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1. Introduction 

During the last few years, a considerable attention has been paid to 
higher-order optimality conditions in nonsmooth optimization. In particular, 
Chaney [2], [3) proved severial variants of sufficient optimality conditions for 
nondifferentiable programming problems in the n-dimensional space R ". All 
those conditions are formulated in terms of certain limits involving generalized 
gradients a locally Lipschitzian function connected with the given problem. 
Thus, to apply any. of Chaney's results, one needs to know the generalized 
gradients of the relevant function at all points of same neighbourhood of the 
point being examined (or, at all points of the intersection of this neighbourhood 
and a certain cone). In turn, the generalized gradient (in the sense of Clarke) can 
be defined by means of limits of usual gradients. More precisely, given a locally 
Lipschi.tzian functionf.: R" -+ R, we have, by [4, Theorem 2.5.1], 

•:-

' 8f(x) = co{lim Vf(xk) I xk-+ x and xk i QJ fo.r all k}, (1.1) 
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where "eo" denotes the convex hull and 0 1 is the set of points at whichf fails to 
be differentiable (by Rademacher's theorem, 0 1 is of Lebesgue measure zero). 

It is natural to ask whether Chaney's results can be reformulated so as to 
replace the generalized gradients occurring in the sufficient conditions by usual 
gradients calculated only at Jhose points at which the function considered is 
differentiable. The aim of the present paper is to give, at least partially, a positive 
answer to this question. 

Our main result is presented in § 2. Although in the proof we apply clarke's 
theory of generalized gradients the theorem itself does not contain any notion 
pertaining to that theory. In§ 3 we derive another sufficiency theorem which is 
formulated in terms of some notions used by Chaney [3] and provides sufficient 
conditions for a point to be a stable local minimum. We also show that this result 
implies one particular case of Chaney's general sufficiency theorem [3, Theorem 
2.5]. Finally, in§ 4 we show that some classical higher-order sufficiency theorems 
for differentiable programming problems follow from our results. 

Let us now set some notation. Given x and y in R" and e > 0, we denote by lxl 
the Euclidean norm of x, by x · y the usual inner product of x ann y , and by B (x, 
e) the set {zER"I Iz - x I :;:;;;E}. If x:;ob y, we denote by ]x, y[the open line segment 
joining x and y (the same notation is used for open intervals in R = R u { ± ro} ). 

In the paper we make use of some notions and theorems of nonsmooth 
analysis which can be found in [4, Chapter 2] . In particular, if f is a locally 
Lipschitzian function, we define 

r (x ; d): = lim sup 2- 1 (f(y +}"d)- f(y)). 
y~x; 210 

By [ 4, Proposition 2.1.2], we have 

f 0 (X ; d) = max { w 0 d I w E a f(x)} for all dE RI! 0 (1.2) 

We also use the notation 

f' (x; d): = lim 2- 1 (f(x + 2d) - f(x)) 
210 

provided this limit exists. We recall thatf is said to be subdifferentiably regular 
at x if f'(x; d) exist for all dE R", andf'(x; ·) = f 0 (x;-). 

IfS is a subset of R", we denote by K (S, x) the contingent cone to Sat x. It 
may be defined in some equivalent manners. We shall use the following 
definition: dE K (S, x) if and only if there exist sequences { xk} in S and { 2) of 
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positive numbers, such that { x } converges to x and {A. (x - x)} converges to d. 
(Let us note that K(S, x) is empty whenever x lies outstde\he closure of S .) For 
other characterizations of the contingent cone and some of its properties, see [10, 
pp. 13-16]. 

Let dbe a unit vector in Rn. We shall say that a sequence {xk} converges to x 
in the direction d if {x} converges to x and {(x - x) I I x - xI} converges 
to d. (Thus, a unit ve~tor d belongs to K (S, \) if and ~nly if there exists 
a sequence {xk} in S converging to x in the direction d.) 

