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This paper considers dynamic and stochastic dynamic linear programming problems. 
Such problems -lead to- -large scale - linear -programs with -speclai structures: -"stmrcase and 
angular-staircase for dynamic problems, respectively. Modifications 'are--giveri that exploit 
these structures for both accelerating the simplex method and decreasing its storage require­
ments. The method has been implemented in an experimental code. Numerical experience 
is reported. 

KEY woRDs: Large-scale linear programming, Supersparsity, Special structures, Pricing techni­
ques. 

1. Introduction 

This paper presents modifications of the simplex method for dynamic 
and multistage stochastic linear programs. The following specializations of 
the simplex method for such problems are possible: 

(a) exploiting supersparsity for the problem data storage; 
(b) automatically constructing an advanced basis; 
(c) modifying pricing techniques; 
(d) exploiting the structure for a more compact basis inverse represen­

tation. 
Points (a), (b) and (c) are discussed in this paper. 

We consider the follo~ing form of dynamic linear programming problem 
T T-1 

maximize z = L q~;X;+ L q~;U;, (1.1) 
i=O i=O 
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over all X;ERn, i=0,1, ... , T, and U;ERm, i=0,1, ... , T-1, satisfying 

-Gx;-Ku;+x;+ 1 = g;, i = 0, 1, ... , T-1, 

Cx;+Du; ~ h;, i = 0, 1, ... , T-1, 

Exo ~ gr, 

FxT ~ hr, 

Zxi ~X;~ Lxi• i = 0, 1, .. J, T, 

lui ~ U; ~ Lu;, i = 0, 1, ... , T -1 , 

(1.2a) 

(1.2b) 

(1.2c) 

(1.2d) 

(1.2e) 

(1.2f) 

where x; and u; denote state and control variables at moment i, respectively, 
g;ERn, h;ERk, i= 0, 1, ... , T-1, gTERk,, hTERk,, where k denotes the number 
of constraints of type (1.2b) and ke and k1 denote the numbers of constraints 
of type (1.2c) and (1.2d), respectively. 

Matrices G, K, C, D, E, F have the appropriate dimensions. 
The multistage .stochastic linear programming problem under considera­

tion has the following form 

maximize z = q~0 Xo + q~o ua + 
+E [q~l X1 +q~l Ut +E ( ... +E {q~T Xr} ... }}, (1.3) 

over all X;ERn, i=0,1, ... ,T, and U;ERm, i=0,1, .. . ,T-1, satisfying 
i 

-Gx{-Ku{+ x\+ 1 =b{~ 1 , i=0,1, ... , T-1, r;= [1 ka, 
a=l 

j= 1,2, ... ,r;, l= 1,2, ... ,k;+1 , (1.4a) 

lxi ~ x{ ~ Lx;, i = 0, 1, ... , T, j = 1, 2, ... , r;, (1.4b) 

lui ~ u{ ~ Lu;, i = 0, 1, ... , T-1, j = 1, 2, ... , r;, (1.4c) 

here x{ and u{ denote j-th realization of state and control variables at 
moment i, respectively. Let us denote by k; +1 , i = 0, 1, ... , T-1, the number 
of the realizations of the right hand side of equation (1.4a), by Pl+ 1 the 
probability of the event {b;+ 1 = hl+ t}. We assume discrete distributions 
(finite supports) of random elements b;+ 1 . For simplicity all randomness 
of the problem was concentrated in the right hand side vector. 

Problems of type (1.1), (1.2) or (1.3), (1.4) arise often in economic 
planning. 

Each of the above programs could be formulated as a linear programming 
problem and solved by the simplex method. They lead to large-scale problems 
with special structures: staircase and angular-staircase, respectively. 

Such problems (especially the first one) have received much attention 
(see e.g. [2], [3], [4], [5] , [7], [8], [12], [13], [14] , [15]), mostly due to 
their economic applications. 
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Several atractive solution methods have been proposed for staircase 
structured linear programs [2], [12], [13]. Their advantages are discussed 
in [14], but they are not more efficient than the specialized simplex 
method of [ 4] and [5], in which various algebraic properties of staircase 
problems are exploited. 

