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1. Introduction 

The interest of scientists for supercomputers has grown in the last years as 
their availability has become a real fact: on the market there is now a great range 
of such machines with various form of parallelism. 

The advent of these machines, especially the vector ones, has had a great 
influence on scientific and engineering computation [21]. Certainly most of the 
work has been done in the field of linear algebra because of its extensive use in so 
many numerical areas. 

The field which we are particularly interested in is the one of nonlinear 
optimization because the real application that need to use the non/linear 
optimization algorithms usually prefer to avoid them in view of the high 
computation time often involved. 

The paper summarizes experiences we made in parallel optimization in the 
last years: We found particularly interesting some stochastic algorithms for 
global optimization [6, 7, 8, 9] and recent algorithms proposed by Dembo [16] 
and Han [24] in local optimization. 

2. The computing environment 

The machines which we used in our experiments are the Cray X-MP, the IBM 
4381-3 with attached FPS processors (APs), the CRA Y X-MP48 and IBM 3090 
VF. 
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The first mentioned IBM machine was a prototype very useful to test the first 
approach to parallel problems. In fact it had a parallel environment both in 
hardware (10 array processors PPS 164) and in software (VM / EPEX and 
APEX / SUM) [18] . 

The parallelism in this machine could be seen at two levels: 
- the first characterized by the possibility to execute in a very fast way 
operations involving vectors and matrices: this was carried out by the array 
processors. 
- the other characterized by having on the host many virtual machines each 
connected to one AP, communicating with each other through a shared memory. 
In such a way there was an opportunity to have many tasks running 
simultaneously on different APs. 

Tools available for implementing the parallel code were a Fortran 77 
language, directives to describe parallelism in the code and precompilers, 
compilers, as well as the linker to make the code ready for the execution. One of 
the drawbacks was that communication among the APs and the host could be 
carried out only through an I/0 channel. 

The CRA Y X-MP machine is characterized by twelve functional units for 
different operations; some of them, the ones dedicated to vector operations, are 
supplied by vector registers. Two important hardware characteristics are 
chaining and overlapping: chaining allows results going out from a vector unit to 
come in to an other vector unit without the use of registers; overlapping allows 
the simultaneous use of different units with different data. The most important 
tool available is a Fortran compiler able to suggest which part of the code can be 
vectorized. There was a package [15] available on this machine for simulation of 
multitasking. 

CRAY X-MP48 has four CPUs, each one equipped with the vector facilities 
described above, sharing a common memory. An interesting tool available on 
this machine to explore parallelism is microtasking [14, 15]. 

It is well known that vector facility speeds up all the computations involving 
operations between vector and matrices; besides that microtasking allows 
multiple processors to work at the DO-loop level where the granularity of the 
tasks can be small. 

In a multiuser environment microtasking takes advantage of the fact that the 
number of processors available during program's execution may vary; in fact, 
because the overhead of synchronization is small enough the microtasked job can 
be dynamically adjusted to the number af available processors. 

For this reason microtasking is an interesting tool to use because the user is 
not requested to know in advance the number of processors he will use and in the 
same time there will be the possibility to use the maximum computational power 
available during running time. 

The IBM 3090 VF is a powerful machine with vector facilities and a memory 
hierarchy which allows to speed up the computations. On this machine, using the 
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vector facility, it is possible to do operations with vector more than three times 
faster with respect to the scalar mode. 

One of the most important feature is the compiler that is able to recognize 
automatically which DO-loops are vectorizable and which are not. There is no 
chaining as in the CRA Y but there are compound operations, like multiply and 
add or multiply and subtract, which allow fast execution of these operations [12, 
13, 22]. 

The IBM 3090 may be configured in such a way as to present up to six 
processors sharing a common memory each equipped with a vector facility. 

3. First experiences in parallel optimization 

First experiences have been carried out using the CRA Y X-MP and the IBM 
4381 with FPSs on the following algorithms: 
- the modified Newton algorithm for local minimization; 
- the Price and Boender algorithm for global optimization. 

