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This paper presents an extension of Brown's problem for the allocation of a single
resource to a given number of variables to maximize the value of the smallest tradeoff
function. Instead of single constraint in Brown’s problem several number of constraints
on sums of resource quantities are considered. The description of algorithms for strictly
increasing and continuous tradeoff functions with all continuous and mixed, continuous
and integer variables are presented. An illustrative example is included.

1. Introduction

Brown [1] developed the method of resource allocation for the following

problem
F*(x%, .., x¥) = max min | f, (x,)}, (1a)
Y x,<h, (1b)
X, =20, nel, (" ={1,2,., N} (1c)

This paper extends Brown’s problem for the case of several constraints.
Therefore the problem under consideration can be stated as
F*(xt, .., x}) = max min {f, (x.)}, (2a)
Y X, <h, re#, A4={1,2,.,R}, (2b)
nELS,

x, =0, nel. (2¢)
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The meanings of notations in (2a)+2c) are as follows

1. N is the total number of variables.

2. i is the set of first N positive integers.

3. R is the total number of constraints.

4. # is the set of first R positive integers.

5. x, is the quantity of the resource allocated to variable n.

6. f, is strictly increasing and continuous tradeoff function.

7. 9,< | is the set containing the numbers of variables of the con-
straint r. ;

8. h.>0 is the maximum quantity of the resource that can be allocated

to variables of Z,.

It has been assumed that %, and h,, re# are defined in such way
that no constraint could be replaced by another one or no h, changed
to smaller value (if for example Cfr:fx‘q and h, > h, then h, could be
replaced by h,).

The problem (2) has been considered by Dutta and Vidyasagar [2]
in more general form. They have proposed an algorithm for the problem
having nonlinear constraints instead of linear in (2). This means that
their method, converting constrained minimax problem to a sequence of
unconstrained minimization of least-squares type objective function, can be
applied in this case. However a gradient optimization technique has to be
applied in their method to do the unconstrained optimization at each
step of the sequence. Therefore it is difficult to assesss a computational
complexity -of that method. This question is important specially for large
problems (great number of variables). The method proposed here has
polynomial computational complexity, does not require any auxiliary pro-
cedure and is very simple to code.

The extension of problem (1) was inspired by the work by Mijelde [4]
who considers similar extension of problem solved earlier by Luss and
Gupta [3] where the objective functions considered are sums of tradeoff
functions. While the method developed by Mjelde requires that &,, re#,
form a tree when ordered by the inclusion relation, algorithms presented
here allow 2 = {%,,..,%z} be any nonredundant collection of sets %,
re.

As an illustration of the problem (2) we can consider the problem
of distribution of funds to increase a degree of environment purity in
different regions. We expect to gain f,(x,) degrees of purity if fund
X, i1s allocated to region n, ne. |. The constraints on sums of x, may
be imposed by technological or geographical factors connected with various
sets of regions. The aim of a decision-maker is to maximize the smallest
magnitude of the degree of environment purity among all regions. Other
applicational areas can be easily found, see for example [1], [4].
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This paper contains the descriptions of two algorithms: first for the
continuous problem (all variables x,, ne | are continuous) and second for
the mixed integer problem (some variables x,, ne.#, ./ < |, must be
positive integers). The numerical example of application of the first algorithm
is presented. The paper ends with some final remarks.

2. Continuous problem

Let us consider the problem (2) with all variables x,, ne |, being
nonnegative real numbers and R > 1. It appears that the following theorem
('Theorei'n 1 is stated and proved in the case of one constraint in (1)) holds:
Theorem 1. Let the variables x,, ne.|’, be ordered and then renumbered
so that

fHO)< £0)< .. < fy(0)< fy+1(0), 3)

where an extra variable N+1 is introduced and fy+1(0)= +o0. A feasible
solution x* of the problem (2) is optimal solution if and only if there

exists an_integer ke |", a real number 4 and at least one integer peA
such that the following conditions are satisfied:
x¥>0, nef{l,wukl= g (4a)
Ja(X¥) =2, ne g, (4b)
[0 =4, nefk+l,.,N}= I, (4c)
xp=0, nelg, (4d)
Y xE=h,, (4e)
Proof: "

