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This paper considers dynamic and stochastic dynamic linear programming problems.
Such problems lead to large scale linear programs with special structures: staircase and
angular-staircase for dynamic problems, respectively. Modifications are given that exploit
these structures for both accelerating the simplex method and decreasing its storage require-
ments. The method has been implemented in an experimental code. Numerical experience
is reported.
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1. Introduction

This paper presents modifications of the simplex method for dynamic
and multistage stochastic linear programs. The following specializations of
the simplex method for such problems are possible: '

(a) exploiting supersparsity for the problem data storage;

(b) automatically constructing an advanced basis;

(c) modifying pricing techniques;

(d) exploiting the structure for a more compact basis inverse represen-
tation.

Points (a), (b) and (c) are discussed in this paper.
We consider the following form of dynamic linear programming problem
T Tr=x
maximize 2= Y quXit Y. quith, (1.1)
i=0 i=0
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over all x;eR", i=0,1,..,T, and u;eR™ i=0,1,.., T—1, satisfying

—Gxi—Kuj+xip1=¢;, i=0,1,..,T—1, (1.2a)
Cx;+Du,<h, i=0,1,.,6 T—1, (1.2b)
Exo < gr, (1.2¢)

Fx; < hy, (1.2d)

IsEmE L, F=0.1,.47T (1.2¢)
li<u, <L, i=0,1,.,T-1, (1.20)

where x; and u; denote state and control variables at moment i, respectively,
gi€eR" hieR* i=0,1,..,T—1, greR* hyeR%, where k denotes the number
of constraints of type (1.2b) and k, and k; denote the numbers of constraints
of type (1.2¢) and (1.2d), respectively.

Matrices G, K, C, D, E, F have the appropriate dimensions.

The multistage stochastic linear programming problem under considera-
tion has the following form

maximize z = qly Xo+qlo tio+
+E \gh X1+ g5 wy+E .. +E {gf %, )01, (1.3)
over all x;eR", i=0,1,..,T, and w;eR™ i=0,1,.., T—1, satisfying

_Gx}f_Ku'{+x!i+l :b‘{L], 1205 19'":T_I‘ Py l—l k{l'!

a=1
j=1,2,.,r, 1=1,2,. ,kis1, (14a)
1y, 10, T s Tofim ), B (1.4b)
f‘“igu;\.{.‘ Lm's f::O, ]..,..., T"’]., j= 1,2,‘..,?';, (1.4(:)

here x/ and u! denote j-th realization of state and control variables at
moment i, respectively. Let us denote by k;.y, i=0,1, .., T—1, the number
of the realizations of the right hand side of equation (1.4a), by pi,, the
probability of the event {b;.; =bi.,}. We assume discrete distributions
(finite supports) of random elements b;.;. For simplicity all randomness
of the problem was concentrated in the right hand side vector.

Problems of type (1.1), (1.2) or (1.3), (1.4) arise often in economic
planning.

Each of the above programs could be formulated as a linear programming
problem and solved by the simplex method. They lead to large-scale problems
with special structures: staircase and angular-staircase, respectively.

Such problems (especially the first one) have received much attention
(see e.g. [21, [31, [4], [51, [7], [81, [12], [13], [14], [15]), mostly due to
their economic applications.
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Several atractive solution methods have been proposed for staircase
structured linear programs [2], [12], [13]. Their advantages are discussed
in [14], but they are not more efficient than the specialized simplex
method of [4] and [5], in which various algebraic properties of staircase
problems are exploited.

We present in this paper simplex modifications that exploit both algebraic
properties and the properties derived by interpreting the problem as one
of optimal control of a discrete dynamic system.

Since the stochastic dynamic problem (1.3) and (14) is a natural
generalization of the dynamic linear programming problem (1.1) and (1.2)
our techniques found efficient for the latter one were then extended to the
former one, giving even relatively better results.

The modifications described in this paper give the possibility to solve
problems (1.1), (1.2) and (1.3), (1.4) in, roughly speaking, about half the
time recquired by the clasical simplex method.

In section 2 we shall formulate the problems considered as linear
programming problems, analyse their special structures and show their
supersparsity. In section 3 we summarize the well-known revised simplex
method. In section 4 we further analyse the special structures of our linear
programs and, interpreting the problems discussed as those of optimal
control, we derive some simplex modifications. Section 5 describes our
numerical experience and section 6 gives our conclusions.