A locally Lipschitzian function/is said to be semismooth at x if the sequence 
{ v · d} is always convergent whenever {x } and { v } are sequences such that {x } 
coknverges toxin the direction d, and v E ~ f(x ) fo~ all k. (This definition is tak;n 
from [3] and is easily seen to be equival~nt to th'e original definition ofMifflin [9].) 

2. The main result 

In this section we assume that Sand Ware two subsets of Rn, the set W is 
open and f : W---+ R is an extended real-valued function. Next, we assume that 
:X E Sn W, and f (:X) is finite. Similarly as in [3], we consider the following 
optimization problem: 

minimize f(x) subject to x E Sn W. (P) 

We shall say that :X is an isolated local solution of problem (P) if there exists 
a neighbourhood V of :X such thatf(x) > f(x) for all x E S n V, x =l=x. 

We can now formulate our main result. Let us define 

E1 : = {xEW I x =I= :X andf(x) ~ f(x)}. (2.1) 

THEOREM 2.1. Suppose that one of the two conditions holds: 
(i) The cone C : = K(S, X)nK(E f , :X) contains no nonzero element. 
(ii) C contains nonzero elements and there exists a neighbourhood U of 
x (Uc W) 

and two functions: g : U---+ R and 1/1 : U \ {:X}---+ ]0, + oo [ , such that 
(a) g is Lipschitzian, g(x) = f(X) and g(x) ~ f(x) for all xESn U; 
(b) ljJ is continuous and we have 

whenever { xk} is a sequence in U such that g is differentiable at xkfor all k and { xk} 
converges to :X in some direction d E C. 

Then :X is an isolated local solution of problem ( P). 
Before proceeding to the proof of the theorem, let us give some comments. 
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REMARKS 2.2. (a) Under some regularity assuptions on.f, the cone K(E1 , :X) can 
be characterized in terms of the generalized directional derivativef'(x; ·)(see [4, 
Theorems 2.4.7 and 2.9.10]). However, in the general case, this cone may be 
difficult to determine. Therefore, it may prove convenient to find a larger cone 
for which the theorem still holds, and which can be calculated more easily. An 
example of such a cone is the cone L(j, .X) defined in § 3. 

(b) The role of the function gin Theorem 2.1 is the same as in [3, Theorem 
2.5]. As Chaney noticed, g may be chosen either to be f itself (if f is locally 
Lipschitzian), or a certain Lagrangian associated with (P) (see§ 4) or a function 
whose generalized gradient is simpler than that off 

(c) The function t/1 may be chosen arbitrarily, but the most natural way is to 
choose t/J(x) = lx - :XI-m where m is any positive integer. We shall show in 
§ 4 that this choice of t/1 leads to a generalization of the classical m-th order 
sufficient conditions. For the case when S is convex, a sufficient condition 
involving a general function t/1 of this type was proved in [12, § 5]. 
P r o o f o f t h eo r em 2.1 Suppose that the desired conclusion is false. Then 
there exist a sequence {zk} in Sn W converging to x, such that zk =I= .X and 
f(zk) ~ .f(.X) for all k. By passing to a subsequence, we may assume that {zk} 
converges toxin some direction d. Since zkESnE1 for all k, we infer that dEC. 
If (i) holds, then we reach a contradiction, Hence suppose that (ii) holds. By 
assumption (a), we have g(zk) ~j(zk) ~f(x) = g(x) for all k. According to the 
mean value therem ofLebourg [4, Theorem 2.3.7.], for every k, there exist ukE] x, 
zk[ and vkEog(uk) such that g(x) - g(zk) = vk · (x - zk) . Hence, by (1.2) , we 
obtain 0 ~g(x) - g(zk) ~go(uk;x - zk). Since go(uk;) is positively homogeneous 
and 

(2.2) 

we have t/J(uk)g0 (uk;x - uk) = .Ak t/J(uk)go(uk;x - zk)::? 0. By passmg agam to 
subsequences, we may assume that the limit 

(2.3) 

exists (it may either be finite or equal to + oo ). By (2.2), we have 
(uk - x)l]uk- :X) I = (zk - x) l lzk- :XI for all k, and so, {uk} converges to X in the 
direction d. 

