
Parallel optimization

by

M. BERTOCCHI

Control

and Cybernetics
VOL. 18 (1989) No. l

Dipartimento di Matematica, Statistica,
Informatica e Applicazioni
Istituto Universitario di Bergamo
Via Salvecchio 19, 24100 Bergamo
24190 Bergamo, ITALY

This work summarizes results and experiences on production of parallel programs for selected
optimization algorithms using parallel facilities guaranteed by some available supercomputers.

KEYWORDS: Parallel algorithms, global optimization, local optimization.

1. Introduction

The interest of scientists for supercomputers has grown in the last years as
their availability has become a real fact: on the market there is now a great range
of such machines with various form of parallelism.

The advent of these machines, especially the vector ones, has had a great
influence on scientific and engineering computation [21]. Certainly most of the
work has been done in the field of linear algebra because of its extensive use in so
many numerical areas.

The field which we are particularly interested in is the one of nonlinear
optimization because the real application that need to use the non/linear
optimization algorithms usually prefer to avoid them in view of the high
computation time often involved.

The paper summarizes experiences we made in parallel optimization in the
last years: We found particularly interesting some stochastic algorithms for
global optimization [6, 7, 8, 9] and recent algorithms proposed by Dembo [16]
and Han [24] in local optimization.

2. The computing environment

The machines which we used in our experiments are the Cray X-MP, the IBM
4381-3 with attached FPS processors (APs), the CRA Y X-MP48 and IBM 3090
VF.

20 M. BERTOCCHI

The first mentioned IBM machine was a prototype very useful to test the first
approach to parallel problems. In fact it had a parallel environment both in
hardware (10 array processors PPS 164) and in software (VM / EPEX and
APEX / SUM) [18] .

The parallelism in this machine could be seen at two levels:
- the first characterized by the possibility to execute in a very fast way
operations involving vectors and matrices: this was carried out by the array
processors.
- the other characterized by having on the host many virtual machines each
connected to one AP, communicating with each other through a shared memory.
In such a way there was an opportunity to have many tasks running
simultaneously on different APs.

Tools available for implementing the parallel code were a Fortran 77
language, directives to describe parallelism in the code and precompilers,
compilers, as well as the linker to make the code ready for the execution. One of
the drawbacks was that communication among the APs and the host could be
carried out only through an I/0 channel.

The CRA Y X-MP machine is characterized by twelve functional units for
different operations; some of them, the ones dedicated to vector operations, are
supplied by vector registers. Two important hardware characteristics are
chaining and overlapping: chaining allows results going out from a vector unit to
come in to an other vector unit without the use of registers; overlapping allows
the simultaneous use of different units with different data. The most important
tool available is a Fortran compiler able to suggest which part of the code can be
vectorized. There was a package [15] available on this machine for simulation of
multitasking.

CRAY X-MP48 has four CPUs, each one equipped with the vector facilities
described above, sharing a common memory. An interesting tool available on
this machine to explore parallelism is microtasking [14, 15].

It is well known that vector facility speeds up all the computations involving
operations between vector and matrices; besides that microtasking allows
multiple processors to work at the DO-loop level where the granularity of the
tasks can be small.

In a multiuser environment microtasking takes advantage of the fact that the
number of processors available during program's execution may vary; in fact,
because the overhead of synchronization is small enough the microtasked job can
be dynamically adjusted to the number af available processors.

For this reason microtasking is an interesting tool to use because the user is
not requested to know in advance the number of processors he will use and in the
same time there will be the possibility to use the maximum computational power
available during running time.

The IBM 3090 VF is a powerful machine with vector facilities and a memory
hierarchy which allows to speed up the computations. On this machine, using the

Parallel optimization 21

vector facility, it is possible to do operations with vector more than three times
faster with respect to the scalar mode.

One of the most important feature is the compiler that is able to recognize
automatically which DO-loops are vectorizable and which are not. There is no
chaining as in the CRA Y but there are compound operations, like multiply and
add or multiply and subtract, which allow fast execution of these operations [12,
13, 22].

The IBM 3090 may be configured in such a way as to present up to six
processors sharing a common memory each equipped with a vector facility.

