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The Optimal Pole Assignment Problem is concerned with finding the pole assignment
feedback control which also minimises a certain quadratic performance measure. In this
paper, a new theorem which lays down the necessary and sufficient conditions for
optimality of the given closed loop system has been established. Using the theorem, the
optimal pole regions for single and two pole assignments have been delineated. The design
freedom thus generated has been utilised in choosing a desired set of poles from correspon-
ding optimal regions. A recursive procedure for optimal pole assignment has been presented
with a numerical example.

1. Introduction

It is well known that for a multi-input system there are many control
laws which achieve the same closed loop pole configuration. It indicates
thereby that apart from pole assignment, a state feedback could satisfy
additional performance requirements such as minimization of a quadratic
performance index. Such an Optimal Pole Assignment (OPA) amalgamates
the advantages of improved transient response of pole assignment and the
feedback properties of linear quadratic design. Recently, Juang and Lee
(1984) have enunciated a theorem which gave necessary conditions for
optimal pole assignment. This has been disproved by Amin and Hassan
(1985). Amin (1985) has extended the mirror image property (Molinari, 1977)
for OPA. But the application of this method is limited to shifting of the
real parts of open loop poles only. In this paper a new theorem for OPA
has been established. Using the theorem, a number of results on optimal
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pole locations have been obtained for 2-pole assignment problem which
led to improved regions for OPA. A recursive procedure for optimal
pole assignment using real Schur form (RSF) has been presented.

2. A new theorem on OPA

Let us consider the reduced order controllable system

Xy, = A X+ B U. (1)
With control law
U= —Ku Xis. 2
the closed loop system becomes,
X = Au, Xu, = (A= By, Kiy) X (3)

In this system X, and U are p,x! and mx/ state and input vector
respectively. The remaining matrices are of compatible dimensions. In ad-
dition By, is of full rank.

Let the linear quadratic cost function be

J= I (Xi1. Ox. X1+ UT RU) dt, (4)
0

where, Oy, = 0, = 0 (positive semidefinite) and R = R" > 0 (positive definite).
For this cost function to be minimum, the controller for the system is
given by

Ky, = Ry ' Biy, B, (5)
where, B, = B} >0 (p.d) is the solution of the algebraic Riccati equation.
There is no loss of generality in assuming R = [, (Martin, 1973). Hence

Ky, = B;-':r By t (6)
Tueorem. For the controllable system with p, < m, the poles of the closed
loop system can be assigned such that Py = PB5 >0 and Q. = Q}, Z iff
(1] (BHL BEL)_I (AkL_"gkL) is p()bi[”)e deﬁﬂl.te, and
(2) —(Bys Bi) ™' (A, — Air) Ak, — Ay, (B Bi) ™' (i, — Axy) is positive semi-
definite.

Proof. The closed loop system matrix is given by

le'kr, = Ay — By, Kir..
Substituting for K, from (6) we get,

I‘Iki. = Akf._BkL BL-‘:‘. Pk;,,
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and
B, = (B B;},]_l (AH,_EI(L)- (7)
Hence, B, > 0 iff
(Bi, Bi) ™! (A, — Ajr) > 0.
Further, consider
—(Bit, Bir) ™ (Au,— Aw) A — Al (Bur, Biy) ™ (A, — Ajr)-
Substituting from (7), this becomes
(=P f‘:{kL —Ai1, Ber) = By Ak — B I‘TkL —Ai B =P AL =
= B, (A —f‘iw)— A B =P A =
= B (B Biy) (Biw Bir) ™ (Ax — Ax) — Ay, B, — P, A =
= P Bu. By, P~ Afy P =P A0 = O,
which is the matrix Riccati equation in B, . (8)
Thus, Qy;, = 0 iff
—(By, Bi) ™' (A — Air) A — Ai, (Biw Biy) ™' (A — Ai) 2 0.
&
3. Recursive Optimal Pole Assignment
Consider the controllable system
X = AX+BU. 9
With control law
U=-KX, (10)
the closed loop system is
X=AX =(A—-BK) X, (11)

wherein the dimensions of state and input vector are nmx1 and mx1

respectively. The other system matrices are of compatible dimensions.