We present in this paper simplex modifications that exploit both algebraic 
properties and the properties derived by interpreting the problem as one 
of optimal control of a discrete dynamic system. 

Since the stochastic dynamic problem (1.3) and (1.4) is a natural 
generalization of the dynamic linear programming problem (1.1) and (1.2) 
our techniques found efficient for the latter one were then extended to the 
former one, giving even relatively better results. 

The modifications described in this paper give the possibility to solve 
problems (1.1), (1.2) · and (1.3), (1.4) in, roughly speaking, about half the 
time recquired by the clasical simplex method. 

In section 2 we shall formulate the problems considered as linear 
programming problems, analyse their special structures and show their 
supersparsity. In section 3 we summarize the well-known revised simplex 
method. In section 4 we further analyse the special structures of our linear 
programs and, interpreting the problems discussed as those of optimal 
control, we derive some simplex modifications. Section 5 describes our 
numerical experience and section 6 gives our conclusions. 

2. Specially structured linear problems 

Problem (1.1), (1.2) can be formulated as the linear program 

maximize 

subject to 

z = ci y, 

A1 y = b1' 

_y~y~y, 

(2.1) 

(2.2) 

(2.3) 

where y = (x0,u0,s0,x1,u1,s1, .. . ,xT- 1,uT- 1,sT- 1,xT,sT), and s0 ,s1 , ... 

.. . , sy _ 1 denote slack (surplus, free or artificial) variables associated with 
constraints (1.2a), (1.2b ), and sr denotes slack variables for constraints 
(1.2c), (1.2d). Vectors J' and y are generated from constraints (1.2e), (1.2f) and 
the type of the slacks. 

Matrix A1 and vector b1 have the form shown in the next page. 
In phis form denotes the identity matrix of dimension n x n, J~ denotes a 
diagonal matrix of dimension I x I with elements on the diagonal equal 
to + 1 or - 1 (the sign depends on the direction of the inequality in the 
appropriate constraint). 

Problem (2.1 )--(2.3) has N 1 = (T + 1) n + Tm structural variables and 
M 1 = T ( n + k) + ke + k 1 constraints (and slack variables). 
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Xo Uo So x1 u1 s1 Xz ··· XT-1 UT-1 ST-1 Xr Sr 

-G -K 
J~+k In 9o 

c D ho 

-G -K 
J!+k 

In g1 
c D h1 

(2.4) 

-G -K JT-1 ]n 9r-1 
c D n+k 

hT-1 

w IF J[.+kf 
9r 
hT 

Analogously problem (1.3), (1.4) can be given the linear program form 

maximize 

subject to 

z = c~y, 
Az Y = bz, 

.J::::; y::::; y, 

(2.5) 

(2.6) 

(2.7) 

where y = (xo, uo, xl, ul, xi, ui, ... , xf 1 , uf 1, ... , xf:.), uJI:.\., x}, Xf, ... ,xfr, s) 
i 

r; = n kj> and s denotes slack variables associated with constraints (1.4a). 
j= 1 \ -

Vecfors .J and y are generated from constraints (1.4b), (1.4c) and the type 
of the slacks. 

Matrix A 2 and vector b2 have the form (for simplicity we assume 
T = 2 i.e. a three stage problem, k1 = 3, k 2 = 2) 

Xo ,uo x1 
I 

u1 
1 

x2 
I 

u2 
1 

x3 
I 

u3 
I 

xll 
2 

x12 
2 

x21 
2 

X22 
2 

x31 
2 

x32 
2 s 

-G -K In bl 
I 

-G -K In b2 
I 

-G -K - In b3 
I 

-G -K In bl 
2 

-G -K In JM b2 
2 (2.8) 

-G -K In b3 
2 

-G -K In b4 
2 

I 

-G -K I. b5 
2 

-G -K In b6 
2 
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where J M 
2 

denotes a diagonal matrix of dimension M 2 x M 2 with elements 
on the diagonal equal to + 1 or - 1. 