The algorithm for local minimization is a classical and a well tested on. It is 
based on the idea that a function can be approximated at each iteration by 
a quadratic model and, derived from the first order condition, the following 
system of equations must be satisfied: 

H(x)p = -V f(x) 

where H(x) is the Hessian and V f is the gradient of the function to be 
minimized. The steps of the algorithm are as follows: 
STEP 1. k = 1; evaluation off (xk), V f (xk), H (xk); 
STEP 2. Stop if IIVf(xk)l l < 6, where 6 is the user defined accuracy; 
STEP 3. Solve the system H (xk)Pk = - V f(xk) with appropriate modification of 

the matrix H in case of singularity; 
STEP 4. Set xk + 1 = xk + rxk Pk; 
STEP 5. Compute rx k such that <P (xk+ 1) ( <P (xk) where <P (xk+ 1) = f(xk + rx kPk) 
STEP 6. k = k + 1, go to step 1. 
Because the algorithm involves many operations with matrices and vectors we 
thouhgt it was good for a vector machine. For this reason we ran it on the CRA Y 
machine but we got very poor results as compared to the scalar version [5]. The 
negative result has quite a simple explanation if one carefully examines the code. 
The code contains in fact few own subroutines, the significant part of the run 
times comes from Hatfield routines (linear serch and Cholesky decomposition) 
which, after a restructuring action, contain no DOs at all. 

The two algoritms for global optimization are based on two main steps: 
- Choice of the sample -
N points are chosen randomly in the region where the function has to be 

minimized and the function must by evaluated in such points. 
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- Search of a better sample -
New points are looked for with the goal of finding those with function values less 
than the previous ones. This can be carried out in a very simple way without using 
local minimization (as in the Price algorithm) or through some local minimiza­
tion and clustering technique (as in the Boender algorithm) [9]. 

Both algorithms for global minimization are well suited to a multiprocessor 
environment because they can be easily organized in tasks which can be executed 
by different processors with some synchronization for exchanging information. 

The main steps of the parallel Price algorithm [1,9] are: Initial phase 
- executed by one processor. 
STEP 1. Generate a sample of points using a random number routine through 

a single processor and compute their function values through different 
processors. 

Interative phase - carried out asynchronously by different processors. 
STEP 2. Sort the function values and select the greatest. 
STEP 3. Select randomly a subset of the sample and create a new point modifying 

the centroids of the first n points with the ( n + 1)- s t point. Compute 
the new function value. 

STEP 4. If the stop condition is not verified, replace the element with the greatest 
function value in the sample with the new one. Go to step 2. 
The first processor which satisfies the stop criterion interrupts the work 
of the other processors. 

Final phase - executed by one processor. 
STEP 5. Determination of global minimum among the points of the sample. 

The main steps of the parallel Boender algorithm are: 

Initial phase - It is carried out by one processor. 
STEP 1. A sample of points is generated through a random number generator 

and the function values are computed. From each of the points in the 
sample a local minimization is carried out through a Quasi-Newton 
method, creating a set C of minima and a set C1 of points that originate 
the minima already found. 

Iterative phase - carried out by each processor. 
STEP 2. Create a new sample of increasing dimension. Apply a clustering 

technique to the new sample to avoid doing local searches which lead to 
minima already determined . 

If all the points in the sample are clustered, go to step 3 and let the other 
processors known to stop. Otherwise execute a local search from the unclustered 
ones and repeat from step 2. 

Final phase - executed by only one processor. 
STEP 3. Search for the global minimum among the local ones. 



Paraalel optimization 23 

For the Price algorithm, the vectorization introduced only little improve­
ments, while the multitasked version was very good. The estimated speed-up with 
four processors was 3.02 but the maximum number of iterations was more than 
four times better. The simulation was carried out supposing 4 CPUs [1,6] . Almost 
the same results were obtained for the Boender algorithm for which we got 
a speed-up of 2.93 [7]. 