Assume that x* is a feasible solution that satisfies conditions (4).
Let us consider any feasible solution X such that X # x*. If

Y Xp=hy,,

nel,
it follows from the relation (4a) that there exists a variable me i, such
that X,, < x}; (because X; > x{* for some leZ,, [ # m implies X, < x}). This
means that :

| o o) < i (52,
while the equation (4b) requires
Jon (Xm) = 2.

Inspection of the conditions (4b) and (4c) shows that the optimal value
of objective function is A;. Thus taking into account last two formulae it
is obvious that X is not an optimal solution to (2).
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Similar argumentation for the case
Y X, <hy,
ned,
shows that X is not the optimal solution to (2).
Thus x* is the optimal solution because non-binding constraints (2b) do not -
influence the optimality.
Assume now that x* is the optimal solution to (2). There exists always
such an integer ke (" that

S 0) < F* < fi1 (0),

where F* is the optimal value of objective function. We have to show,
that there exists subset of zero allocations, ie. xFf=0 for ne 15, where
o= {k+1,..,N}. This will be demonstrated by contradiction. Let x3 >0
if me. Ig. Hence defining X such that

(x¥+x3/P ne ;N9

% — X ne Iy and n¢ %,
) 0 n=m
X ne lo—{m}

where P = |Z,|, implies that for ne [
min {f, (X,)} > min {f, (x})} = F*,
what contradicts with the assumption, because X gives better optimal value
than x*.
Now assume that there exists an ihteger S€ lgNY,, where |Z,| = 2 (what

always will hold if not all Z,, re# are trivial, ie. at least two-element
" sets), such that
f(x¥) > F*,

This means, that the optimal value of objective function can be increased
by redistribution of some excess resource in allocation x¥. Let define

xF—A n=sg,
Xo =\ Xx+4/S—1) ne. linD,—{s},
0 : ne. lg,

where S =1|Z,| and 4 is chosen such that still f;(X,) > F*. This results in
min {f, (X))} > F*,
for ne. I, what gives contradiction. The next implication is that for ne. I;

Ja (x3) = F*,
what ends the proof. |
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The theorem 1 allows to propose the fellowing solution procedure for
problem (2). '
Algorithm 1.
Step 1. Define .« = {a,:a, = f,(0), ne. {"} and # = {b,:b,= Gy; b, < b4 1;
n, me.|" and by, = o} Set k= N.
Step 2. Calculate for ne. 1”

e {f;:*(bk) it £ (60> 0,
Tl i e <0,

and for re#

h=h— ) xi.
igtr,
If h, =0, re#, go to Step 3. Otherwise k =k—1 and repeat Step 2.
Step 3. Set k=k+1. Define .Ig={n:a,=b, ne 1"}, 1,=.1"—1; and
replace # by # — AR, where AR = {r:9, < |, re R} {r:%,n. ;=
Dy g and h, > hy, r, geA, r# q}. Define %} = 2, . Iy, for req.
Step 4. For each re# determine F, from the equation

Z fn_l(F;] = hr-

new
Step 5. Calculate optimal value

F* =min {F]},
redt

and assign the following optimal values to the variables ne. ("

xu{fﬂ“(F*) it nef

"0 if ne g

An optimal solution has been found. STOP.
Some comments are necessary:
1. The set # consists of ordered elements of the set .o/ with the last
additional element being by, = 00.
2. The set A# contains the constraints which can be eliminated because
some variables (those of . 15) take zero values in the optimal solution.
3. If explicit expressions F, = g, (h,), where g, denotes a given function,
are not possible to derive in Step 4, then numerical methods to determine
F; are needed. Therefore two starting points /, and u, that define the
interval for F}, ie. F.e{l,, u,>, can be calculated using
I, = max { £, (0)}

nes/

i, = min { £, (h)}

ne,
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4. In general not all constraints are— in the optimal point x%* ne I,
obtained by the algorithm — binding constraints. Define Z__ = {r:F, = F*,
reA} and