3. First experiences in parallel optimization

First experiences have been carried out using the CRA Y X-MP and the IBM
4381 with FPSs on the following algorithms:
- the modified Newton algorithm for local minimization;
- the Price and Boender algorithm for global optimization.

The algorithm for local minimization is a classical and a well tested on. It is
based on the idea that a function can be approximated at each iteration by
a quadratic model and, derived from the first order condition, the following
system of equations must be satisfied:

H(x)p = -V f(x)

where H(x) is the Hessian and V f is the gradient of the function to be
minimized. The steps of the algorithm are as follows:
STEP 1. k = 1; evaluation off (xk), V f (xk), H (xk);
STEP 2. Stop if IIVf(xk)l l < 6, where 6 is the user defined accuracy;
STEP 3. Solve the system H (xk)Pk = - V f(xk) with appropriate modification of

the matrix H in case of singularity;
STEP 4. Set xk + 1 = xk + rxk Pk;
STEP 5. Compute rx k such that <P (xk+ 1) (<P (xk) where <P (xk+ 1) = f(xk + rx kPk)
STEP 6. k = k + 1, go to step 1.
Because the algorithm involves many operations with matrices and vectors we
thouhgt it was good for a vector machine. For this reason we ran it on the CRA Y
machine but we got very poor results as compared to the scalar version [5]. The
negative result has quite a simple explanation if one carefully examines the code.
The code contains in fact few own subroutines, the significant part of the run
times comes from Hatfield routines (linear serch and Cholesky decomposition)
which, after a restructuring action, contain no DOs at all.

The two algoritms for global optimization are based on two main steps:
- Choice of the sample -
N points are chosen randomly in the region where the function has to be

minimized and the function must by evaluated in such points.

22 M. BERTOCCHI

- Search of a better sample -
New points are looked for with the goal of finding those with function values less
than the previous ones. This can be carried out in a very simple way without using
local minimization (as in the Price algorithm) or through some local minimiza­
tion and clustering technique (as in the Boender algorithm) [9].

Both algorithms for global minimization are well suited to a multiprocessor
environment because they can be easily organized in tasks which can be executed
by different processors with some synchronization for exchanging information.

The main steps of the parallel Price algorithm [1,9] are: Initial phase
- executed by one processor.
STEP 1. Generate a sample of points using a random number routine through

a single processor and compute their function values through different
processors.

Interative phase - carried out asynchronously by different processors.
STEP 2. Sort the function values and select the greatest.
STEP 3. Select randomly a subset of the sample and create a new point modifying

the centroids of the first n points with the (n + 1)- s t point. Compute
the new function value.

STEP 4. If the stop condition is not verified, replace the element with the greatest
function value in the sample with the new one. Go to step 2.
The first processor which satisfies the stop criterion interrupts the work
of the other processors.

Final phase - executed by one processor.
STEP 5. Determination of global minimum among the points of the sample.

The main steps of the parallel Boender algorithm are:

Initial phase - It is carried out by one processor.
STEP 1. A sample of points is generated through a random number generator

and the function values are computed. From each of the points in the
sample a local minimization is carried out through a Quasi-Newton
method, creating a set C of minima and a set C1 of points that originate
the minima already found.

Iterative phase - carried out by each processor.
STEP 2. Create a new sample of increasing dimension. Apply a clustering

technique to the new sample to avoid doing local searches which lead to
minima already determined .

If all the points in the sample are clustered, go to step 3 and let the other
processors known to stop. Otherwise execute a local search from the unclustered
ones and repeat from step 2.

Final phase - executed by only one processor.
STEP 3. Search for the global minimum among the local ones.

Paraalel optimization 23

For the Price algorithm, the vectorization introduced only little improve­
ments, while the multitasked version was very good. The estimated speed-up with
four processors was 3.02 but the maximum number of iterations was more than
four times better. The simulation was carried out supposing 4 CPUs [1,6] . Almost
the same results were obtained for the Boender algorithm for which we got
a speed-up of 2.93 [7].

