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A sufficient optimality condition for a general nondifferentiable programming problem
involving a locally Lipschitzian function is presented. It is similar to the second-order sufficiency
theorems of R.W. Chaney, but also includes conditions of order higher than two. Contrary to
Chaney’s results, our theorem is stated in terms of usual (not generalized) gradients of the given
function at these points at which they exist. A comparison with the classical higher-order sufficient
conditions is also given.
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1. Introduction

During the last few years, a considerable attention has been paid to
higher-order optimality conditions in nonsmooth optimization. In particular,
Chaney [2], [3] proved severial variants of sufficient optimality conditions for
nondifferentiable programming problems in the n-dimensional space R". All
those conditions are formulated in terms of certain limits involving generalized
gradients a locally Lipschitzian function connected with the given problem.
Thus, to apply any of Chaney’s results, one needs to know the generalized
gradients of the relevant function at all points of same neighbourhood of the
point being examined (or, at all points of the intersection of this neighbourhood
and a certain cone). In turn, the generalized gradient (in the sense of Clarke) can
be defined by means of limits of usual gradients. More precisely, given a locally
Lipschitzian function f . R" — R, we have, by [4, Theorem 2.5.1],

af(x)= co{lim Vf{x, ) | x, — x and x, ¢ Qr for all &}, (1.1)
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where *“co” denotes the convex hull and Q, is the set of points at which f fails to
be differentiable (by Rademacher’s theorem, Q, is of Lebesgue measure zero).

It is natural to ask whether Chaney’s results can be reformulated so as to
replace the generalized gradients occurring in the sufficient conditions by usual
gradients calculated only at those points at which the function considered is
differentiable. The aim of the present paper is to give, at least partially, a positive
answer to this question.

Our main result is presented in § 2. Although in the proof we apply clarke’s
theory of generalized gradients the theorem itself does not contain any notion
pertaining to that theory. In § 3 we derive another sufficiency theorem which is
formulated in terms of some notions used by Chaney [3] and provides sufficient
conditions for a point to be a stable local minimum. We also show that this result
implies one particular case of Chaney’s general sufficiency theorem [3, Theorem
2.5]. Finally, in § 4 we show that some classical higher-order sufficiency theorems
for differentiable programming problems follow from our results.

Let us now set some notation. Given x and y in R" and £> 0, we denote by |x]|
the Euclidean norm of x, by x - y the usual inner product of x and y, and by B(x,
¢) the set {zeR"| |z—x |<€}. If x#y, we denote by ]x, y[ the open line segment
joining x and y (the same notation is used for open intervals in R = Ru { £ o0 }).

In the paper we make use of some notions and theorems of nonsmooth
analysis which can be found in [4, Chapter 2]. In particular, if fis a locally
Lipschitzian function, we define

fo(x;d):=Tlim sup A7 (f (v + Zd) — f ().
y—x; 410

By [ 4, Proposition 2.1.2], we have
f°(x,;d) = max {w-d|wedf(x)} forallde R". (1.2)

We also use the notation

£ xid:=1lim A7 (f(x + Ad) — f(x)
Al0

provided this limit exists. We recall that f* is said to be subdifferentiably regular
at xif f'(x ; d) exist forallde R", and f (x ;) =f° (x; *).

If S is a subset of R", we denote by K (S, x) the contingent cone to S at x. It
may be defined in some equivalent manners. We shall use the following
definition: d € K (S, x) if and only if there exist sequences {x,} in S and {4 } of
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positive numbers, such that {x } converges to x and {4 (x, — x)} converges to d.
(Let us note that K(S, x) is empty whenever x lies outside the closure of S .) For
other characterizations of the contingent cone and some of its properties, see [10,
pp. 13-16].

Let d be a unit vector in R". We shall say that a sequence {x } converges to x
in the direction d if {xk} converges to x and {(xk — x) /| x — x|} converges
to d. (Thus, a unit vector d belongs to K (S, x) if and only if there exists
a sequence {x } in S converging to x in the direction d .)

A locally Lipschitzian function fis said to be semismooth at x if the sequence
{v, - d} is always convergent whenever {x } and {v } are sequences such that {x }
converges to x in the direction d, and vE 6 fix) for all k. (This definition is taken
from [3] and is easily seen to be equivalent to the original definition of Mifflin [9].)