For every k, let us denote by Z(uk) the set of all limits of the form 

lim V g(xb ,) where { xb,} ,.a:!1 is a sequeu'ce converging to uk, such that g is 
/'--> 00 

differentiable at xk,r for all r. In view of (1.1 ), we have og(uk) = CO Z(uk). Then, it 
is easy to verify that max { w · ylwEog(uk)} = max { w · ylwEZ(uk)} for each 
yc:Rn(the latter maximum exists since Z(uk) is nonempty and compact). It follows 
from this equality and from (1.2) that, for every k, there exists wkEZ(uk) such that 
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(2.4) 

Let K>O be the Lipschitz constant for g on U; then IVg(x)I~K whenever 
xEU and g is differentiable at x. Next, let us note that, for every k, the function 

. X - X Uk- X 

I 
- -1 

cpdx): = lx -:XI- luk - xl (2.5) 

is continuous on some neighbourhood of uk, and cpk(uk) = 0. Hence, for every k, 
we can choose a positive number 1\ such that 

(2.6) 

Since !/! is also continuous, the number Mk: = sup { !/J(x) I xEB (uk, <\)} is finite. 
Now, using the fact that wkEZ(uk) and again the continuity of!/!, we find that, for 
every k, there exists a point xk satisfying the conditions: 

(2.7) 

g is differentiable at. xk and 
(2.8) 

(2.9) 

It follows from (2.5) _:_ (2.7) that the sequences { (xk ~ x)llxk -:XI} and { (uk - :X) 
lluk - :XI} have the same limit d. Using the third estimate in (2.7), we see that {xk} 
converges to :X. We have thus verified that {xk} converges to :X in the direction d. 

Applying successively (2.4) and (2.7)- (2.9), we obtain · 

lg(xk) · !/J(xk) (:X- xk) - !/J(uk) g0 (uk; :X- uk)l = 1!/J(xk)Vg(xk) · :X- xk) -

- !/J(uk)wk · (:X- uk)l = 1!/J(xk)[Vg(xk) · (uk- xk) + (Vg(xk)- w,J · :X- uk)] -

- (!/J(uk) - !/J(xk)) wk · (:X- uk)l 

~ Mk[K luk- xd + IVg(xk)- wdi:X- ukl] + 1!/J(uk) - !/J(xkii:X- ud 

~ 3 I :X - ukl - 0. 
k- oo 

This and (2.3) allow us to conclude that 

which contradicts assumption (b). 
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3. Sufficient conditions for the stability of minimum points 

Throughout this section, S, W and x will be as in § 2, but I W--+ R will be 
locally Lipschitzian. We shall now prove another sufficiency theorem in which 
both the assumptions and the · conclusion are somewhat stronger than in 
Theorem 2.1. This result can be derived from Theorem 2.1 if we take 
l/J(x) = lx - :XI -"'where m?= 2 is a positive integer. In this case, we can prove not 
only sufficient conditions for x to be an isolated local solution of problem (P), 
but also to be an isolated local minimum with order m of (P) (using the 
terminology of [1 ], [13]). This, in turn, allows us to infer that the minimum point 
is stable in the following sense: all functions (of a suitable class) which are 
sufficiently close to f have local minimum points relative to S within 
a prescribed distance from :X. A sufficient condition for stability in this sense has 
been established by Hyers in [7], [8] and is formulated below in the fini­
te-dimensional setting. 
THEOREM 3.1 (Hyers). Let p: [0, + eo[ -+R be a strictly increasing function with 
p (0) = 0. Let E be a closed subset of Rn, let XEE, and let h: E--+ R be a function 
such that 

h (x) - h (x) ?= p (lx- :XI) for all xEE. (3.1) 

For a given e )0, let h : E--+ R be any lower semicontinuous function satisfying the 
inequality lh(x)- h(x)J(p(e)/2 for all xEEnB(x, e). Then h has a minimum 
value on EnB(x, e) which is taken on at an interior point of B(x, e). 