We ran the Price algorithm on the IBM machine both in simulation and not.
In simulation the results show a very good efficiency in the range of [0.82, 0.89]
with the number of processors between 1 and 6 [6]. Using the real system with the
FPS processors connected to the IBM machine, we got very poor performance.
From the measurements it comes out that the time spent on transferring the data
among the APs is too high with respect to the time spent on computation within
the APs; that means that the algorithm is very well suited to a multitasked
environment but with shared memory and, unless we have very expensive
function , no gain is reached using the array processors [1] .

We got a very good speed~up in the simulation on the Boender algorithm
both in term of function evaluations and of time and efficien~y. in the range of
(.7,.89) [9].

From these first experiences we realized that both for vectorization and for
parallelization the algorithms must be well structured [2]; if they are not, it is
necessary to restructure them.

4. V ectorized and parallel algorithms for local minimization

The previous experiments show that stochastic algorithms for global
optimization are certainly verygood for parallelization, because the parallelism
is intrinsic to the algorithm in the sense that it is an obvious solution to spread
over the various processors the different searches for a local minimum.

We realized that ' ·it · is important to have good subroutines for local
minimization which can take advantage from vectorization and parallelism.
Two interesting approaches have recently appeared in the literature:
- one in Dixon and Dembo ·[l6,20] known as the truncated Newton method;
- the other one ·in Ha:n [24], known as the quasi-Newton method through
conjugate subspaces.

We decided to implement the .algorithm by ourselves avoiding subroutines
from any library, in such a way as to take the full advantage both from
vectoriiation and from 'Parallelism. We briefly describe the algorithms outlining
the use of.vectorization and of parallelism.

Han's algorithm

·,] .
The algorithm is characterized by a Quasi-Newton scheme for estimating the

24 M. BERTOCCHI

Hessian. The search directions are chosen conjugate with respect to the Hessian
and such that they can be computed in parallel.

It is well known that the Quasi-Newton method is an iterative method based
on the idea of minimizing the approximation:

f(x +d)= q(d) = f(x) +V f(x)Td + 1/2 dTHd

where xis an estimate of the solution and H an estimate of the Hessian V 2f(x).
This is carried out by solving the linear system:

Hd = -V f(x).

Then a new estimate of the solution is computed through the formula
x = x + ad where the a parameter is determined in a line search that quarantees
the decrease of the function_:_ If the solution fo.!:!_nd is not sufficiently accurate the
matrix H is updated to H . The matrix H usually satisfies the following
conditions: a) the so called Quasi-Newton equation

-
Hs = y

where s = x- x and y = V f(x) - V f(x) ;
b) the symmetry condition:

jj = fiT.

The above condition does not define uniquely the update; one of the possible
further conditions is thet one requiring that the iterative process finds the
minimum of a quadratic convex function in a finite number of steps [23, 29].
This approach generates one of the · most successful schemes, i.e. the BFGS
formula.
The Ran's idea is to decompose the computation of d as the sum of other
directions which can be computed in parallel.
The following theorem [24] is proved:
,,If the Hessian matrix V2f(x) is constant positive definite and the search direction
subspaces S1 , ... ,Sm are conjugate with respect to it, then the search direction

d = d1 + ... + dm, where d1 minimizes

q(qJ = Vf(x) + Vf(x)Tdi + 112d/ V 2f(x)di over Si,
is the N ewton direction d = - V2 f- 1 (x) Vf(x). "
From the given theorem we can conclude that if approximation matrix His close
to the Hessian V 2f(x) and the subspaces Si are conjugate to H, the direction sum
of the directions on the susbspaces Si can be taken as a suitable direction for the
minimization over S.
A further theorem [24] proves a property indicating how to update these
subspaces.

Parallel optimization 25

Thus, the possible initial choices of the subspaces satisfying the conditions to be
linearly independent and spanning the whole Rn, we choose P = I where P is the
n x n nonsingular matrix [P1' ... ,Pm] partitioned in column blocks and P; is the
matrix whose columns form a basis for the subspaces S;. This is equivalent in
BFGS to the choice H

0
= I.