T-1 i T 

Problem (2.5}-(2.7) has N2 = (n + m) (1 + I n kj)+n n kj structural 
i=l j=l j=l 

T-1 i 

variables and M 2 = n I n kj constraints (and slack variables). 
i= 1 j= 1 

Both problems (2J}-(2.3) and (2.5}-(2.7) beconielarge-scale ones as their 
dimensions grow with the growth of the stage number T (this growth is 
linear for the dynamic problem and exponential for the stochastic problem). 
-- The simplex method operates on columns of the const~aifit matrix. 
Usually only the nonzero elements of the column are stored (see: [9], [11 ]). 
It is not necessary to store all columns of matrix A 1 (or A 2 ) because, 
as we can see, matrix (2.4) (or (2.8)) has many blocks with identical 
elements. 

For retrieving any column ·of A1 it suffices to store matrices G, K, C, 
D, E, F ;md Ji~, i = 0, 1, .. . , T (as sparse matrices, of course). Similarly, 
for restoring any column of A 2 it suffices to store matrices G, K and J M 2 . 

The implementations described in [7] and [8] exploit the above remark, 
opening as a result the possibility of solving truly large-scale problems on 
a microcomputer. 

3. The revised simplex method 

1 
!he linear programming problem can be formulated as follows 

max1m1ze 

subject to Ay= b, 

y?:O, 

(3.1) 

(3.2) 

(3.3) 

As we stated before, we assume that the reader is familiar with the 
simplex method (see, e.g. [3], [10]). 

We shall present its compact form based on [10]. Let us denote by 
y8 and YN the basic and nonbasic parts of the vector y, respectively, and 
by B the basis (a nonsingular submatrix of A consisting of columns 
associated with ys). We assume that y8 is feasible (y8 ;?: 0). 

The algorithm consists of the following steps. 

STEP 1. Computing dual variables. 

Solve Br n = c8 . (3.4) 

STEP 2. Pricing nonbasic columns. 

Compute di = nTai - ci, j=1,2, ... ,N- M. (3.5) 
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STEP 3. Choosing the entering variable . 

Find dq. = min dj. 
U:dj< o) 

If dj): 0 for all j = 1, 2, ... , N -M, then STOP (optimal solution found). 

STEP 4. Computing the entering column. 

Solve Baq = aq. (3.7) 

STEP 5. Choosing the leaving variable. 

Find mm (3.8) 
1Xpq {i:a,, > 0} lX;q 

where f3 denotes the solution of the equation Bf3 = b. If there is no rx;q 

fulfilling the condition LX;q > 0, then STOP (the objective is unbounded). 

STEP 6. Updating the basis. 
Variable (yN)q becomes the p-th basic variable. Column aq replaces the 

p-th column of matrix B. The new basis B can be found from the 
equation 

(3.9) 

Go to step 1. 
The basis inverse representations of B- 1 usualy make use of the sparsity 

of the problem. Basis B can be for example decomposed into two matrices 
L and U (lower and upper triangular) B = LU. A stable method of per­
forming such a decomposition and a way of updating it at each iteration 
is described in [1] ([6] gives more detail). 

4. Simplex modifications for specially structured problems 

The most time consuming parts of the simplex method are solving 
equations (3.4) and (3.7) and computing prices of the nonbasic columns (3.5). 
Solving (3.4) and (3.7) strongly depends on the basis inverse representation. 
Pricing as proposed by (3.5) needs computing N- M inner products at every 
iteration. In [10] it is shown that even for general linear programs 
substantial modifications of (3.5) are possible. 

In partial pricing the prices 

(4.1) 

are not computed for all nonbasic variables but only for their subset. 
This subset is cyclically changed from iteration to iteration. 

In multiple pricing the full pricing (3.5) is made once per a le\\ 
iterations. The result of . (3.5) is a list of variables that can enter the 
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basis at a given iteration. One of them is pivoted into the basis and in 
the next few iterations the other condidates from the list are checked to 
see if they can enter the basis. The next full pricing is repeated when the 
list of candidates is exhausted. 

The special structures of the linear programs discussed in this paper 
encourage using modifications of the pricing techniques. 