2. Specially structured linear problems

Problem (1.1), (1.2) can be formulated as the linear program

maximize z=cly, (2.1)
SubjeCt to A] y= bl x (22)
IEYLY, (2.3)

where y = (xg,Ug, Sp, X1, Uy, S1s ey Xpo 1o Up—1, Sp—1, Xy, Sp), and  Sg, Sy, ..
.., Sr—; denote slack (surplus, free or artificial) variables associated with
constraints (1.2a), (1.2b), and s; denotes slack variables for constraints
(1.2¢), (1.2d). Vectors y and y are generated from constraints (1.2e), (1.2f) and
the type of the slacks.

Matrix A; and vector b; have the form shown in the next page.
In phis form denotes the identity matrix of dimension nxn, J; denotes a
diagonal matrix of dimension IxI with elements on the diagonal equal
to +1 or —1 (the sign depends on the direction of the inequality in the
appropriate constraint). '

Problem (2.1)42.3) has N;=(T+1)n+Tm structural variables and
M, = T (n+k)+k,+k, constraints (and slack variables).
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Xo W S Xy Uy Sy XgXp_gUp-y Sp—y Xp  Sp
-G —-K o I, do
C D n+k ho
-G —K Jl‘ In g1
C D n+k hl
(24)

G - I e I, 9r-1

C D™ hy_q
E | g
F|Jhet| by

Analogously problem (1.3), (1.4) can be given the linear program form

maximize . z=chy, (2.5)
subject to A y=b,, (2.6)
Ysysy, (2.7)

1 1 2 2 k k = | 1 2 T
where  y = (xo,uo, X1, ul, XT, uf, ., X{4 ult, o, XF2y, UFZY, X7, X7, 0, X7, 8)

r;= || k;, and s denotes slack variables associated with constraints (1.4a).
j=1 i) =

Vectors y and y are generated from constraints (1.4b), (1.4c) and the type

of the slacks.

Matrix A4, and vector b, have the form (for simplicity we assume
T=2 ie. a three stage problem, k; = 3, k; =2)

B W xY wl 2% o o @ £ 2P 2 g i s

-G —K| I, b
=M =R I, b2
g s ) b
=G <K I, bl

=% =K I Ju |2 (28)
i =K I, b2
<G <& I, b
i i I, b
il il : 3 bS
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where Jy, denotes a diagonal matrix of dimension M, x M, with elements

on the diagonal equal to +1 or —1.
=1 i

T
Problem (2.5){27) has N, =(n+m)(1+ Y, [] k;)+n [] k; structural
=1 j=1 j=1
N1 i

variables and M, =n ) [] k; constraints (and slack variables).
i=1 j=1

Both problems (2.1}—{2.?1) and (2.5)(2.7) become large-scale ones as their
dimensions grow with the growth of the stage number T (this growth is
linear for the dynamic problem and exponential for the stochastic problem).
~ The simplex method operates on columns of the constraint matrix.
Usually only the nonzero elements of the column are stored (see: [9], [11]).
It is not necessary to store all columns of matrix 4, (or A4,) because,
as we can see, matrix (24) (or (28)) has many blocks with identical
elements.

For retrieving any column-of A; it suffices to store matrices G, K, C,
D, E, F and Ji, i=0,1,..,T (as sparse matrices, of course). Similarly,
for restoring any column of A4, it suffices to store matrices G, K and Jy,.

The implementations described in [7] and [8] exploit the above remark,
opening as a result the possibility of solving truly large-scale problems on
a microcomputer.

3. The revised simplex method

, The linear programming problem can be formulated as follows

maximize z=cly, (3.1)
subject to Ay =b, (3.2)
y=0, (3.3)

As we stated before, we assume that the reader is familiar with the
simplex method (see, e.g. [3], [10]).

We shall present its compact form based on [10]. Let us denote by
yg and yy the basic and nonbasic parts of the vector y, respectively, and -
by B the basis (a nonsingular submatrix of A4 consisting of columns
associated with yz). We assume that y, is feasible (yy = 0).

The algorithm consists of the following steps.

Step 1. Computing dual variables.

Solve Brr=q¢;. (34)
Step 2. Pricing nonbasic columns.

Compute di=n"aj—¢;, j=1,2,..,N—-M. (3.5)




342 1. GONDZIO

Step 3. Choosing the entering variable.

Find d,= min d;.

[f:d; =< 0}
If d;=0 for all j=1,2,.., N—M, then STOP (optimal solution found).