2. The main result

In this section we assume that S and W are two subsets of R", the set W is
open and f: W—R is an extended real-valued function. Next, we assume that

X e SnW, and f (x) is finite. Similarly as in [3], we consider the following
optimization problem:

minimize f(x) subject to x € SN W. P)

We shall say that X is an isolated local solution of problem (P) if there exists
a neighbourhood ¥V of X such that f(x) > f(X) forall xe S n V, x #X.
We can now formulate our main result. Let us define

E;: = {xeW|x # X and f(x)< f(¥)}. 2.1)

THEOREM 2.1. Suppose that one of the two conditions holds:
(i) The cone C : =K(S, X)nK(E, , X) contains no nonzero element.
(i) C contains nonzero elements and there exists a neighbourhood U of
X (UcW)
and two functions: g : U—-R and § : U\ {x}—]0, + o[, such that
(a) g is Lipschitzian, g(X) = fix) and g(x) < f(x) for all xeSnU,
(b)  is continuous and we have

lim sup Vg(x,)y¥(x, — X) > 0

whenever {x,} is a sequence in U such that g is differentiable at x, for all k and {x, )}
converges to X in some direction d € C.

Then X is an isolated local solution of problem (P).

Before proceeding to the proof of the theorem, let us give some comments.
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REMARKS2.2. (a) Under some regularity assuptions on f, the cone K(E;, X) can
be characterized in terms of the generalized directional derivative f°(x ; - ) (see [4,
Theorems 2.4.7 and 2.9.10]). However, in the general case, this cone may be
difficult to determine. Therefore, it may prove convenient to find a larger cone
for which the theorem still holds, and which can be calculated more easily. An
example of such a cone is the cone L(f, X) defined in § 3.

(b) The role of the function g in Theorem 2.1 is the same as in [3, Theorem
2.5]. As Chaney noticed, g may be chosen either to be f itself (if f is locally
Lipschitzian), or a certain Lagrangian associated with (P) (see § 4) or a function
whose generalized gradient is simpler than that of f.

(¢) The function i may be chosen arbitrarily, but the most natural way is to

choose Y(x) = |x —Xx|™" where m is any positive integer. We shall show in
§ 4 that this choice of | leads to a generalization of the classical m-th order
sufficient conditions. For the case when S is convex, a sufficient condition
involving a general function y of this type was proved in [12, § 5].
Proof of theorem 2.1 Suppose that the desired conclusion is false. Then
there exist a sequence {z,} in SNnW converging to x, such that z, # X and
flz) < AIX) for all k. By passing to a subsequence, we may assume that {z,}
converges 1o X in some direction d. Since z,eSnE, for all k, we infer that deC.
If (i) holds, then we reach a contradiction, Hence suppose that (ii) holds. By
assumption (a), we have g(z,)<f(z,) <fx) = g(¥) for all k. According to the
mean value therem of Lebourg [4, Theorem 2.3.7.], for every k, there exist u,€] X,
z,[ and v,edg(u,) such that g(X) — g(z,) = v, - (X — z,). Hence, by (1.2) , we
obtain 0<g(X) — g(z,) <g°(u;X — z,). Since g°(u,;) is positively homogeneous
and

X—u = A(X — z,) for some 1,>0, (2.2)

we have Y(u)g" (X —u) = A, W(u)g (u:X — z,)=0. By passing again to
subsequences, we may assume that the limit

lim Y (u,) g°(u; X — ) 20 (2.3)
exists (it may either be finite or equal to +o0). By (2.2), we have
(ux — X) Ny — X)| = (zx— X) /|zi — X| for all k, and so, {u;} converges to X in the
direction d.

For every k, let us denote by Z(u,) the set of all limits of the form
lim V g(x;,,) where {xk, ,} ,0._O| is a sequence converging to u,, such that g is
r— 00

differentiable at x,,, for all . In view of (1.1), we have dg(x,) = co Z(u,). Then, it
is easy to verify that max {w - y|lwedg(y,)} = max {w - ylweZ(u,)} for each
yeR"(the latter maximum exists since Z(x, ) is nonempty and compact ). It follows
from this equality and from (1.2) that, for every k, there exists w,eZ(x,) such that
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g (U X—uy) = Wi (X — uy). (2.4)

Let K> 0 be the Lipschitz constant for g on U; then |Vg(x)|< K whenever
xeU and g is differentiable at x. Next, let us note that, for every &, the function

k_xl

4 of ‘x-—f u
Pp(x): = HJ\‘.—.?_Cl_lu

(2.5)

k_}”

is continuous on some neighbourhood of #,, and ¢,(,) = 0. Hence, for every k,
we can choose a positive number J, such that

@.(x)<1/k for all xeB(u,, d,)<U)\ {x}. (2.6)
Since y is also continuous, the number M;: = sup {Y(x) | xeB (i, J,)} is finite.