We ran the Price algorithm on the IBM machine both in simulation and not. 
In simulation the results show a very good efficiency in the range of [0.82, 0.89] 
with the number of processors between 1 and 6 [6]. Using the real system with the 
FPS processors connected to the IBM machine, we got very poor performance. 
From the measurements it comes out that the time spent on transferring the data 
among the APs is too high with respect to the time spent on computation within 
the APs; that means that the algorithm is very well suited to a multitasked 
environment but with shared memory and, unless we have very expensive 
function , no gain is reached using the array processors [1] . 

We got a very good speed~up in the simulation on the Boender algorithm 
both in term of function evaluations and of time and efficien~y. in the range of 
(.7,.89) [9]. 

From these first experiences we realized that both for vectorization and for 
parallelization the algorithms must be well structured [2]; if they are not, it is 
necessary to restructure them. 

4. V ectorized and parallel algorithms for local minimization 

The previous experiments show that stochastic algorithms for global 
optimization are certainly verygood for parallelization, because the parallelism 
is intrinsic to the algorithm in the sense that it is an obvious solution to spread 
over the various processors the different searches for a local minimum. 

We realized that ' ·it · is important to have good subroutines for local 
minimization which can take advantage from vectorization and parallelism. 
Two interesting approaches have recently appeared in the literature: 
- one in Dixon and Dembo ·[l6,20] known as the truncated Newton method; 
- the other one ·in Ha:n [24], known as the quasi-Newton method through 
conjugate subspaces. 

We decided to implement the .algorithm by ourselves avoiding subroutines 
from any library, in such a way as to take the full advantage both from 
vectoriiation and from 'Parallelism. We briefly describe the algorithms outlining 
the use of.vectorization and of parallelism. 

Han's algorithm 

·,] . 
The algorithm is characterized by a Quasi-Newton scheme for estimating the 
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Hessian. The search directions are chosen conjugate with respect to the Hessian 
and such that they can be computed in parallel. 

It is well known that the Quasi-Newton method is an iterative method based 
on the idea of minimizing the approximation: 

f(x +d)= q(d) = f(x) +V f(x)Td + 1/2 dTHd 

where xis an estimate of the solution and H an estimate of the Hessian V 2f(x). 
This is carried out by solving the linear system: 

Hd = -V f(x). 

Then a new estimate of the solution is computed through the formula 
x = x + ad where the a parameter is determined in a line search that quarantees 
the decrease of the function_:_ If the solution fo.!:!_nd is not sufficiently accurate the 
matrix H is updated to H . The matrix H usually satisfies the following 
conditions: a) the so called Quasi-Newton equation 

-
Hs = y 

where s = x- x and y = V f(x) - V f(x) ; 
b) the symmetry condition: 

jj = fiT. 

The above condition does not define uniquely the update; one of the possible 
further conditions is thet one requiring that the iterative process finds the 
minimum of a quadratic convex function in a finite number of steps [23, 29]. 
This approach generates one of the · most successful schemes, i.e. the BFGS 
formula. 
The Ran's idea is to decompose the computation of d as the sum of other 
directions which can be computed in parallel. 
The following theorem [24] is proved: 
,,If the Hessian matrix V2f(x) is constant positive definite and the search direction 
subspaces S1 , ... ,Sm are conjugate with respect to it, then the search direction 

d = d1 + ... + dm, where d1 minimizes 

q(qJ = Vf(x) + Vf(x)Tdi + 112d/ V 2f(x)di over Si, 
is the N ewton direction d = - V2 f- 1 (x) Vf(x). " 
From the given theorem we can conclude that if approximation matrix His close 
to the Hessian V 2f(x) and the subspaces Si are conjugate to H, the direction sum 
of the directions on the susbspaces Si can be taken as a suitable direction for the 
minimization over S. 
A further theorem [24] proves a property indicating how to update these 
subspaces. 
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Thus, the possible initial choices of the subspaces satisfying the conditions to be 
linearly independent and spanning the whole Rn, we choose P = I where P is the 
n x n nonsingular matrix [P1' ... ,Pm] partitioned in column blocks and P; is the 
matrix whose columns form a basis for the subspaces S;. This is equivalent in 
BFGS to the choice H

0 
= I. 