Different specialized pricing techniques which are efficient for staircase 
linear programs are presented in [5]. These techniques are derived from 
algebraic properties of the problem. 

Let us now go back from the linear programming problem (2.1)--(2.4) 
to the original problem of optimal control of the dynamic linear system 
(1.1)--(1.2). Optimal solutions (both state xi and control uJ of consecutive 
moments should behave similarily, i.e. if at the i-th cycle the s-th coordinate 
of x is at its bound xi= l~i (or xi= i!xJ we may expect the same in the 
next cycles xi+r = l~i+t (or xi+t = Exi+t) for t = 1, 2, .... This property in 
terms of linear programming can be interpreted as having similar activity 
in the cycles lying close to each other. The above remark leads to the 
following pricing rule which combines both partial and multiple pricing. 

Let us denote by q the number of the columns of constraint matrix 
that entered the basis at a given iteration. In the next iteration column 
q' = q+w is first priced out (w is the width of the single cycle, w = 
= n +.m+ n + k for problem (2.1 )--(2.4)). If price dq enables pivoting column 
q' into the basis, this is done without pricing any other column. If, on the 
contrary, column q' cannot enter the basis, all columns of the next cycle 
are scanned in the search for a good candidate. The columns with prices 
of the appropriate signs are put into the candidate list and then are tried 
for pivoting into the basis. 

Applying the strategy described above reduces substantialy the solution 
time. 

Analogous results, with even greater time savings, were obtained when 
this strategy was applied to the multistage stochastic dynamic linear pro­
gramming problem (2.5)--(2.8). 

Another possibility of reducing computation time is to start from an 
automatically constructed advanced basis (instead ·of a clack basis) that is 
usually much closer to the optimal basis. Commercial linear programming 
packages [9], [11] optionally construct such a crash basis. After analysing 
the layout of the nonzero elements in the constraint matrix the slack 
columns in the starting basis are replaced by as many structural columns 
as possible. The replacement is made in a way ensuring the nonsingularity 
of the crash basis. Practicaly this is done by constructing the crash basis 
so that it can be transformed by column and row permutations to a lower 
triangular matrix. 
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Let us now return to the problems considered. Analysing the structures 
of both constraint matrices (2.4) and (2.8) we can easily construct crash 
bases for problems (2.1 )--(2.3) and (2.5)--(2.7). 

For the first linear program we have 

xt Soz Xz s12 ... XT ST-t,2 ST 

In 
J2 

-G In 
c Jt 

(4.2) 

In 
J~-t 

IFl Jl.+kj 

where s;2 , i = 0, 1, ... , T -1, denote slack variables associated with constraints 
of type (1.2bT Solving equations (3.4) and (3.7) with basis Bot may yield 
numerical difficulties; this threat grows exponentialy with T. This problem 
can be overcome by using in Bot every, say, fifth slack variable S;-t,t 

associated with the constraint of type (1.2a) instead of the appropriate 
state variable X;. 

For the second linear program a crash basis can be constructed in the 
following form (for simplicity we assume T = 2, kt = 3, k 2 = 2) 

X~ xi XI xP xiz x~t x~z x~t xF 
In 

In 
In 

-G In (4.3) 
-G In 

-G In 
-G In 

-G In 
-G In 
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As in the previous problem equations (3.4) and (3.7) with basis B02 

may be difficult- to solve. Anyway, this is not so dangerous here, mostly 
due . 'to- the small values of T. . 

5. Computational experience 

Modifications of the simplex method discussed above were implemented 
in experimental codes [7], [8]. Their efficiency was confirmed on several 
testing examples. 

Six dynamic linear programming problems were employed in the experi­
ments. Their dimensions (excluding objectives and right-hand sides) are given 
in Table 1. Additional information about these test problems is collected 
in [7]. 