Now, using the fact that w,eZ(u,) and again the continuity of i, we find that, for
every k, there exists a point x, satisfying the conditions:

|, — x| < min (0, |X — |/ KM,, 1/k); 2.9
g is differentiable at x, and
(2.8)
|Vg(x,) —wl < VM,
[W(u,)— w(x,)| < Vvl provided w, # 0. (2.9)

It follows from (2.5) — (2.7) that the sequences {(x, — X)/|x, — X|} and {(z, — X)
/lu, — X|} have the same limit . Using the third estimate in (2.7), we see that {x,}
converges to X. We have thus verified that {x,} converges to X in the direction d.

Applying successively (2.4) and (2.7) — (2.9), we obtain

lg(x) - Y(x) (X — xp) — Ywy) &° (s X — )l = W(x)Ve(xy) - X — x;) —

= Yluwy - (X — w)l = YOe)VE(x) - (e — x) + (Vglx) — wy) - X — uy)] —
= (W) — Y(x) we - (X — )l

< MK | — x,] + [Vg(x) — willx — w4 ]] + W) — (] [X — 1y

<3X—ul —0.
k=0
This and (2.3) allow us to conclude that

lim Vg(x,) - ¥(x) (x, —X) = —lim Vg(xp) - ¥(x) (¥ — x) < 0,

which contradicts assumption (b).
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3. Sufficient conditions for the stability of minimum points

Throughout this section, S, W and X will be as in §2, but /W — R will be
locally Lipschitzian. We shall now prove another sufficiency theorem in which
both the assumptions and the conclusion are somewhat stronger than in
Theorem 2.1. This result can be derived from Theorem 2.1 if we take
Y(x) = |x — X| “™where m>2isa positive integer. In this case, we can prove not
only sufficient conditions for X to be an isolated local solution of problem (P),
but also to be an isolated local minimum with order m of (P) (using the
terminology of [1], [13]). This, in turn, allows us to infer that the minimum point
is stable in the following sense: all functions (of a suitable class) which are
sufficiently close to f have local minimum points relative to § within
a prescribed distance from X. A sufficient condition for stability in this sense has
been established by Hyers in [7], [8] and is formulated below in the fini-
te-dimensional setting.

THEOREM 3.1 (Hyers). Let p: [0, + oc[— R be a strictly increasing function with
p(0) = 0. Let E be a closed subset of R", let XeE, and let h : E — R be a function
such that

hix)—h(X)=p(x— X|) for all xeE. (3.1)

For a given £)0, let /1 : E— R be any lower semicontinuous function satisfying the
inequality |7 (x) — h (X)|<p () /2 for all xeENB(X, ¢). Then % has a minimum
value on EnB (X, ¢) which is taken on at an interior point of B (X, &).

The strengthening of assumptions in our next sufficiency theorem will consist
in replacing the cone K(E , X) by a larger cone L (f, X) introduced by Chaney in
[3]. Let us recall how it is defined: First, for a given unit vector din R", we define
3,/ (X) to be the set of all v in R" for each of which there exist sequences {x,} in
W and {v,} in R", such that {x,} converges to X in the direction 4, {v,} converges
to v, and v,edf (x,) for all k. Next, we define L (f; X) to be the set of all points
d where deR", |d| = 1, 120, and v, - d<0 for some v g0, f(X).

LEMMA 3.2.If f is locally Lipschitzian and E is defined by formula (2.1), then
K(E,. x) = L{f, %)

Proof. Suppose that d e K(E, X). Then there exist sequences {»:} in E; and
{4} of positive numbers, such thatx = lim y, and d = lim 4, (y, — X). By the
definition of E, we have y, # X and f(y,) <f(¥) for all k. Let us now consider

two cases: (i) |d] = 1and (ii) d = 0. We shall show that, in both cases, deL (f, X).
Case (i). We have lim |4, (y, — X)| = |d| = 1, and so,

V=X _ . A —X%X) _
e — | | A (¥ — %)

lim (3.2)

For every k, by Lebourg’s mean value theorem [4, Theorem 2.3.7], there exist
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w,elx,y,[ and vedf(u,) such that 0=>f(y,) — f(¥) = v, - (y — X). Inasmuch as
u, — X is a positive multiple of y, — X, we obtain from (3.2) that lim (i, — X)
S, — x| = d.