A maximum of p,(=m) poles can be optimally assigned using our
theorem stated in Section 2. In practice, n >m and a recursive process
for OPA becomes necessary for complete pole assignment. Let p; (= m)
poles be assigned at kth recursion and let all the poles be assigned in
say, g recursions, The real Schur form (RSF) has been used since it has
a number of computational advantages such as speed and stability. At the

kth recursion the system matrices in RSF are
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Ay oy ] l:B::H:'
= ;. By= ; 12
Ay [ 0 A, v=| B, (12)

The dimensions of A4,, and B,, are respectively p;xp, and p,xm and
P = m (Juang and Lee, 1984).
Let the controller be given by

K, =[0 Ky, (13)
where K, is mxp, and the closed loop system matrix is given by

Ay @ — By Ky, :'

(14)

4, = A,—B, K = [
Ay = A k ok [ 0 A, —By, K,

Thus the p, (= m) poles of A4;, can be assigned optimally using our theorem
with the eigenvalues of A, undisturbed. At each recursion B, K, and Q
can be calculated. Finally from these values, overall P, K and Q can be
calculated as (Solheim, 1972)

q k 0
p=73 [[U:R ]I UL, (15)
k=1 i=0 i=k
q 4]
K=Y K, []Ul, and (16)
k=1 i=k
q k 0 -
0= Y Tua . (17

where U, is the kth unitary similarity transformation matrix which transforms
the system matrices of (k—1)th recursion to RSF.

4. Optimal pole regions for two pole assignment

The transient response of higher order systems is mostly decided by a
dominant pole pair. Hence, by a two pole assignment, it is possible to
improve the response. With this in view, the OPA for a second order
subsystem has been studied in detail in this section. The optimal pole
regions for various cases have been delineated.

Let the open loop system matrices be
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' bit biy by b
By, B:?}_=|:b“] [bf, b{ﬂz[ k1 Okt Di kz]‘

bkﬁ bk2 b;l ka bJTZ

Substituting u = byy by, v = by b = byy bl1, w = by, b, and inverting we get
(B:BR) ' =47 [ N ‘”], (18)
—v u

where 4 = (uw—1v%)>0
The inner products u and w are positive constants while v can be positive,
Zero or negative.

Let the closed loop system be

- & B
Ak-',_'|:52 (fzJ,
From equation (7), B, is given by
— 41 w —v|| oy —a ﬁl—EL:l:
he=a [—1’ “][ﬁz—gz oy —0s
:ﬁ_l[W(ml—&:)‘U(ﬁz—Ezl W(ﬁl—ﬁt)_—v(az—&-z) :'
—v (o =) +u(fr—p2) —v(Bi—pB)+ulx—a) |

For B, to be symmetric

— (g —8y)+u (Br—Ba) = w By —f1)—v (2 —y). (19)
Rearranging the terms we get,
(W1 —ufs) = v {(ay —ay) —(ay —%2)} + WPy —up>, (20)
and
Br=Fr = = (4 =)+ (o= Bo) - (22— o). @)
Thus the elements of B, are given by
Py =w(otg —0)—v (B2—PB2), (22)
pr2= —v (@1 —&)+u (B2—F2), (23)

and

paz= —v(By—p1)tu(e2—a3).
Substituting from (21) for (;—pB,) and simplifying
4 e
P22 = —— Prat— (r— ). (24)
w W

For B, to be positive definite the leading principal minors should be positive.
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Thus
P11 = {W (g —ay)—v(f2 “Ez)} >0,

(&1 - E;) < (al o ﬁz)- (25)

(P11 P22—D12) > 0.
Substituting from (22), (23), (24) and simplifying

- P12 z P12
e - . 26
(052 B 52)<(°¢2 ooe 52) (26)

Furthermore @y, is given by

O = _A—1[Pu Plz][ﬂzl 51]_[41 ﬁz][ﬂu p12]4—1.
P12 P22 | B2 2 Bi o2 ([ P12 P22

Substituting from (21) and (24) for f; and p,, respectively,

which implies

Further

- = p v =
P11 P12 ’ oy 51*%—;(“2—“3)
Qk!,: _Aﬂl v A X
P12z —— Pi2+— (2 —03) oy 0y
_ w w -
_A—x[al ﬁ3:| P11 PI; ’ .
By 2| | pi2 —;Pu"r‘;(az—o_ﬂz)
P H—
qd11 d“;fxz B2 ,
s oA A (27)
4 = Aoy
d w‘xzﬁz -‘3+w(0'52 03)
where
g1 = P11 (@1 +%)+p12 (B2+B2), (28)
= v ~ A o
d=py, ﬁ1+P12(°‘1+°€2)—"‘;P1232+T‘;°‘2 B2, (29)
P12
e= - (2why —p12—2va,). (30)