The strengthening of assumptions in our next sufficiency theorem will consist 
in replacing the cone K (E 1 , :X) by a larger cone L if, :X) introduced by Chaney in 
[3]. Let us recall how it is defined: First, for a given unit vector din Rn, we define 
oaf(x) to be the set of all v in Rn for each of which there exist sequences { xk} in 
Wand { vk} in Rn, such that { xk} converges to x in the direction d, { vk} converges 
to v, and vkEof(xk) for all k . Next, we define L if, x) to be the set of all points 
d where dERn, Id! = 1, t;?:O, and V

0 
• d~O for some V

0
Eodf(x). 

LEMMA 3.2. Iff is locally Lipschitzian and E f is defined by formula (2.1 ), then 
K(Er, x) c Lif, x). 
Proof. Suppose that dE K(E f, x). Then there exist sequences {Yd in E1 and 
{ A,k} of positive numbers, such that x = lim yk and d = lim Ak (yk - :X). By the 
definition of E 1 , we have Yk i= x and f(yk) ~f(x) for all k. Let us now consider 
two cases: (i) Id! = 1 and (ii) d = 0. We shall show that, in both cases, dEL if, x). 

Case (i). We have lim IA-k(yk- :X) I = ldl = 1, and so, 

(3.2) 

For every k, by Lebourg's mean value theorem [4, Theorem 2.3.7], there exist 
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ukE]X,Yk[ and vkE8j(uk) such that 0 ;?f(yk) - f(.X) = vk · (yk - .X). Inasmuch as 
uk - .X is a positive multiple of Yk - .X, we obtain from (3.2) that lim (uk - .X) 

l luk- .XI = d. 
Thus, { uk} converges to .X in the direction d. Since the sequence { vk} is 

bounded in norm (cf. [4, Proposition 2.1.2 (a)], we may assume that it converges 
to a point V

0
E8af(.X). Furthermore, V0 • d =lim vk · (yk- .X) I IYk- .XI = 

lim (j(yk) - f(x)) I IYk - .XI~ 0, and so, dEL (j, .X). 

Case (ii). By taking a subsequence, we may assume that {(yk- x) I IYk- .XI} 
converges to a unit vector d

1
. Similarly as in case (i), we can prove that d1 EL (j, .X). 

Hence d = 0 · d1 EL (f, .X). 

REMARK 3.3. Ifj is semismooth at .X, thenj'(.X, d) = V0 • dwhenever V0 E8J(.X) 
(see the proof of[2, Theorem 2.16]). Hence {dERnlf'(.X;d)~O} = L(j, .X) u {0} 
(note that the set on the left always contains 0, whereas L (j;x) may be empty). If, 
moreover, f is subdifferentiably regular at .X, and 0 if; 8f(x) , then K(E1, .X) 
isnonemptyandK(E1,.X) = {dERniP(x;d)~O} = L(j,x)by[4, Theorem2.4.7]. 
However, if0E8j(.X), the inclusion in Lemma 3.2 may be strict even for a smooth 
f For instance, let f: R-+R be given by f(x) = x2

, and let .X = 0. Then 
K(E1,X) = 0, while L(j,x) = R . 

THEOREM 3.4. Letfbe locally Lipschitzian on W , and let xESn W .. Take any f.l~O. 
Suppose that one of the two conditions holds: 

(i) The coneD: = K(S,x) n L(j,x) contains no nonzero element. 
(ii) D contains nonzero elements and there exist a positive integer m~ 2 and 

afunction g: U-+R (where U is open and xEUc Jf') such that 
· (a) g is Lipschitzian, g(.X) = f(.X) and g(x)~f(x)for all xESnU; 

(b) we have. 