So the update of the sub spaces P; can be carried out through the update of matrix 
P;. As far as the update of matrix Pis concerned, remembering that H satisfies 
the equations: 

Hs = - aVf(x). 

we obtain: 

and therefore P = AP,i.e. without using H. 
On the other hand the computation of d; as 

can be performed through: 

by setting d; = P; W;. Since it is possible to prove, see [24], that P/ HP; = I, W; 

can be computed by W; = - P; T Vf(x) i.e. without using H. 
The algorithm shows two points where it is possible to take advantage from the 
parallelism: 
- one is in the updating of matrix P because it is possible to carry out the 
computations of blocks of columns simultaneously; 
- the other is in the computations of search directions d;. We didn' t take 
advantage of parallelism in the line search although parallel multisection 
techniques are available. 
We describe in details the steps of the algorithm outlining sequential parts and 
parallel parts. 
STEP 1. Set k = 1, xk = x 1 and P1 = [P11' ... ,P1 m] = /where m is the number 

of processors in the system. 
STEP 2. executed in parallel by the m processors -

Compute wki = - pT ki f(xk) 
and dki = pki wki for i = (, ... ,m. 

STEP 3. Compute the search direction dk = dk1 + ... + dkm· 
STEP 4. Determine a step size through a line search procedure and 

set xk = xk + r:tkdk. 
Stop if the stop criterion is satisfied, i.e. 
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11 g(xk+1) 11 ( b where b is a user-defined accuracy, otherwise goto 
step 5. 

STEP 5. executed in parallel by the m processors-
Compute a subset of column p of Pk+ 1 through the formula: 

Pk+I = Pk- (uTk PkJ sk 
where uk = (Ykl(yTksk) + (-ak/(sTgkS[Yk)phg 

with Yk = Vf(x k+ 1)- Vf(xk) 
Sk=Xk+I-Xk 

gk = Vf(xk) 

STEP 6. Set k = k + 1; go to step 2. 
We can observe that step 2. and step 5. can be easily parallelized in our 

environment because they are do-loops over the i. Besides, within the steps 2. and 
5., computations must be carried out between matrix and vector and this can be 
done easily using vector facilities. Step 3. can be vectorized too, as well as 
computation of the new x in step 4. So the only part that does not take advantage 
of both vectorization and of parallelism is the line search based on quadratic 
fitting. 
At a first instance we decided to take the maximum advantage from the vector 
facility. 
Let T, be the time needed to run the code without using the vector facility and Tv 
by the time needed to run the code using the vector facility, we then get [10] the 
following results with respect to the three test functions: 
- 1) Rosenbrock 
- 2) Powell 
- 3) Wood 
using the following dimensionalities: 
- n = 200, 300, 400, 500: 

Test 
function 

n 

I 200 
I 300 
I 400 
I 500 

2 200 
2 300 
2 400 
2 500 

3 200 
3 300 
3 400 
3 500 

T, T,. 

9.38 0.385 
28.92 1.11 
45 . 1.44 

* 3.41 

7.71 0.43 
22.55 1.37 
44. 1.82 

* 2.65 

18.24 1.4 
55.32 3.41 

240. 6.82 

* 12.17 
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where * means that we avoid doing these computation because they would have 
taken too much time. It can be seen that tremendous improvement was achieved 
by using the vector facility. 

Using microtasking on those Do-loops which allow it (mainly in computing 
the directions d; and in updating of the matrix A) we got the following results. 
Let S be the speed-up using three processors with vector facility instead of one. 
Let us call E the efficiency computed as E = Sip, where pis of the number of 
processors. We got, [10], a very good efficiency varying in the range of(0.73,0.8) 
with an overhead around 10% of time. 