For @, to be positive semidefinite, by considering the leading principal
minors, we can show that
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.. ey, 4 % v 2 4
(0!1 s ﬁz) +? 32 (051 =% ﬁz) +?ﬁ§= (31)
and
- dﬁ; 4 g QII %
qi1+— B3 qu+— B3
w
o | _dz a2
4 7
qi1+ = B3
4.1. To shift a complex conjugate pair of poles (x+jf) to a pair of real poles
The system matrices are given by
oy ﬁl
Ay = .
kL I:ﬁ2 062:'
where
o= EE—;E- and
fay=ay \*
B = —{( 5 ) +ﬁlﬁz}>0
- &, B
A“_ = [ 01 gl]
Substituting f, = 0 in equations (25) and (31)
< (al - ﬁz), (33)
[ v 2 A
a2 foi N ﬁz) +? B3. (34)

From these two equations, the optimal pole region for @, is
[ v, \ 4 :
B = —H:fol o 52) +w—2ﬁ%] ‘ (35)
Further, from equations (26) and (32)

o [ P12
9‘2<L0¢2*— ~ P2 ), (36)

P11
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d?.
E%é{a%+wd_1(e~ q“)}‘ (37

Hence, optimal region for a, is

ai+wd M e— L ):Iél 8
[2+A ( =) (38)

Thus for a given open loop system the optimal pole region (OPR) can be
determined from equations (35) and (38) as illustrated in Figure 1.

and

Ez__

ﬂlm

1—1——[«,{ —% 3y —

Ll oot ’l ] L 1 L
Crreay ey Ty T 0

%y
e GETARE T By

a) OPR of &, (hatched)

J\]I'n

5855585555554 ; {
%A ! @ 0 Re

2
a5 dq2 )
|<‘|[a§+wd Ie—q—“-l} _b|

b) OPR of @, (hatched)

Y

Fig. 1. OPR — complex to real pole shift

Continuing further f; is obtained from equation (21) as

Bi = Bt (e =) —(2 =)} —— B (39)

4.2. To shift real poles (., %;) to (&,, ;)
Substituting f, =0 in constraints (33), (34), (36) and (37) we get
&_1 < 051 N (40)

at =z af, (41)
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&y < 0tg, (42)
pr _y (g —0y)?
@BZai+47t ————(Wp+vuy — vot,).
oy —oy
Figure 2 illustrates the OPR delineated using these equations.
The f, is given by
S v - _—
B =ﬁl+;'{(a1—a1)—(&z—°‘z]}- (44)
Im
- &,
s - > TIIIIY TITIIIIIY e et 0 RE:__
Im
- &-? I
s st ' >
1 =, ) g
-2 1
NN -~
Gy - C\’..‘
al stable open loop system
Im
-,
5555555555555t 555555555555354 >
-1:, |0 @, Re
Alm
&
-7
S I ) >
-a, 0 o, Re
2, o (o= & 21k
|[a2+ ¥ ] ~m a$ {wﬂl Ve =V, ) } —_——
1

b) unstable open loop system
Fig. 2. OPR real to real pole shift

4.3. To shift a complex conjugate pair of poles (x+jf) to a complex conjugate pair (&+jf)

The open loop system matrix is
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where

. 2
%= al;az and p*= —{(a‘ 29'!1) + B, ﬁz} > 0.

Let the closed loop matrix be

where

g=a,=a, and f*=—pp,. (45)
We have from equation (20)

wBy —uf, = v (o —ax)+why —up,.
Substituting for f; from (45) and rearranging the terms we get

- B, + B
B3+ o~ +why—ufs} Pt 7 = 0.

The roots of this quadratic equation are

B,=b+c, (46)
where
1
b= ~5 (v (o —oz)+why —upfs},
and
P
c= Lbz—— 52) ; (48)
u
Since ¢? should be a positive constant
[ W
o 1
Lb B )>0,
which implies
1
i u \2
B = (Tv_) b|. (49)

This places an upper limit on imaginary part of the pole being assigned
and f, is obtained from (46) by choosing the value of § within this limit.
From constraints (25) and (31)
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o< {11 —% (B2— B-Z)}a (50)

/ 2 2
G TAREER HE {(al*%ﬁz) T N Y

& is chosen to satisfy the above constraints along with the constraints (26)
and (32). OPR of the closed loop complex poles @+jB is graphically
illustrated in Figure 3.