(3 .3) 

whenever {xk} is a sequence in U such that g is differentiable at xJor all k and { xk} 
converges to .X in some direction dED. 

Then there exists e ) 0 such that 

f(x))f(.X ) + (f.l,lm) lx - .XI m for all X E s n B (.X ,e), X =I= X. (3.4) 

If, moreover, S is closed and f.l)O, then any real valued lower semicontinuous 
function! defined on S n B(x,e) and satisfying the inequality 

lf(x)- f(x)l(f.1eml2mfor all xESnB(x,e) 

has a minimum value on SnB (.X,e) which is taken on at an interior point of B (:X,e). 
Proof . Define a function q> on W by q> (x): =fix)- 7J(x) where 7J(x): = (f.Li m) 
lx -.XI m. We shall show that the assuumptions of Theorem 2.1 are satisfied with 
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f replaced by cp. Since 11 is continuously differentiable, we have 817(x) = {V17(x)} 
for all x (cf. [4, Proposition 2.2.4]) . Moreover, V 17(x) = plx - X]m -z (x - .X) 
Hence, it is easy to verify (by using the well-known calculus rules for generalized 
gradients; cf. [4, p. 38]) that 8dcp(x) = 8df(x) for all unit vectors d. Consequently, 
we have 

L ( cp, x) = L (f,x). (3.5) 

Suppose that (i) holds. Then, by (3.5), the cone K(S,x)nL(cp,x) contains no 
nonzero element. Applying Lemma 3.2 to the function cp , we infer that 
K(S,x)nK(E'fJ,X) also contains no nonzero element. Thus, condition (i) of 
Theorem 2.1 holds with f replaced by cp. 

Suppose now that (ii) holds, and let g: U-+ R be given by g(x): = g(x) - 17(x). 
We shall verify that condition (ii) of Theorem 2.1 holds with 1/J(x) = lx - x l -m 

and with f and g replaced by cp and g, respectively. Obviously, we have 
g(x) = cp(X) and g(x)~cp(x) for all xESnU. Next, let {xk} be any sequence in 
U such that g is differentiable at xk for all k and {xk} converges toxin some 
direction dEK(S,x)nK(E<{J,x). Then g is also differentiable at xk for all k . Using 
Lemma 3.2 and equality (3.5), we find that dED, and so, by our assumption, 
inequality (3.3) holds . Hence 

lim sup Vg(xk) · (xk- X) l lxk- xl m = 
= lim sup [Vg(xk)- plxk - xi m-z (xk - x)] · (xk - x) / lxk - xi m = 

= lim sup Vg(xk) · (xk- x)llxk -xl m - p)O. 

Thus, we can apply Theorem 2.1 to the function cp . We get that there exists 
e > 0 such that cp(x) > cp(x) for all xESnB (x,e), x =I= x. Hence (3.4) holds. The 
final statement of the theorem follows directly from (3.4) and Theorem 3.1 
(in which one should take p(t) = ptm/m, E = S n B(x,e) and h = f IS 
n B(x,e)). • 
REMARK 3.5. For m = 2, Theorem 3.4 implies a particular case of a general 
second-order sufficiency theorem due to Chaney [3, Theorem 2.5], namely, the 
case where C(d*) = {td*l t ;?: 0} for all d*. To see this, let us first observe that, 
with this choice for C(d*), condition (b) (iv) of[3, Theorem 2.5] may be omitted. 
In fact, if { xk} , { wk} and d = d* satisfy conditions (b) (i) - (b) (iii) of Chaney's 
theorem, then the sequence { wk } is bounded (cf. [4, Proposition 2.1.2 (a)]) . Hence, 
there exists a subsequence of {wk} converging to some w E ad g(x*). By 
assumption (a) ofChaney's theorem, we have w · d;?: 0, and so, (b) (iv) holds for 
this subsequence. Therefore, if assumption (b) of [3 , Theorem 2.5] is valid as 
stated, it continues to be valid when condition (iv) is deleted. Next, let us note 
that assumption (b) of Theorem 3.4 is weaker than assumption (b) of[3, Theorem 
2.5] with the restrictions (i) - (iii) only. This follows from the fact that, in view of 
(1.1), we have Vg(x) E8g(x) whenever g is differentiable at ·x. 
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4. The case of differentiable functions 

