: 

The system matrices are 

where 

and 

AkL = [ ~1 ~:] and AkL = [~2 :
1 J 

P = -P1 $2, 
$2 = b±c, 

1 
b= --{v(~~-~2)+wfit}, 

2u 

(45) 

(46) 

(52) 

(48) 
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The maximum value fJ can have is 

jlmm ~ (: )\ (49) 

From constraints (50) and (51) 

(53) 

(- V R )
2 

L1 -2 2 \a - -;- f'2 + w2 fJ2 ~ a1. 

The OPR for a has been delineated in Figure 4 using constraints (53) 
and (54). 

Figure 4 OPR - real to complex pole shift. 

ExAMPLE 1 

Consider 

[-2 -1] 
AkL = 0 -1 ; 

From ( 49) Pmax = 0.89 
Let fJ = 0.5 
With this value of [J, fJ2 = 0.342 
From (50) and (51) 

[
-0.707 0 J 

BkL = 0.707 1.414 . 

a~ - 2.068 . 

I m 
Pmox 

Re 

The value a = -3 satisfies the necessary constraints and yields the following: 

- [ - 3 - 0.731] 
A kL = 0.342 -3 ' 

R = [2.329 0.329] Q = [11.538 3.35] 
kL 0.329 0.866 ' kL 3.35 4.03 ' 
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and 

K -[-1.414 0.379] 
kL - 0.465 1.224 . 

4.5. Remarks 

1. It can be seen that from constraints (25), (26), (31) and (32) the optimal 
pole regions depend upon the elements of Ak1. and BkL · Further the 
choice of IX1 affects optimal region of a 2 . 

2. In case the diagonal elements of Ak1. are positive, the diagonal elements 
of AkL lie to left of the imaginary axis to ensure a positive semi­
definite Q. 

3. For single pole assignments the OPR lies to the left of open loop pole 
if stable, or to the left of mirror image of open loop pole if unstable. 

4. If real poles are assigned one at a time instead of assigning them 
simultaneously, there is some gain in OPR at the cost of extra compu­
tation. 

5. The theorem stated in section 2 is general and does not require Ak1. 
to be in RSF. The optimal pole regions for such cases will be different. 

5. Optimal Pole Assignment algorithm 

A recursive pole assignment procedure based on section 4 IS presented 
in this section. 
(1) Transform A and B to RSF 

Ao = Ul; AU o and B0 = Ul; B . 

(2) Choose q the number of recursions necessary to carry out pole 
assignment and the order in which the poles are to be assigned. 
Set k = 0 and A0 = Ao. 

(3) Set k = k + 1. 
(4) Obtain Ak = U[ Ak - 1 Uk and Bk = U[ Bk-1· If the desired closed loop 

poles are real go to step (5) otherwise go to step (8). 
(5) Determine the optimal region for IX 1 and hence choose IX1 . 

(6) Determine OPR for IX2 and choose IX2 . 

(7) Calculate P1. Go to step (11). 
(8) Qetermine Pmax' hence choose fj and calculate fj2 . 

(9) Choose a to satisfy the necessary constraints. 
(10) Calculate fj1 . 

(11) Calculate nL, KkL and Qkl.· 
(12) Obtain Ak = Ak- Bk Kk. 
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(13) If k = q go to step (14) otherwise go to step (3). 
(14) Calculate P, K and Q. 

ExAMPLE 2 

Consider 

~]X+[~ ~] u. 
-1 1 1 

By RSF transformation we get 

[

-4 -0.707 2.12] 
Ao = 0

0 
-2 -1 , 

0 --1 
Bo = [-~.707 ~ ] , 

. 0.707 1.414 

where 

[
1 0 0 ] u 0 = 0 0.707 0.707 . 
0 -0.707 0.707 

The eigenvalues of open loop system are -4, - 2 and -1. The poles are 
asSigned in two recursions ( q = 2). In first recursion ( - 2, -1) are shifted 
to a complex conjugate pair. In second recursion ( -4) is shifted. 
For k = 1 

Since U 1 = I 3 the identity matrix 

[-2 -1] 
A1L = 0 _ 1 I and [

-0.707 0 J 
BlL = 0.707 1.414 . 

This has been solved in example 1. The closed loop system is 

- [-3 -0.732] 
AlL= 0.341 -3 . 

The chosen closed ioop optima.l poles are (- 3 ±}0.5). 

[
2.329 0.329] - [11.533 3.35] 

plL = 0.329 0.866 ' QlL- 3.35 4.03 ' 

and 

[ 
-1.414 0.379] 

KlL = 0.465 1.224 . 

Therefore 
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- [-4 2.121 . 1.362] 
At= 0 -3 -0.732 . 

0 0.342 -3 

For k = 2, by RSF transformation, A 2 and B2 are given by 

[

- 3.018 0.196 0.982] 
Az = - ~.277 - ~.978 _ ;.089 , [ 

1.296 0.762] 
B 2 = 1.765 0.3 , 

-0.45 1.152 

. [ 0.166 0.922 -0.350] 
u 2 = -0.825 0.324 0.462 . 