Step 4. Computing the entering column.

Solve Ba, = ay. (3.7)
Step 5. Choosing the leaving variable.
Find 3= B = min —g-t, (3.8)
fxm {izogy =0} &Eq

where f# denotes the solution of the equation Bf =b. If there is no oy
fulfilling the condition a; > 0, then STOP (the objective is unbounded).

Step 6. Updating the basis.

Variable (yy), becomes the p-th basic variable. Column a, replaces the
p-th column of matrix B. The new basis B can be found from the
equation

B = B+(a,—Be,)el. (3.9)

Go to step 1.
The basis inverse representations of B~' usualy make use of the sparsity
of the problem. Basis B can be for example decomposed into two matrices
Land U (lower and upper triangular) B= LU. A stable method of per-

forming such a decomposition and a way of updating it at each iteration
is described in [1] ([6] gives more detail).

4. Simplex modifications for specially structured problems

The most time consuming parts of the simplex method are solving
equations (3.4) and (3.7) and computing prices of the nonbasic columns (3.5).
Solving (3.4) and (3.7) strongly depends on the basis inverse representation.
Pricing as proposed by (3.5) needs computing N —M inner products at every
iteration. In [10] it is shown that even for general linear programs
substantial modifications of (3.5) are possible.

In partial pricing the prices

d;= " a;—c;, 4.1)
are not computed for all nonbasic variables but only for their subset.
This subset is cyclically changed from iteration to iteration.

In multiple pricing the full pricing (3.5) is made once per a lew
iterations. The result of (3.5) is a list of variables that can enter the
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basis at a given iteration. One of them is pivoted into the basis and in
the next few iterations the other condidates from the list are checked to
see if they can enter the basis. The next full pricing is repeated when the
list of candidates is exhausted.

The special structures of the linear programs discussed in this paper
encourage using modifications of the pricing techniques.

Different specialized pricing techniques which are efficient for staircase
linear programs are presented in [5]. These techniques are derived from
algebraic properties of the problem.

Let us now go back from the linear programming problem (2.1)}+2.4)
to the original problem of optimal control of the dynamic linear system
(1.1y(1.2). Optimal solutions (both state x; and control u;) of consecutive
moments should behave similarily, ie. if at the i-th cycle the s-th coordinate
of x is at its bound x}{= [§; (or x}=1%,) we may expect the same in the
next cycles xi,, = By, (or xi.,= L. s,) for t=1,2,.. This property in
terms of linear programming can be interpreted as having similar activity
in the cycles lying close to each other. The above remark leads to the
following pricing rule which combines both partial and multiple pricing.

Let us denote by g the number of the columns of constraint matrix
that entered the basis at a given iteration. In the next iteration column
g =q+w is first priced out (w is the width of the single cycle, w=
= n+m+n+k for problem (2.1)(2.4)). If price d, enables pivoting column
¢' into the basis, this is done without pricing any other column. If, on the
contrary, column ¢ cannot enter the basis, all columns of the next cycle
are scanned in the search for a good candidate. The columns with prices
of the appropriate signs are put into the candidate list and then are tried
for pivoting into the basis.

Applying the strategy described above reduces substantialy the solution
time.

Analogous results, with even greater time savings, were obtained when
this strategy was applied to the multistage stochastic dynamic linear pro-
gramming problem (2.5}12.8).

Another possibility of reducing computation time is to start from an
automatically constructed advanced basis (instead of a clack basis) that is
usually much closer to the optimal basis. Commercial linear programming
packages [9], [11] optionally construct such a crash basis. After analysing
the layout of the nonzero elements in the constraint matrix the slack
columns in the starting basis are replaced by as many structural columns
as possible. The replacement is made in a way ensuring the nonsingularity
of the crash basis. Practicaly this is done by constructing the crash basis
so that it can be transformed by column and row permutations to a lower
triangular matrix.
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Let us now return to the problems considered. Analysing the structures
of both constraint matrices (2.4) and (2.8) we can easily construct crash
bases for problems (2.1)}42.3) and (2.52.7).

For the first linear program we have

Xy Sg2 X3 Syp e Xp " Sp_12 St
Iﬁ
JR
-G I,
(4 It
By, = 4.2)
IH
JE 1
F "r{g{-k‘f
where s;,, i=0,1, .., T—1, denote slack variables associated with constraints

of type (1.2b). Solving equations (3.4) and (3.7) with basis By, may yield
numerical difficulties; this threat grows exponentialy with T. This problem
can be overcome by using in B, every, say, fifth slack variable s;_; ;
associated with the constraint of type (l.2a) instead of the appropriate
state variable x;.