We shall consider here problem (P) in the case when S is given by 

S = {x E Wl g;(x) ~ 0, i E1; gj(x) = O,j E J} (4.1) 

where I and J are given finite sets and W is, as before, an open subset of R". Let 
m ~ 2 be a fixed integer. We shall assume that the functions/and g;, i E I u J, are 
m times (Frechet) differentiable on W. The aim of this section is to derive the 
classical higher-order sufficient optimality conditions from Theorem 3.4. 

We denote the r-th differential off at x E W with the incerement d by J<r) 
(x) dr (where r ~ m and d' = (d, ... ,d) E (R") r). For a given x E S n W, we denote 
by /(x) the set {i E / I g; (x) = 0}. 
THEOREM 4.1. Let :X E S n W. Suppose that one of the two conditions holds: 

(i) There is no solution d to the system 

V f(x) · d ~ 0, Vg; (:X) · d ~ 0 fori E I (:X), 
(4.2) 

V gj (:X) · d = 0 for j E J, d =f. 0. 

(ii) The set of solutions to ( 4.2) is nonempty and there exist multipliers A;, 
i E I u J, such that 

(a) A; ~ 0 and A; g;(:X) = Ofor i E /; 

(b) the Lagrangian L : = f + L A;g; satisfies the following conditions: 

iEluJ 

L(rl(X) = Oforr = l, ... ,m-1, 

L<m) (X) dm ) 0 for all d satisfying ( 4.2). 

(4.3) 

(4.4) 

Then there exist f3 ) 0 and a neighbourhood V of :X, such that 
fix) ) /(:X) + f31x - :XI m for all X E S n V, X =f. :X. 
Proof. Since/is continuously differentiable, we have of(x) = {Vf(x)} for all 
x E W, and so, L (f,x) c {dE R"l Vf(:X) · d ~ 0}. Next, it can easily be shown (cf. 
[6, pp. 221-222]) that K(S,:X) is contained in the set of directions d satisfying the 
conditions V gi (X) · d ~ 0 for i E /(X) and V g /:X) = 0 for j E J. Suppose that (i) 
holds. Then it follows from the inclusions just stated that condition (i) of 
Theorem 3.4 is also fulfilled. In this case, we can always choose p) 0 in Theorem 
3.4, and so, the desired conclusion holds. 

Suppose now that (ii) is true. In order to verify condition (ii) of Theorem 3.4, 
we put U = Wand g = L. Since the set of all unit vectors d satisfying (4.2) is 
nonempty and compact, the function d --+L<m) (:X) dm/(m - 1)! attains its minimal 
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value y on this set. In view of (4.4), we have y) 0. Let us choose J.l in Theorem 3.4 
to be an arbitrary number in [0, y]. It follows from (4.1) and assumption (a) of the 
present theorem that L(x) = f(x) and L(x) ~ f(x) for all x E S n W. Suppose 
further that { xk} is a sequence in W converging toxin some direction dE K (S,x) 
n L (f, x). Then d is a unit vector satisfying (4.2), and so, 

(4.5) 

Applying Taylor's formula to the mapping VL: W -t Rn and using (4.3), we 
obtain that, for each x E W, 

VL(x) = (VL)<m-Il(x) (x- x) m-Y(m-l)! + lx- xi m-I R(x) 

where lim R(x) = 0. Hence 
X-tX 

VL(x) · (x- x)llx- xi m 

1 ( x - x )m ( x - x ) 
= (m-1) !L<m>(x) lx-xl +R(x)· lx-xl · 

Substituting x k for x and using the fact that {(xk- X)/ lxk - xl} converges to d, 
we get 