“1 @, v 0, vB,>0 pim
/ 7 Bmux
48
a, 0 "Re
1-
= “ﬁmu
(x) - open loop pole

Figure 3 OPR -complex to complex pole shift.

4.4. To shift real poles (2;,2,) to a pair of complex conjugate poles (&+jf)

The constraint equations for this case are obtained by putting B, =0
in the equations of section 4.3 as follows:
The system matrices are

B?* = —PBi B2, (45)
B=bte, (46)
where
1
b= o {v (a1 —oz)+whi}, (52)
and

o
c= (b2~1 ﬁz) . (48)
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The maximum value § can have is

B = (i) b, (49)

From constraints (50) and (51)
/_ v o~
L =, ﬁz) < O, (53)
, :

- trY ., A =
fo—;ﬁz) +?§“ﬁ%20€%-

The OPR for & has been delineated in Figure 4 using constraints (53)
and (54).

o, = oy, \rﬁz . jl Irgmw‘
[ 0 E:
7 -'Bmux
Figure 4 OPR - real to complex pole shift.
Exampre 1
Consider
-2 -1 —0.707 0
s =[ 0 —1]’ P _[ 0.707 1.414]'
From (49) B, = 0.89
Let =05 o
With this value of 5, f, = 0.342
From (50) and (51)
a= —2068.
The value & = —3 satisfies the necessary constraints and yields the following:

- [-3 -o73
A““:[ 0342 -3 ]

p _[2329 032 0., = 11538 335
10329 08667 M| 335 403
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—1.414 0.379
K = :
0465 1224

and

4.5. Remarks

1. It can be seen that from constraints (25), (26), (31) and (32) the optimal
pole regions depend upon the elements of A;; and B;.. Further the
choice of &; affects optimal region of o5,.

2. In case the diagonal elements of A;; are positive, the diagonal elements
of Ay lie to left of the imaginary axis to ensure a positive semi-
definite Q.

3. For single pole assignments the OPR lies to the left of open loop pole
if stable, or to the left of mirror image of open loop pole if unstable.

4. If real poles are assigned one at a time instead of assigning them
simultaneously, there is some gain in OPR at the cost of extra compu-
tation.

5. The theorem stated in section 2 is general and does not require Ay
to be in RSF. The optimal pole regions for such cases will be different.

5. Optimal Pole Assignment algorithm

A recursive pole assignment procedure based on section 4 is presented

in this section.

(1) Transform 4 and B to RSF

A0=U(§AUO and BO=U?)B

(2) Choose ¢ the number of recursions necessary to carry out pole
assignment and the order in which the poles are to be assigned.
Set k=0 and A4, = A,.

(3) Set k=k+1.

(4) Obtain A, = U] Ai—1 Uy and B, = U] Bi—;. If the desired closed loop
poles are real go to step (5) otherwise go to step (8).

(5) Determine the optimal region for &; and hence choose ;.

(6) Determine OPR for &, and choose &,.

(7) Calculate B;. Go to step (11).

(8) Determine f__, hence choose B and calculate f,.

(9) Choose & to satisfy the necessary constraints.

(10) Calculate B;.

(11) Calculate B, K;;. and Q.

(12) Obtain /Tk = Ak—Bk Kk_.
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(13) If k=g go to step (14) otherwis€ go to step (3).
(14) Calculate P, K and Q.

ExampLE 2

Consider

-4 1 2 20
X'= 0 -2 O0]X+|0 1]u.
0 1 -1 I |

By RSF transformation we get
-4 -0707 212 2 0
Ao = 0 _2 —1 3 Bo = —0?0? 0 i
0 0 -1 0.707 1414

where

1 0 0

Usg=10 0707 0707 |.
0 —0.707 0.707

The eigenvalues of open loop system are —4, —2 and —1. The poles are
assigned in two recursions (¢ = 2). In first recursion (—2, —1) are shifted
to a complex conjugate pair. In second recursion (—4) is shifted.
For k=1 .

Since U, = I3 the identity matrix

—2 —1 ~0.707 0
A”‘“[ 0 —jh and B”“[ 0.707 1.414]'

This has been solved in exami)le 1. The closed loop system is

=3 o073
A“-:[ 0341 —3 }

The chosen closed loop optimal poles are (—3+;0.5).
P - 2.329 0.329 T 11,533 3.35
710329 0866)° <[ 335 403)

k. [ 1414 0379
L= 0465 1224 ]

and

Therefore
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[-4 2121 1362
Ai=| 0-3 -—o0732
0 0342 —3

For k =2, by RSF transformation,

—3018 0196 0982 1.296 0.762
Ay = [4.2?? —2978 2.089], B, = [ 1.765 0.3 ]
_, 0 0 =il —045 1.152
where
0.166 0.922 —0.350
U,= |—0825 0324 0462|.
0539 0212 0815

A, and B, are given by

From A, and B, matrices we have,

Ay = [“4],

Since o3 <_0!3
Chossing Ay, = [a3] = [—5.53] we

P)_L = [1:[., Qz,t_ = [953] and KZLI:

By, =[—045 1.152].