For the second linear program a crash basis can be constructed in the
following form (for simplicity we assume T=2, k;, =3, k, =2)

¥ % & o % % &8 g 8t
Iﬁ
'
IN
By, = |-G I, 4.3)
i E
il I,
-G I,
-G I,
-~ I,
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As in the previous problem equations (3.4) and (3.7) with basis By,

may be ﬂfﬁcul_t to solve. Anyway, this is not so dangerous here, mostly
due to the small values of T.

5. Computational experience

Modifications of the simplex method discussed above were implemented
in experimental codes [7], [8]. Their efficiency was confirmed on several
testing examples.

Six dynamic linear programming problems were employed in the experi-
ments. Their dimensions (excluding objectives and right-hand sides) are given

in Table 1. Additional information about these test problems is collected
in [7].

Table 1
Problem Periods T | Rows M1 Colins Nonzero
N1 values
D1 3 20 18 78
D2 20 105 103 452
D3 100 505 503 2212
D4 180 905 903 3982
D3 70 570 635 3109
D6 70 570 635 3109

Three methods were used to solve the problems:

Method 1 a standard simplex method (with a supersparse representation
of the problem data); starting basis constructed totally from
slacks;

Method 2 the simplex method with modified pricing technique described
in section 4; starting basis constructed totally from slacks;

Method 3 the simplex method with modified pricing technique and crash

) basis of type (4.2). ' o -

The results are compared in Table 2.

As we can see, aplying the modified pricing technique reduced the
number of iterations (compare the number of iterations in methods 1 and 2).
For problems D3, D4, D5, D6 (ie. those of large scale) this reduction
is surprisingly stable — about 15%. The reduction of the computation time
is even greater (it reaches 309,) which means substantial decreases in the
average time per iteration. Both observations confirm our supositions of
section 4.

Starting from a crash basis (ie. method 3) gives further savings of
computation time and the number of iterations. In two sparser problems
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Table 2
Soluti thod g i
P olution metho % of time
Method 1 Method 2 Method 3 saved
D1 time 8s Ts 58 37
iterations 3 29 13
D2 time Im 50s Im 22s 56s 49
iterations 177 167 86
D3 time 28m 48s 20m 49s 15m 25s 46
iterations 1077 917 645
D4 time 60m 37s 47m 14s 38m 2ls 37
iterations 1409 1223 970
D5 time 30m 5s 2lm 39s 20m 35s 32
iterations 973 812 726
D6 time 29m 58s 21m 40s 20m 33s 32
iterations 1000 839 723

D3 and D4, these savings are greater (20-25%)), in denser problems D5
and D6, the reductions are small (the computation time is only 5%, shorter
then in method 2). Explanation of this difference needs more numerical
evidence.

Also six stochastic linear programming problems were employed in the
experiments. Their dimensions (excluding objectives and right-hand sides)
are given in Table 3. Additional information about these test problems is
collected in [8]. '

Table 3
Problem Periods T | Rows M1 Colinmay Nonzreo
N1 values
51 2 27 38 135
52 3 81 104 405
S3 4 351 410 1755
S4 7 762 1019 3028
S5 4 360 417 5310
S6 5 744 849 3844

Analogously three methods were used to solve the problems:

Method 1 a standard simplex method (with a supersparse representation
of the problem data); starting basis constructed totally from
slacks;

Method 2 the simplex method with modified pricing technique described in
section 4; starting basis constructed totally from slacks;

Method 3 the simplex method with modified pricing technique and crash
basis of type (4.3).

The results are compared in Table 4.
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Let us observe that application the modified pricing technique does not
change the number of iterations (compare the appropriate values for
methods 1 and 2). The only exception is the problem S4, in which this
number is reduced about 109, (problem S4 has the lowest density of the
nonzero values in the constraint matrix),

Although the number of iterations is unchanged, there are savings
of the computation time. This is due to the reduction of the average
time per iteration.

Method 2 is not so efficient for stochastic problems as it was for those
of dynamic type, because of the more complicated analogies between the
cycles of the constraint matrix. For stochastic problems a more sophisti-
cated pricing rule has to be applied.

Starting from a crash basis further reduces both the iterations number
and the computation time. For sparser problems such as S4 or S6 those
reductions are greater.