Table 1 

Problem Periods T Rows M1 Columns Nonzero 
N1 values 

Dl 3 20 18 78 
D2 20 105 103 452 
D3 100 505 503 2212 
D4 180 905 903 3982 
D5 70 570 635 3109 
D6 70 570 635 3109 

Three methods were used to solve the problems: 
Method 1 a standard simplex method (with a supersparse representation 

of the problem data); starting basis constructed totally from 
slacks; 

Method 2 the simplex method with mQdified pricing technique described 
in section 4; starting basis constructed totally from slacks; 

Method 3 the simplex method with modified pricing technique and crash 
- - basis of type (4.2): 

The results are compared in Table ·2. 
As we can see, aplying the modified pncmg technique reduced the 

number of iterations (compare the number of iterations in methods 1 and 2). 
For problems D3, D4, D5, D6 (i.e. those of large scale) this reduction 
is surprisingly stable- about 15%. The reduction of the computation time 
is even greater (it reaches 30%) which means substantial decreases in the 
average time per iteration. Both observations confirm our supositions of 
section 4. 

Starting from a crash basis (i.e. method 3) gives further savings of 
computation time and the number of iterations. In two sparser problems 
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Table 2 

Problem 
Solution method % of time 

Method 1 Method 2 Method 3 saved 

D1 time 8s 7s Ss 37 
iterations 31 29 13 

D2 time 1m 50s 1 m 22s 56s 49 
iterations 177 167 86 

D3 time 28m 48s 20m 49s 15m 25s 46 
iterations 1077 917 645 

D4 time 60m 37s 47m 14s 38m 21 s 37 
iterations 1409 1223 970 

D5 time 30m Ss 21 m 39s 20m 35s 32 
iterations 973 812 726 

D6 time 29m 58s 21 m 40s 20m 33 s 32 
iterations 1000 839 723 

D3 and D4, these savings are greater (20--25%), in denser problems D5 
and D6, the reductions are small (the computation time is only 5% shorter 
then in method 2). Explanation of this difference needs more numerical 
evidence. 

Also six stochastic linear programming problems were employed in the 
experiments. Their dimensions (excluding objectives and right-hand sides) 
are given in Table 3. Additional information about these test problems IS 

collected in [8]. 

Table3 

Problem Periods T Rows M1 
Columns Nonzero 

N1 values 

Sl 2 27 38 135 
S2 3 81 104 405 
S3 4 351 410 1755 
S4 7 762 1019 3028 
ss 4 360 417 5310 
S6 5 744 849 3844 

Analogously three methods were used to solve the problems: 
Method 1 a standard simplex method (with a supersparse representation 

of the problem data); starting basis constructed totally from 
slacks; 

Method 2 the simplex method with modified pricing technique described in 
section 4; starting basis constructed totally from slacks ; 

Method 3 the simplex method with modified pricing technique and crash 
basis of type (4.3). 

The results are compared in Table 4. 
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Let us observe that application the modified pncmg technique does not 
change the number of iterations (compare the appropriate values for 
methods 1 and 2). The only exception is the problem S4, in which this 
number is reduced about 10% (problem S4 has the lowest density of the 
nonzero values in the constraint matrix). 

Although the number of iterations is unchanged, there are savmgs 
of the computation time. This is due to the reduction of the average 
time per iteration. 

Method 2 is not so efficient for stochastic problems as it was for those 
of dynamic type, because of the more complicated analogies between the 
cycles of the constraint matrix. For stochastic problems a more sophisti­
cated pricing rule has to be applied. 

Starting from a crash basis further reduces both the iterations number 
and the computation time. For sparser problems such as S4 or S6 those 
reductions are greater. 

The results of running test problems with the modified simplex method 
may be summarized as follows: 

(i) The modified pricing technique described in section 4 is efficient for 
both dynamic and stochastic problems. It reduces the average time per 
iteration and also decreases the number of iterations. 
(ii) This pricing rule gives better results in phase 2 of the simplex method, 
i.e. when analogies between the cycles are more· regular (the objective 
changes in phase 1 but does not change in phase 2). 
(iii) Starting from a crash basis substantially reduces the number of itera­
tions (especially in phase 1 of the method, i.e. when a feasible solution 
is looked for). Its further consequence is a noticable decrease in computa­
tion time. 