—045
< EI82)

get

Referred to original system coordinates

-

0:00
P=Us Uy 6‘5 """ Ul Ul +
0: Py
(000 ] 0.123 —0.316 —0.087
+U U, U, 000 |ULUTUL=|-0316 2741 —0505],
[0 0 Py | —0087 —0505 1.33
1.167 —3012 —0.833
. Q0= |-3012 18898 —1.59 |,
—0833 —159 5.025
and
= 0.159 —1.137 1.156
| —0403 2236 0825 |

With this controller K, the closed

—4318
A= 0.403

0.244

system becomes

3274 —0312
—4236 —0825 |,
—0099 —2.981

The evigenvalues of 4 are (—3+0.5) and (—5.53) as assigned.
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6. Conclusion

A new theorem on optimal pole assignment has been established for
linear time-invariant systems. Using the theorem optimal pole regions for
various two pole assignment problems have been delineated. By a recursive
procedure, based on the theorem, all the poles are optimally assigned by
considering one or two poles at each step. The various results have been
illustrated with numerical examples. The theorem established is however
applicable for p, (= m) pole assignment at each recursion. The delineation
of OPR for such cases (p > 2) and other allied problems of OPA are
being currently studied.
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Nowe wyniki w dziedzinie optymalnego przesuwania biegunéw

Optymalne przesuwanie biegunéw polega na wyborze takiego ukladu sterujacego w
zamknietej petli, ktéry sprowadza uklad zamkniety do zadanych biegunow a jednoczesnie
pozwala minimalizowaé pewien kwadratowy wskaznik jakodci sterowania. PoniZzszy artykut
zawiera nowe twierdzenie, ktére podaje warunki konieczne i wystarczajace optymalnodci
takiego ukladu zamknietego. Na podstawie tego twierdzenia okreslono rejony potozenia
optymalnych biegunéw w przypadku jednego i dwéch biegunow. Uzyskana w ten sposob
dowolno$¢ jest wykorzystana do wyboru pozadanego zestawu biegunéw z odpowiednich
rejonéw optymalnych. Podano rekurencyjna procedurg optymalnego przesuwania biegundow
oraz ilustrujacy jej dziatanie przykiad liczbowy.
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Hosubie pe3yibTarTbl B 00/1aCTH ONITHMAJILHOIO C/IBHI'A MOJIIOCOB

OnTHManpHOEe NepeMeIlieHHe MOMI0COB COCTOUT B BbIOOpe TAKOH CHCTEMBI, ynpaBisroLIeil
B 3aMKHYTOH LENH, KOTOpas CBOAMT 3aMKHYTYIO CHCTEMY K 3a/IldHHEIM [OJIFOCAM, d OJHO-
BPEMEHHO 1103BOJIAET MHUHHMH3HPOBATh HEKOTOPLIl KBaIPaTHBI NOKA3aTe/]b KAYecTBa yNpaB-
nenus. JlanHasi CTaThs COJEPKHUT HOBYIO TEOPEMY, KOTOpPas AaeT HeOGXOAMMEBIE M J0CTATOYHEIE
VCTOBHS ONTHMATLHOCTH TAKOM 3aMKHYTOM crucrembl. Ha ocHoBe 3Toit TeopeMbl onpesieseHsl
oblacTi pacnoNoKeHHs ONTHMAIbHLIX MMOJTIOCOB B CTyYae OJHOTO H ABYX nomocos. JlocTu-
rHyTas TakuM o06pa3oM NpPOW3BONLHOCTE MCHOMB3YETCH Ul BeIOOpa KEIaeMOro CoCTaBa
HOJFOCOB M3 COOTBETCTBYIONIMX ONTHMANbHBIX obmacreil. [laercs pexkyppeHTHas mnpoleypa
ONTHUMAILHOTO CABUIA TOMIOCOB H MJLIIOCTPHUpYIOWMIl e€ NelicTBUE 4HCIIEHHBIT MpHMED.