= U 2.
rE.ﬁfmin

Thus variables x,, ne i;— I, can be increased by A4x} =0 without

violating any constraint and without increasing the value of F*, where

for re#—#_,

X AxE = h— ) x¥.

ned N H— g nes,

The optimality of the solution xj, ne |, is settled by the following
theorem. :

Theorem 2. Algorithm 1 produces the optimal solution to the continuous
problem (2).

Proof.

We have to show that the Algorithm 1 finds the solution x¥, ne |-
satisfying the conditions (4) and terminates in finite number of steps.

The first task of the algorithm is to determine an integer k to partition
the set .|~ into two sets . [, and iy , such that .1;,u. lg=.1", This is
done iteratively, by a process of trial and error starting with k = N and
determining x, using the formula in Step 2. If all h, = 0 the process is
stopped because the optimal value k has been found and set .|~ can be
partitioned. Next, zero variables can be eliminated from the sets Z,, re#
(this is done in Step 3). Owing to this the sets %,/ contain only nonzero
variables. Assuming temporarily that all constraints (2b) are binding con-
straints we find in Step 4 at least one potential objective optimal values.
Minimum of these values is in fact the optimal value F* This allows
to find the optimal allocations x}, ne. |~ (Step 5).

The way in which k, F* and x* are determined ensures that the
optimal solution satisfies (4).

The number of computations in each step of the algorithm is bounded
from above by N log N in step 1, NR in step 2, max {R* N} in step 3,
R in step 4 and N in step 5. This means that the number of computa-
tions in the whole algorithm is finite, what ends the proof. |

The final considerations in the above proof enable to evaluate the
computational complexity of Algorithm 1 as equal to O(N,Q), where
Q = max {log N, R*}.

Computations performed by Algorithm 1 can be ilustrated by the following
example with N=R =4, f, (x;)=5+5In(x;+2), f5(x;)=1+5n(x,+1),
fa(x3z)=14+In(x3+3), f1 (x4) = 14+2In(x4+2) and constraints x; +x,+x3+
+x, 3, X1 +x:S2, X1+ Xx3+xa €2, x,51, x,20 for ne I
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Sets ./ and 4 obtained in Step 1 are o/ = {846, 1, 2.098, 2.386},
# = {846, 1, 2.098, 2.386, ov}. For k =4 calculations in Step 2 result in
X =41492, x;, = 15, x3 = 1; x;, = 0 what gives h} = —54.492, h’, = —54492,
3= —40492, hy = —14. This causes that Step 2 is repeated for k= 3.
Algorithm may enter Step 3 after once more repetition of Step 2 because
finally for k=2 we obtain x; =.718, x,=x3=x3,=0 and all k. >0,
r=1,2.3,4

Application of Step 3 gives Io=1{3,4}, (,={1,2}, A2 = {1}, # =
=1{2,3,4}, 2, ={1,2}, 5= {1}, 2, = {2}. The values of F. calculated in
Step 4 are F,= 1148, F3=1193, F,=1.346, and consequently, Step 5
gives optimal solution F* =1.148 for allocations x} = 1.655, x% = .345,
X% =k ),

3. Mixed integer problem

The algorithm presented below for the problem (2) in which some
variables x,, ne.# and .# .|’ are positive integers and some x,, ne%,
JU€ =1, 9n% =0 are nonnegative reals differs slightly in first two steps
from the original algorithm developed by Brown [1]. The difference in Step 1
is that Algorithm 1 is applied instead of Brown’s algorithm. The difference
in Step 2 is caused by different number of constraints in problem (1)
and (2). Therefore the sets #,, re#, are introduced. The rest of calcula-
tions are the same or analogical and can be easily explained.