0.539 0.212 0.815 

From A 2 and B2 matrices we have, 

A2L = [ -4] , B2L = [ -0.45 1.152]. 

Since a3 < IX3 

Chossing AZL = [a3] = [ -5.53] we get 

p2L = [1]' Q2L = [9.53] and K [-0.45 J 
2L - 1.152 . 

Referred to original system coordinates 

P = u o u 1 [ : 

0 0 

] ur ul; + 
. 0 plL . 

+UoU1 U2 0 0 0 U~UfU'{;= -0:316 2.741 -0.505, [
0 o o J I o 123 -0.316 -0.087] 

.. 

0 0 p2L -0.087 -0.505 1.33 

r 
1.167 -3.012 -0.833] 

Q = -3.012 18.898 -1.596 ' 
-0.833 -1.596 5.025 

K = [ 0.159 -1.137 1.156]· 
-0.403 2.236 0.825 

With this controller K, the closed system becomes 

[

-4.318 3.274 -0.312 ] 
A= 0.403 -4.236 -0.825 , 

0.244 -0.099 - 2.981 

The evigenvalues of A are (- 3 ±}0.5) and (- 5.53) as assigned. 

305 
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6. Conclusion 

A. new theorem on optimal pole assignment has been established for 
linear time-invariant systems. Using the theorem optimal pole regions for 
various two pole assignment problems have been delineated. By a recursive 
procedure, based on the theorem, all the poles are optimally assigned by 
considering one or two poles at each step. The various results have been 
illustrated with numerical examples. The theorem established is however 
applicable for Pk ( ~ m) pole assignment at each recursion. The delineation 
of OPR for such cases (p > 2) and other allied problems of OP A are 
being currently studied. 
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Nowe wyniki w dziedzinie optymalnego przesuwania biegunow 

Optymalne przesuwanie biegun6w polega na wyborze takiego ukladu steruj<tcego w 
zamkni'<tej P'<tli, kt6ry sprowadza uklad zamkni'<tY do zadanych biegun6w a jednoczesnie 
pozwala minimalizowac pewien kwadratowy wskaznik jakosci sterowania. Ponizszy artykul 
zawiera · no we twierdzenie, kt6re podaje warunki konieczne i wystarczaj<tce optymalnosci 
takiego ukladu zamkni'<tego. Na podstawie tego twierdzenia okreslono rejony polozenia 
optymalnych biegun6w w przypadku jednego i dw6ch biegun6w. Uzyskana w ten spos6b 
dowolnosc jest wykorzystana do wyboru po:l<tdanego zestawu biegun6w z odpowiednich 
rejon6w optymalnych. Podano rekurencyjn<t procedur'< optymalnego przesuwania biegun6w 
oraz ilustruj<tCY jej dzialanie przyklad liczbowy. 
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HoBble peJyJihTaThi B o6Jiacru onTuMaJihHoro c.IJ,oura noJirocoo 

0rrTHMaJibHOe rrepeMeiUeHHe IIOJIIOCOB COCTOHT B Bbi6ope TaKOH ClfCTeMbl, yrrpaBJiliiOIUeii 

B 3aMKHYTOH uerrH, KOTOpal! CBO.[IHT 3aMKHyTYIO CHCTeMy K 3a.[laHHb!M IIOJIIOCaM, a O.[IHO­

BpeMeHHO I103BOJil!eT MHHHMH3HpoBaTb HeKOTOpb!H KBa,!lpaTHb!H IIOKa3aTeJib Ka'leCTBa ynpaB­

neHmi. )J,aHHal! craTMI CO,!Iep2KHT HOBYIO TeOpeMy, KOTOpall .[laeT Heo6XO.[IIfMbie If .[IOCTaTO'lHbie 

ycnOBifll OTITHMaJibHOCTH TaKOH 3aMKHYTOH CHCTeMb!. Ha OCHOBe 3TOH TeopeMb! onpe,!leneHb! 

06JiaCTH paCTIOJ!02KeHHll OillHMaJ!bHb!X f!OJ1IOCOB B CJ1Y'Iae O.[IHOrO If .!IBYX f!OJ1f0COB. L(OCTM­

rHyTal! TaKMM o6pa30M rrpoH3BOJibHOCTh HCTIOJ1h3yeTCll .[IJ1ll Bhr6opa lKenaeMoro cocrasa 

IIOJIIOCOB 113 COOTBeTCTBYIOIUHX OIITHMaJ1hHblX o6nacreii. )J,aeTCll peKyppeHTHal! rrpoue):lypa 

OillHMaJ1bHOrO C.[IBHra IIOJIIOCOB H HJ1JIIOCTp11pyiOIUHH ee .[leiiCTBHe 'llfCJieHHh!H rrpHMep. 