The results of running test problems with the modified simplex method
may be summarized as follows:

(i) The modified pricing technique described in section 4 is efficient for
both dynamic and stochastic problems. It reduces the average time per
iteration and also decreases the number of iterations.

(ii) This pricing rule gives better results in phase 2 of the simplex method,
ie. when analogies between the cycles are more regular (the objective
changes in phase 1 but does not change in phase 2).

(ili) Starting from a crash basis substantially reduces the number of itera-
tions (especially in phase 1 of the method, ie. when a feasible solution
is looked for). Its further consequence is a noticable decrease in computa-
tion time.

Table 4
Solution method % of time
Problem
Method 1 Method 2 Method 3 saved

D1 time 10s 10s 6s 40
iterations 48 50 21

D2 time 545 50s 3ls 43
iterations 151 151 76

D3 time 10m 15s 9m 22s 6m 13s 40
iterations - 607 595 294

D4 time 43m 50s 36m 12s 19m 04s 56
iterations 1242 1125 443

D35 time 14m 14s 13m 13s 8m 425 38
iterations 495 477 178

D6 time 38m 49s 37m 40s 16m 7s 58
iterations 1110 1102 399
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The modifications described in this paper shorten by about 30-50% the
solution time of the dynamic problem and by about 40-60%, the solution
time of the stochastic problem.

6. Conclusions

We have presented simple modifications of the simplex method specializing
it for solving dynamic and mutlistage stochastic problems. The modifications
exploit special structures of the problems considered.

It has been shown that such modifications accelerate the method about
two times.

Further modifications should include specializing the basis inverse repre-
sentation for the structures of the problems considered. Three different
methods, presented in [2], [4] and [15], seem attractive for this purpose.
We may expect that a more compact basis inverse representation will result
in the possibility of solving larger problems and will also give time savings.
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Modyfikacje metody symplekséw wykorzystujace specjalne cechy
dynamicznych i stochastycznych zadan programowania liniowego

W pracy rozwazane sa dynamiczne i stochastyczne dynamiczne zadania programowania
liniowego. Problemy te sformulowane w postaci klasycznych zadan programowania liniowego
majg macierze ograniczen o specyficznych strukturach: schodkowej oraz katowo-schodkowej,
odpowiednio dla zadan dynamicznego oraz stochastycznego. Opracowano modyfikacje metody
sympleksow, ktore wykorzystujac specjalne struktury macierzy ograniczefi, umozliwiaja istotne
zmniejszenie czasu rozwigzywania zadan oraz zmniejszenie wymagan pamigci. Metode opro-
gramowano dla mikrokomputera IBM PC. Przedstawiono wyniki obliczen dla zadan testo-
wych o wymiarach do 1000 x 2000.

MOJ]!IIIIIK&IBIH METO/Ja CHMILIEKCOB, HCNOJbL3YIOLIHE ocolbie NpH3HAKH [WHA-
MHYECKHX H CTOXACTHYECKHX 3a/a4 JIHHeiiHoro nporpaMMHpOBaHHH

B paGote paccMaTpHBAIOTCH IWHAMHYECKHE M CTOXACTHYECKHE 3ajavy JIMHCHHOIO Hpo-
rpaMMHpOBaHHs, DTH 3a71aud, GOpMyIHpYeMbie B BHC KJIACCHMECKHX 3ala¥ JMHEHHOrO mpo-
rpaMMHUpPOBAHKSA, UMEIOT MATPHIIBI OFPAHMYEHHil CO CHEUM(PUYESCKHMH CTPYKTYPAMH: CTYIeH-
4aToH M YIJIOBOH CTYNEHYATOH, COOTBETCTBYIOIIE /Ul JIMHAMHYECKHX M CTOXACTHHYECKHX 3a1adt.

Paszpaboransl MoH(pUKAINE METO/d CHMILIEKCOB, KOTOPEIE HCHOJL3Ysl 0CO0BE CTPYKTYPEI
MAaTpPHIEI OrPAHMYEHHId, TIO3BOIAIOT CYLIECTBEHHO COKPATHTh BpeMsl pellleHHA 3adad a Takxe
cHmauTL TpeGoBanns k mamsrti. Jis peamusamuu Merona paspaboTaHa nporpamma Ha
mukpoxommsiorep MBM TIC. [lpencrapneHbl pe3ysibTaThl BBIMHCIEHMI [T TECTHPYIOLIMX
sagad pasmepHoctero fo 1000 2000.