Thus, {u,} converges to X in the direction 4. Since the sequence {v} is
bounded in norm (cf. [4, Proposition 2.1.2 (a)], we may assume that it converges
to a point vedf(¥). Furthermore, v, d =lim v,- (3, — %) / [y, — X =
lim (f(y,) — f(%)) /|y, — XI<0, and so, deL(f, X).

Case (ii). By taking a subsequence, we may assume that {(y, — %)/ |y, — XI}
converges to a unit vector d, . Similarly as in case (i), we can prove that d L (f, X).
Hence d = 0 - deL(f, X).

REMARK 3.3. If f is semismooth at X, then ' (X,d) = v, - d whenever v,e0, f(X)
(see the proof of [2, Theorem 2.16]). Hence {deR"| ' (X;d)<0} = L(f,X) v {0}
(note that the set on the left always contains 0, whereas L (f,X) may be empty). If,
moreover, f is subdifferentiably regular at X, and 0¢df(x), then K(E, X)
is nonempty and K (E;, X) = {deR"| f°(X;d)<0} = L(f.X) by [4, Theorem 2.4.7].
However, if 0edf (X), the inclusion in Lemma 3.2 may be strict even for a smooth
f. For instance, let f: R—R be given by f(x) = x%, and let X = 0. Then
K(E;Xx) = @, while L(fX) = R.

THEOREM 3.4. Let f'be locally Lipschitzian on W, and let x<eSnW. Take any n=0.
Suppose that one of the two conditions holds:

(i) The cone D: = K(S,X) n L(f,X) contains no nonzero element.

(i1) D contains nonzero elements and there exist a positive integer m=2 and
a function g : U— R (where U is open and XeU < W) such that

" (a) g is Lipschitzian, g (X) = f(X) and g (x)<f(x) for all xeSnU,

(b) we have

lim sup Vg (x) - (x, —X)/|x, —X|™ ) n (3.3)
whenever {x,} is a sequence in U such that g is differentiable at x, for all k and {x, }

converges to X in some direction deD.
Then there exists ¢ ) 0 such that

fx)f(X)+ (p/m) |x—Xx|"forallxe SN B(xe), x #x. (34)

If, moreover, S is closed and py0, then any real valued lower semicontinuous
function f defined on S n B(X,e) and satisfying the inequality

[7(x) — £ ue™/ 2m for all xeSN B (.¢)
has a minimum value on S0\ B (X&) which is taken on at an interior point of B(X,g).

Proof.Definea functiongpon W by ¢ (x): = flx) — n(x) wheren(x): = (u/m)
|x — X| ™. We shall show that the assuumptions of Theorem 2.1 are satisfied with



14 M. STUDNIARSKI

f replaced by ¢. Since 7 is continuously differentiable, we have dn(x) = {Vn(x)}
for all x (cf. [4, Proposition 2.2.4]). Moreover, V n(x) = plx — X]""2 (x — X)
Hence, it is easy to verify (by using the well-known calculus rules for generalized.
gradients; cf. [4, p. 38]) that 0,0(X) = @,f(X) for all unit vectors d. Consequently,
we have

L (¢,%) = L (£X). (3.5)

Suppose that (i) holds. Then, by (3.5), the cone K{S,X)n L (¢,X) contains no
nonzero element. Applying Lemma 3.2 to the function ¢, we infer that
K(S,X)nK(E,,X) also contains no nonzero element. Thus, condition (i) of
Theorem 2.1 holds with f replaced by ¢.

Suppose now that (ii) holds, and let g : U— R be given by g(x) : = g(x) — n(x).
We shall verify that condition (ii) of Theorem 2.1 holds with Y(x) = |x — x| ™™
and with f and g replaced by ¢ and 2, respectively. Obviously, we have
2(¥) = ¢(x) and g(x) <o (x) for all xeSNU. Next, let {x,} be any sequence in
U such that g is differentiable at x, for all k£ and {x,} converges to X in some
direction deK (S, X)n K (E,,X). Then g is also differentiable at x; for all k. Using
Lemma 3.2 and equality (3.5), we find that deD, and so, by our assumption,
inequality (3.3) holds. Hence

lim sup Vg(x,) - (x, — %)/ |x, — X| ™ =
lim sup [Vg () — i, — X "2 (x5, =) * (5 — %)/, — ¥ ™ =
lim sup Vg (x,) - (x, — %)/ |x, —X| ™ — p)0.