Table 4 

Solution method % of time 
Problem 

saved Method 1 Method 2 Method 3 

Dl time 10s 10s 6s 40 
iterations 48 50 21 

D2 time 54 s 50s 31s 43 
iterations 151 151 76 

D3 time 10m 15s 9m 22s 6m 13s 40 
iterations 607 595 294 

D4 time 43m 50s 36m 12s 19m 04s 56 
iterations 1242 1125 443 

D5 time 14m 14s 13m 13s 8m 42s 38 
iterations 495 477 178 

D6 time 38m 49s 37m 40s 16m 7s 58 
iterations 1110 1102 399 
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The modifications described in this paper shorten by about 30--50% the 
solution time of the dynamic problem and by about 40--60% the solution 
time of the stochastic problem. 

6. Conclusions 

We have presented simple modifications of the simplex method specializing 
it for solving dynamic and mutlistage stochastic problems. The modifications 
exploit special structures of the problems considered. 

It has been shown that such modifications accelerate the method about 
two times. 

Further modifications should include specializing the basis inverse repre­
sentation for the structures of the problems considered. Three different 
methods, presented in [2], [ 4] and [15], seem attractive for this purpose. 
We may expect that a more compact basis inverse representation will result 
in the possibility of solving larger problems and will also give time savings. 
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Modyflkacje metody sympleksow wykorzystuj~ce specjalne cechy 
dynamicznych stochastycznych zadiul programowania liniowego 

W pracy rozwazane S<l dynamiczne i stochastyczne dynamiczne zadania programowania 
liniowego. Problemy te sformulowane w postaci klasycznych zadan programowania liniowego 
maj<l macierze ograniczen o specyficznych strukturach: schodkowej oraz k<ltowo-schodkowej, 
odpowiednio dla zadan dynamicznego oraz stochastycznego. Opracowano modyfikacje metody 
sympleks6w, kt6re wykorzystuj4c specJalne struktury macierzy ogramczen, umo:i:hwiaj4 istotne 
zmniejszenie czasu rozwi4zywania zadan oraz zmniejszenie wymagar\ pamil!ci. Metodl! opro­
gramowano dla mikrokomputera IBM PC. Przedstawiono wyniki obliczer\ dla zadan testo­
wych o wymiarach do 1000 x 2000. 

Mo)J.n«<mKaQuu MeTo)J.a cuMUJieKcos, ucnoJihlYIOIIJ;He oco6hle npinuaKu )J.HHa­
MHlfecKux u croxacrulfecKux Ja)J.alf Jiuueiiuoro nporpaMMnposauuH 

B pa6on: paccMaTpHBaiOTCl! t\HHaMH'IeCKHe 11 CToxacTwleCKHe 3at~a'lH JIHHenHoro npo­
rpaMMHposaHHl!. 3TH 3at(a'l!1, cj}opMyJIHpyeMbie B BHJ(e KJiaCCH'!eCKHX 3at(a'l JIHHeUHOfO npo­
rpaMMI1pOBaHI1ll , HMeiOT MaTpHl\bl orpaHM'leHHll CO Cllel\HcPH'leCKHMH CTpyKTypaMH: CTyneH­
'laTOll 11 yrJIOBOll CTyneH'laTOll, COOTBeTCTBYIOII.(e t(Jll! t(HHaMH'leCKHX 11 CTOXaCTH'!eCKHX 3at(a'l. 

Pa3pa6oTaHbl MOJ(Hcj}HKal\1111 MeTOJ(a CHMnJieKCOB, KOTOpbre HCIIOJib3Yll OC06bre CTpyKTypb! 
MaTp11I.\bl orpaHH'leHHll, ll03BOJil!IOT cyll(eCTBeHHO COKpaTHTb BpeMl! peWeHI1l! 3at(a'l a TaKJKe 
CHH3HTb Tpe6osaHI1l! K rraMl!TH. )l,Jill peaJIH3al\HH MeTot~a pa3pa6oTaHa rrporpaMMa Ha 
MHKpOKOMI!biOTep HEM ne. ITpet~CTaBJieHbl pe3yJibTaTbl Bbi'll1CJieH!1ll t(Jll! TeCTMpyiOII.(HX 
3at(a'l pa3MepHOCTbiO t\0 1000 X 2000. 