This and (4.5) give us inequality (3.3) with g = L. Applying Theorem 3.4, we get 
the desired conclusion. 
REMARK4.2. For m = 2, the assumptions of Theorem 4.1 are the same as in [5, 
Theorem 3.2], but the conclusion of our theorem is slightly stronger. Suppose 
now that x E S n W is a point at which the Karush-Kuhn-Tucker necessary 
optimality conditions for problem (P) are satisfied, i.e. there exist multipliers A;, 
i E I u J, satisfying condition (ii) (a) of Theorem 4.1, such that V L (X) = 0. Then, 
by virtue of [5, Theorem 3.5], conditions (4.2) are equivalent to the following 
ones: 

Vg; (x) · d ~ o fori E I(x)l I*, 

V gi (x) · d = 0 for i E I* u J , d =f. 0 

where I* : = {i E I I A; ) 0. This shows that Theorem 4.1 generalizes both [6, 
Theorem 7.4] and the theorem proved in [11]. Moreover, if the Ka­
rush-Kuhn-Tucker optimality conditions hold, then the inequality Vf(x) · d 
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~ 0 in (4.2) can be replaced by the equality Vf(x) d = 0. This can be deduced 
from the proof of [5, Theorem -3.5]. 

Acknowledgment. The author wishes to thank D. Zagrodny (Lodz) for his 
helpful suggestion concerning the proof of Theorem 3.4. 
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Warunki dostateczne optyma1nosci w terminach zwyklych gradientow dla niegladkich zadait pro­
gramowania matematycznego 

W pracy przedstawiono warunki dostateczne optymalnosci dla ogolnego nieg!adkiego zadania 
programowania matematycznego, w ktorym funkcja minimalizowana jest lokalnie lipschitzowska. 
Twierdzenia te Sl! podobne do znanych wynikow R.W. Chaney'a, ale zawieraj'! takze warunki 
dostateczne dowolnego rz~du. W odroznieniu od wynikow Chaney'a, w sformu!owaniach przed­
stawionych tu twierdzen wyst~pujl! tylko zwyk!e (nie uogolnione) gradienty funkcji, obliczone w tych 
punktach, w ktorych istniej<j. 
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)l:ocTaToqubie ycJIOBHB onTHMaJibHOCTH s TepMuuax oObiKHOBeuubiX rpa.IJ:HeHTOB 
.IJ:JIB uerJia.IJ:KHX 3a.IJ:aq MaTeMaTuqecKoro nporpaMuposauuB 

B pa60Te rrpe.L(CTaBJieHbl .L(OCTaToqHbie yCJIOBHH OIITHMaJihHOCTH ,L(JIH 06IlleH HerJia.L(KOH 3a.L(aqH 

MaTeMaTHqeCKOfO rrporpaMHpOBaHHH, B KOTOpOH MHHHMH3HpyeMaH ti>YHKI(HH JIOKaJibHO 

JIHIIIIIHI(eBa. 3TH TeopeMbi IIOXOlKH Ha H3BeCTHhie pe3yJihTaThl P.B. qeHeH, HO OHH BKJIIoqaiOT 

TaKJKe AOCTaToqHhie ycJIOBHH rrpoH3BOJihHoro rrop»AKa. B OTJIHqHe OT pe3yJihTaTOB qeHe», 

B clJopMyJIHpOBKaX rrpe.L(CTaBJieHHbiX 3,L(eCb TeOpeM yqaCTBYIOT TOJihKO 06hiKHOBeHHbie He 

0606IlleHHhie rpa.L(HeHTbl clJyHKI(HH, BbJqHCJieHHbie B TeX TOqKaX, B KOTOpb!X OHH CyllleCTBYIOT. 