Thus, we can apply Theorem 2.1 to the function ¢. We get that there exists
&> 0 such that @(x) > @(X) for all xeSNnB(X,£), x # X. Hence (3.4) holds. The
final statement of the theorem follows directly from (3.4) and Theorem 3.1
(in which one should take p(¢) = ptm, E =S n B(X,s) and h = f|S
N B(x,.e). W
REMARK 3.5. For m = 2, Theorem 3.4 implies a particular case of a general
second-order sufficiency theorem due to Chaney [3, Theorem 2.5], namely, the
case where C(d*) = {td*| t > 0} for all @*. To see this, let us first observe that,
with this choice for C(d*), condition (b) (iv) of [3, Theorem 2.5] may be omitted.
In fact, if {x,}, {w,} and d = d&* satisfy conditions (b) (i) — (b) (iii) of Chaney’s
theorem, then the sequence {w, } is bounded (cf. [4, Proposition 2.1.2 (a)]). Hence,
there exists a subsequence of {w,} converging to some w € 8, g(x*). By
assumption (a) of Chaney’s theorem, we have w - d = 0, and so, (b) (iv) holds for
this subsequence. Therefore, if assumption (b) of [3, Theorem 2.5] is valid as
stated, it continues to be valid when condition (iv) is deleted. Next, let us note
that assumption (b) of Theorem 3.4 is weaker than assumption (b) of [3, Theorem
2.5] with the restrictions (i) — (iii) only. This follows from the fact that, in view of
(1.1), we have Vg (x) edg (x) whenever g is differentiable at 'x.
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4. The case of differentiable functions

We shall consider here problem (P) in the case when S is given by
S={xeW|g,(x) <0,iel g,(x) =0,jelJ} (4.1)

where 7 and J are given finite sets and W is, as before, an open subset of R". Let
m =2 be a fixed integer. We shall assume that the functions fand g;,ie I U J, are
m times (Frechet) differentiable on W. The aim of this section is to derive the
classical higher-order sufficient optimality conditions from Theorem 3.4.

We denote the r-th differential of / at x € W with the incerement d by /'
(x)d" (wherer < mandd’ = (d,....d)e(R")"). For a given x € S n W, we denote
by I(x) the set {i e I| g, (x) = 0}.

THEOREM 4.1. Let X € S n W. Suppose that one of the two conditions holds:

(i) There is no solution d to the system

Vf(x)-d<0,Vg,(xX)-d<0foriel(X),
(4.2)
Vgi(x)-d=0forjelJ d# 0.

(it) The set of solutions to (4.2) is nonempty and there exist multipliers A,
iel v J, such that

(@) A4 =0and A, g,(X) = 0foriel;

(b) the Lagrangian L : = f+ Z A:g: satisfies the following conditions:

ieluJ
LX) =0forr = 1,...m—1, (4.3)
L™ (x)d™ > 0 for all d satisfying (4.2). (4.4)

Then there exist B > 0 and a neighbourhood V of X, such that
fX)>f)+Plx—Xx|mforallxe SnV,x # X
Proof. Since fis continuously differentiable, we have df(x) = {Vf(x)} for all
xe W, and so, L(f,X) = {de R"| Vf(X) - d < 0}. Next, it can easily be shown (cf.
[6, pp. 221-222]) that K (S.X) is contained in the set of directions d satisfying the
conditions Vg, (X) - d < 0 for i € I(X) and Vg,(X) = 0 for j e J. Suppose that (i)
holds. Then it follows from the inclusions just stated that condition (i) of
Theorem 3.4 is also fulfilled. In this case, we can always choose u » 0 in Theorem
3.4, and so, the desired conclusion holds.