Algorithm 2.

Step 1. Allowing all x,, ne# be nonintegers solve problem (2) using
Algorithm 1. Let x, for ne.# U% represent continuous solution.

Step 2. Set 2

S#F = min £, (Lx, ]),
ned

where | x| is the largest integer nol greater than x. Let .’ contain
the variable numbers n, ne.# such that f, (|x,]) = F".

Calculate

(5)

, _JIAHEN i nes
" g i § if ne®
where [x] is the smallest integer not less than x. Define for re.#
sets /#,={n:neJS %, and f,(x,)=F'} and # =|) #, Calculate

re#
for re#

K= 3 %t Y % (6)

ne¥ o, ned i,
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If h,+| #,| > h,, where | #,| means the number of elements of #,,
for at least one re#, then go to Step 3. If h+|#,|<h, for
all re#, h,+|#,|=h, for at least one re# and % =0, then go
to Step 4. Otherwise go to Step 5.

Step 3. Set xjf = x, for all ne.¥ U%. STOP.

Step 4. Set xif = x,+1 for all ne # and x} = x;, for ne |"— #. STOP.

Step 5. Set x} = x,+1 for ne% and replace h, by h.— ) x¥ for re# and

. nel
4 by JS—%. I # =0 then STOP. Otherwise go to Step 1.

The calculations performed in and features of the solutions produced
by the Algorithm 2 are discussed in the proof of the following theorem.
Theorem 3. Algorithm 2 finds the optimal solution xj, ne. | to the mixed
integer problem (2).

Proof. (Analogous to the proof for single constraint mixed integer problem (1)).

Calculations performed in Step 1 and in the beginning of Step 2 are
aimed at determining lower and upper bounds for the optimal value of
the objective function. If the integer variables from the set .# are allowed
to be continuous, then the continuous solution to the appropriate continuous
problem gives the value of objective function F, which is upper bound
to the optimal value F* of objective function of mixed integer problem.
A feasible solution to the integer problem can be obtained from the con-
tinuous solution by dropping fractional parts of those variables which belong
to .7. Thus, value F' computed in the step 2 is the lower bound to the
optimal value of the integer problem, ie. F'< F* < F. But we desire to
have value F* being so close to F as it is possible without no violating
any constraints of the problem. Hence, if the optimal value of the objective
function for the integer problem would have been greater than F', then
all vaiziables nes should be equal to |x,]+1. But f,([x,])+1 is greater
than F. So we have to check if the value of variables from the set %
should be [x,] or |x,]+1. Using (5) we determine x, for ne.# such that
it is possible to attain more than F'. But this way computed solution X,
ne. |’ may not be feasible. That is why we next calculate the smallest
possible sums of allocations so that all integer constraints are satisfied and
the value of objective function is at least F' for ne.l. These sums are
denoted h; in the algorithm and are determined for all constraints re2,
using the formula (6). The set #,. re# consists of those variables of .#
for which f, (x;,) = F' and #.< %,. To obtain a solution with the objective
function greater than F’, each variable in .# = | ) #, has to be increased