Dembo and Dixon's algorithm 

As we have discussed before in most of the methods used solution of the so 
called Newton-like equations entails most of the computations. For this reason, 
when far from the solution of the inital problem there is no need of an accurate 
solution. Dembo and Steihaug [16] proposed to solve these equations through 
the conjugate gradient method and when far from the solution of the initial 
problem to stop the solution of these equations. Further improvements of this 
method have been proposed by Dixon [20], who introduced the concept of the 
trust region. We analyse an algorithm, based on these ideas, on a vector machine. 
One of the most known methods of solving these sets of nonlinear equations in . 
the Newton method which suffers of some drawbacks like lack of global 
convergence and singularity of the Hessian. Many modifications have been 
proposed that guarantee overcoming of these problems. 
Following Dembo and Dixon we examine the following algorithm: 

STEP 1 Computef(xk), g(xk) = Vf(xk), H(xk) 
STEP 2 Stop if the convergence criterion is satisfied i.e.ll g(xk) 11 < o, where o is 

a user defined accuracy. 
STEP 3 Compute p k such that: 

HkPk = - g(xk) 
where H k is a good approximation to H (x k). The solution of the system 
is carried out through a conjugate gradient algorithm. 

STEP 4 Find rxk such that the point 
xkh = xk + rxkpk 

satisfies Wolfe and Goldstein-Armijo conditions. 
STEP 5 k = k + 1; go to step 1. 

Because Newton's equations are derived from a quadratic model of the 
function around a minimum, they give the correct direction when you are very 
close to the minimum. For this reason when you are far from the minimum it is 
worthwhile to solve these equation accurately; in this case it is the major iteration 
that provides for getting closer to the minimum. 
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Dembo's idea was to truncate the computations in step 3. when the following 
condition was satisfied: 

T 

'Vf(~)~~f(xk) ( min (O .llk
2, 'Vf(xk)T'Vf(xk)) 

where rj is the residual at the j -th iteration of conjugate gradient algorithm in step 
3. 
Dixon added a criterion to ensure that at the end of each minor iteration the new 
point satisfies the Wolfe condition and lies within the trust region around the 
previous point. The radius of the trust region is modified at each major iteration 
accordingly to the current value of the step size. 
Certainly, on a sequential machine and with a large problem to solve the idea. to 
truncate the Newton equations before solution may affect heavily the time for 
finding the solution of the optimisation problem. 

We wanted to verify if this idea is so much effective also on a. vector machine. 
We tested the algorithm on three clasical test functions: 

- Rosen brock 
- Powell 
- Dixon 
with the following dimensions: 
n = 20,40,80,100,160,200. 
The results [11] show a speed-up of more than three on most of the cases and we 
have to take into account that these results were obtained automatically, in the 
sense that the compiler did the most part of vectorization. 

5. Conclusions 

This work has shown that it is possible to take significant advantage by the 
parallelisation of the algorithm resulting both from vectorization and from 
parallelization if the algorithm is well structured. For vectorization the 
automatic compilers are very good but further restructuring of the code done by 
the user may increase the performance. 

Future experiments would include actual problems where it would be 
interesting to include in the algorithm also parallelisation in the computation of 
functions and gradients. 
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Optymalizacja rownolegla 

W pracy podsumowano wyniki i doswiadczenia zgromadzone w trakcie badat1 nad tworzeniem 

program6w r6wnoleglych dla wybranych algorytm6w optymalizacji uzywaj (!cych dost\!pnego 

obecnie SpfZ\!tU komputerowego umozliwiaj(!Cego Jiczenie rowno)egle. 

IIapaJIJieJILuas onTHMHJa~us 

B pa6oTe o6o6~eHhi pe3yJihTaThi H OIIhiT HaKOIIJieHHhrH BO BpeMSI HCCJie,D;OBaHHH ITO 
pa3pa60TKe napaJIJieJihHhiX rrporpaMM ,D;JISI H36paHHhiX aJirOpHTMOB OIITHMH3a,D;HH, 
H3IIOJih3yro~HX ,ll;OCTYITHOe B HaCTOSI~ee BpeMSI KOMIThiOTepHOe o6opy,!IOBaHHe, Il03BOJISIIO~e 
IIpOBO,D;HTh rrapanJieJihHhie BhlqHCJieHHSI. 