Suppose now that (ii) is true. In order to verify condition (ii) of Theorem 3.4,
we put U = Wand g = L. Since the set of all unit vectors d satisfying (4.2) is
nonempty and compact, the function d — L™ (X) d™/(m— 1)! attains its minimal
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value y on this set. In view of (4.4), we have y ) 0. Let us choose y in Theorem 3.4
to be an arbitrary number in [0, y]. It follows from (4.1) and assumption (a) of the
present theorem that L (X) = f(X) and L(x) < f(x) for all xe S n W. Suppose
further that {x, } is a sequence in W converging to X in some direction d€ K (S,X)
N L(f,X). Then d is a unit vector satisfying (4.2), and so,

L@ d"/(m—1)1> (4.5)

Applying Taylor’s formula to the mapping VL : W — R" and using (4.3), we
obtain that, for each x € W,

VL(x) = (V)™ DX (x—X) " Vm—1) !+ |x —X """ R(x)

where lim R(x) = 0. Hence
X=X

VL(x) - (x —%/|x —% ™

1 e | X=X o : X=X
~@m—nir (Ix—fl) ) (lx—il)'

Substituting x, for x and using the fact that {(x, — X)/|x, — X|} converges to 4,
we get

lim VL (x,) - (¢, — ¥)/Jx; — X ™ = L™ Z)d"/(m—1) !

This and (4.5) give us inequality (3.3) withg = L. Applying Theorem 3.4, we get
the desired conclusion.

REMARK 4.2. Form = 2, the assumptions of Theorem 4.1 are the same as in [5,
Theorem 3.2], but the conclusion of our theorem is slightly stronger. Suppose
now that X € S n W is a point at which the Karush-Kuhn-Tucker necessary
optimality conditions for problem (P) are satisfied, i.e. there exist multipliers 4;,
ie I'u J, satisfying condition (ii) (&) of Theorem 4.1, such that VL (x) = 0. Then,
by virtue of [5, Theorem 3.5], conditions (4.2) are equivalent to the following
ones:

Vg, (x)d < Oforiel(x)/I¥,
Vg () d=0foriel*uJ,d#0
where I* : = {i e I|A; ) 0. This shows that Theorem 4.1 generalizes both [6,

Theorem 7.4] and the theorem proved in [l11]. Moreover, if the Ka-
rush-Kuhn-Tucker optimality conditions hold, then the inequality V/(X) - d
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< 01in (4.2) can be replaced by the equality V/(X) - d = 0. This can be deduced
from the proof of [5, Theorem 3.3].

Acknowledgment. The author wishes to thank D. Zagrodny (Lodz) for his
helpful suggestion concerning the proof of Theorem 3.4.
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Warunki dostateczne optymalnosci w terminach zwyklych gradientéw dla niegladkich zadan pro-
gramowania matematycznego

W pracy przedstawiono warunki dostateczne optymalnosci dla ogolnego niegladkiego zadania
programowania matematycznego, w ktorym funkcja minimalizowana jest lokalnie lipschitzowska.
Twierdzenia te sa podobne do znanych wynikéw R.W. Chaney’a. ale zawierajg takze warunki
dostateczne dowolnego rzgdu. W odréoznieniu od wynikow Chaney'a. w sformulowaniach przed-
stawionych tu twierdzen wystgpuja tylko zwykle (nie uogolnione) gradienty funkcji, obliczone w tych
punktach, w ktorych istnieja.
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,I[OCT ATOYHBIE YCJIOBHA OIITHMA/ILHOCTH B TEPMHEHAX O0BLIKHOBEHNBIX TpagHEeHTOR
JJIM HerJIaAKHX 3a/1a4 MaTeMaTHUeCKoro uporpamMHupoBaHus

B paboTe npemcTaBiaeHsl JOCTATOYHEIE YCIOBHA ONTHMANBHOCTH ANg 001el Hernaakon 3a1agn
MATEMATHYECKOTO NPOTPaMHPOBAHHS, B KOTCpPOH MHHUMHU3HpYyemas (YHKIHS IOKaJIbHO
JIMITITANEBA. DTH TeOPEMBI MOXOKH HA M3BecTHRIC pesynsraTel P.B. YeHes, HO OHEH BRIIOMAIOT
TAKXKE [OCTATOYHBIC YCIOBHS IPOU3BOILHOTO moOpsAfka. B oTimvme oT pesyibsTatoB Uenes,
B (OpMYIHPOBKaX MPENCTABICHHBEIX 3[eCh TEOPEM YYACTBYIOT TOJBKO OOLIKHOBEHHEIE HE
oBobmieHnbIe TPaHeHT I GYHKIHI, BRYUCICHHBIE B TEX TOYKAX, B KOTOPHIX OHH CYIECTBYIOT.