So the update of the sub spaces P; can be carried out through the update of matrix
P;. As far as the update of matrix Pis concerned, remembering that H satisfies
the equations:

Hs = - aVf(x).

we obtain:

and therefore P = AP,i.e. without using H.
On the other hand the computation of d; as

can be performed through:

by setting d; = P; W;. Since it is possible to prove, see [24], that P/ HP; = I, W;

can be computed by W; = - P; T Vf(x) i.e. without using H.
The algorithm shows two points where it is possible to take advantage from the
parallelism:
- one is in the updating of matrix P because it is possible to carry out the
computations of blocks of columns simultaneously;
- the other is in the computations of search directions d;. We didn' t take
advantage of parallelism in the line search although parallel multisection
techniques are available.
We describe in details the steps of the algorithm outlining sequential parts and
parallel parts.
STEP 1. Set k = 1, xk = x 1 and P1 = [P11' ... ,P1 m] = /where m is the number

of processors in the system.
STEP 2. executed in parallel by the m processors -

Compute wki = - pT ki f(xk)
and dki = pki wki for i = (, ... ,m.

STEP 3. Compute the search direction dk = dk1 + ... + dkm·
STEP 4. Determine a step size through a line search procedure and

set xk = xk + r:tkdk.
Stop if the stop criterion is satisfied, i.e.

26 M. ·BERTOCCHI

11 g(xk+1) 11 (b where b is a user-defined accuracy, otherwise goto
step 5.

STEP 5. executed in parallel by the m processors-
Compute a subset of column p of Pk+ 1 through the formula:

Pk+I = Pk- (uTk PkJ sk
where uk = (Ykl(yTksk) + (-ak/(sTgkS[Yk)phg

with Yk = Vf(x k+ 1)- Vf(xk)
Sk=Xk+I-Xk

gk = Vf(xk)

STEP 6. Set k = k + 1; go to step 2.
We can observe that step 2. and step 5. can be easily parallelized in our

environment because they are do-loops over the i. Besides, within the steps 2. and
5., computations must be carried out between matrix and vector and this can be
done easily using vector facilities. Step 3. can be vectorized too, as well as
computation of the new x in step 4. So the only part that does not take advantage
of both vectorization and of parallelism is the line search based on quadratic
fitting.
At a first instance we decided to take the maximum advantage from the vector
facility.
Let T, be the time needed to run the code without using the vector facility and Tv
by the time needed to run the code using the vector facility, we then get [10] the
following results with respect to the three test functions:
- 1) Rosenbrock
- 2) Powell
- 3) Wood
using the following dimensionalities:
- n = 200, 300, 400, 500:

Test
function

n

I 200
I 300
I 400
I 500

2 200
2 300
2 400
2 500

3 200
3 300
3 400
3 500

T, T,.

9.38 0.385
28.92 1.11
45 . 1.44

* 3.41

7.71 0.43
22.55 1.37
44. 1.82

* 2.65

18.24 1.4
55.32 3.41

240. 6.82

* 12.17

Parallel optimization 27

where * means that we avoid doing these computation because they would have
taken too much time. It can be seen that tremendous improvement was achieved
by using the vector facility.

Using microtasking on those Do-loops which allow it (mainly in computing
the directions d; and in updating of the matrix A) we got the following results.
Let S be the speed-up using three processors with vector facility instead of one.
Let us call E the efficiency computed as E = Sip, where pis of the number of
processors. We got, [10], a very good efficiency varying in the range of(0.73,0.8)
with an overhead around 10% of time.

Dembo and Dixon's algorithm

As we have discussed before in most of the methods used solution of the so
called Newton-like equations entails most of the computations. For this reason,
when far from the solution of the inital problem there is no need of an accurate
solution. Dembo and Steihaug [16] proposed to solve these equations through
the conjugate gradient method and when far from the solution of the initial
problem to stop the solution of these equations. Further improvements of this
method have been proposed by Dixon [20], who introduced the concept of the
trust region. We analyse an algorithm, based on these ideas, on a vector machine.
One of the most known methods of solving these sets of nonlinear equations in .
the Newton method which suffers of some drawbacks like lack of global
convergence and singularity of the Hessian. Many modifications have been
proposed that guarantee overcoming of these problems.
Following Dembo and Dixon we examine the following algorithm:

STEP 1 Computef(xk), g(xk) = Vf(xk), H(xk)
STEP 2 Stop if the convergence criterion is satisfied i.e.ll g(xk) 11 < o, where o is

a user defined accuracy.
STEP 3 Compute p k such that:

HkPk = - g(xk)
where H k is a good approximation to H (x k). The solution of the system
is carried out through a conjugate gradient algorithm.