resf
by 1. This will result in increase of the sum of allocations from the
value h, to the value h.+|#,|, re#. Thus, h.+| /#,| are the smallest sums
possible such that all variables ne.# can be set so that their tradeoff
‘function values are greater than F’, while all continuous variables ne®
have tradeoff function values equal to F', ie. f,(x;)=F for all ne%.
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Hence if there exists at least one constraint re# such that h.+|#,| > h,
then x¥ =x), ne [ is an optimal solution because it is not possible to
gain more than F' (see Step 3). If h.+|#,|=h, for at least one reZ#,
while for all re# the inequalities h.+| #,|<h, hold and the set of
continuous variables is not empty % # 0, then xj* = x,, ne. | is also optimal
solution, because the continuous variables ne% cannot be increased, without
violating constraints, so that their tradeoff function values are greater than F’,
despite the fact that the integer variables can be increased to obtain greater
function values than F’. Of course, if ¥ # 0 and h.+| #,|=h,, then the
variables from the set « can be increased by 1. Thus the optimal solution is
x¥=x,+1 for ne # and xf = x;, for ne |"— # (Step 4). If none of these
cases is valid it means that h,+|#,|<h, for all re# and obviously
the objective function is greater than F’ and optimal values of variables
in % are x,+1. This means that variables from . can be eliminated
from the old problem and the limits h., on sum of allocations can be
reduced (Step 5). This new problem has less number of integer variables.
The whole solution procedure is repeated for new problems formed this way
until the set .# is empty. By this process all optimal allocations x¥,
ne |" are obtained one after the other. The process is finite because
the set .# is finite and each iteration removes at least one variable
from .7.

We have shown that the algorithm is finite and determines the
optimal allocation x¥, ne | with the optimal value of the problem being
F* = min {f,(x})},

ne |

such that F* < F. This ends the proof. [ ]

The computational complexity of the Algorithm 2 is easily evaluated
using the observation that is depends on the maximum number of Algorithm 1
calls. This number is at most N. Thus the computational complexity of
Algorithm 2 is O (N? Q) because all other steps of this algorithm are O (N)
or O(R). It is worthwhile to note that is computational complexity does
not depend on max {h,}, re#.

4. Concluding remarks

Brown [1] considers more types of functions f,. For linear case he
develops a little bit simpler algorithm than for non-linear case because
the solution of the equation in Step 4 can be derived as a closed-form
expression. Since Algorithm 1 can be also applied to linear functions the
modification of Linear Algorithm [1] is omitted herein.

The modifications of Algorithm 1 and 2 for piecewise linear functions,
piecewise nonlinear functions and any functions will be obvious when
reader confronts Brown’s paper.
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Minimaksowe zadanie rozdzialu zasobow z wieloma ograniczeniami

W pracy przedstawiono rozwiniecie problemu Browna rozdzialu zasobdéw pomiedzy
okreslong ilo§¢ zmiennych w celu maksymalizacji najmniejszej z wartosci funkcji celu odpo-
wiadajacych tym zmiennym. Brown rozwaza przypadek z jednym ograniczeniem na sume
ilosci przydzielonego zasobu. Natomiast algorytmy opisane w pracy dopuszczaja dowolng
skoriczong liczbe tego typu ograniczen. Opracowano je dla zmiennych ciaglych oraz dyskret-
nych. Zalaczono przyklad ilustrujacy jeden z opisanych algorytmdw.

MunuMakcHas 3aJa4a pacupe/esieHHsi PeCypcoB €O MHOMHMH OF pAHHYEHHIMH

B pabote mnpencraeieHo pa3BuTHe 3aja4yd bpayHa pacnpeneneHns pecypcoB MexIy oIpe-
JIENIEHHBIM YMCJIOM NEPEMEHHBIX C LeJbI0 MAaKCHMH3alHH HAMMEHbINeH U3 BeJMuMH (GYHKIHK
UeIH, COOTBETCTBYIOLIMX 3THM TepeMeHHbIM. BpayH paccmaTpupaeT ciyuail ¢ omHMM orpa-
HHYEHHEM 10 CyMMe KOJM4ECTBa OTBEJEHHBIX pecypcoB. B CcBOK ouepeap anropuTMBl,
ommcanHpEe B paboTe, OMYCKAIOT MPOH3BOJLHOE KOHEMHOE YHMCIO 3TOTO THNA OrpAHMYEHHIA.
Onu paspaboTadsl Ui HENPEPHIBHBIX M JHCKPETHBIX nepemeHHbIX. [lpuinaraeTcs npumep,
MUTIOCTPHPYIONIAH OANH M3 ONHMCAHHBIX AJITOPHTMOB.