STEP 4 Find rxk such that the point
xkh = xk + rxkpk

satisfies Wolfe and Goldstein-Armijo conditions.
STEP 5 k = k + 1; go to step 1.

Because Newton's equations are derived from a quadratic model of the
function around a minimum, they give the correct direction when you are very
close to the minimum. For this reason when you are far from the minimum it is
worthwhile to solve these equation accurately; in this case it is the major iteration
that provides for getting closer to the minimum.

28 M. BERTOCCHI

Dembo's idea was to truncate the computations in step 3. when the following
condition was satisfied:

T

'Vf(~)~~f(xk) (min (O .llk
2, 'Vf(xk)T'Vf(xk))

where rj is the residual at the j -th iteration of conjugate gradient algorithm in step
3.
Dixon added a criterion to ensure that at the end of each minor iteration the new
point satisfies the Wolfe condition and lies within the trust region around the
previous point. The radius of the trust region is modified at each major iteration
accordingly to the current value of the step size.
Certainly, on a sequential machine and with a large problem to solve the idea. to
truncate the Newton equations before solution may affect heavily the time for
finding the solution of the optimisation problem.

We wanted to verify if this idea is so much effective also on a. vector machine.
We tested the algorithm on three clasical test functions:

- Rosen brock
- Powell
- Dixon
with the following dimensions:
n = 20,40,80,100,160,200.
The results [11] show a speed-up of more than three on most of the cases and we
have to take into account that these results were obtained automatically, in the
sense that the compiler did the most part of vectorization.

5. Conclusions

This work has shown that it is possible to take significant advantage by the
parallelisation of the algorithm resulting both from vectorization and from
parallelization if the algorithm is well structured. For vectorization the
automatic compilers are very good but further restructuring of the code done by
the user may increase the performance.

Future experiments would include actual problems where it would be
interesting to include in the algorithm also parallelisation in the computation of
functions and gradients.

References

[I] BERTOCCHI M. Analisi e sperimentazione di algoritmi paralleli per l'ottimizzazione globale.
Ricerca operativa e informatica. Bielli M.,ed. Milano 1986, F. Angeli, pp. 703-714.

[2] BERTOCCHI M., KRAFFT W. A methodology and suggested tools for productioon of parallel
programs. QDMSIA , (1987) 5.

Parallel optimization 29

[3) BERTOCCHI M., KRAFFT W. Structured Fortran 77: a precompiler. QDMSIA, (1987) 5.
[4) BERTOCCHI M ., KRAFFT W. Introducing parallelism into the CRA Y Fortran. QDMSIA , (1987) 7.
[5) BERTOCCHI M. , KRAFFT W. Application of parallel programming techniques: a modified

Newton algorithm for local optimisation. QDMSIA, (1987) 8.
[6] BERTOCCHI M., KRAFFT W. Application of parallel programming techniques: the Price

algorithm for global optimisation. QDMSIA , (1987) 9.
[7] BERTOCCHI M. , KRAFFT W. Application of parallel programming techniques: the Boender

algorithm for global optimisation. QDMSIA , (1987) 10.
[8] BERTOCCHI M., KRAFFT W. A global optimisation algorithm for parallel machines. Op­

timization techniques and applications. Teo , Paul, Chew, Wang eds. National University of
Singapore 1987.

[9) BERTOCCHI M. , A parallel algorithm for global optimization. QDMSIA, (1987) 19.
[10) BERTOCCHI M., GNUDI A., MOHSENINIA M. Numerical experiments on an unconstrained

parallel algorithm for optimization based on conjugate subspace. QDMSIA, (1988) 11.
[11) BERTOCCHI M., Numerical experiences of the truncated Newton algorithm for local minimiza­

tion on a vector machine.
[12] BRATTEN C., CLARK R., DORN P., GRANT R., IBM 3090 Engineering/Scientific Performance.

Tee. Bull. GG66-0245, 1986.
[13) CLARK R.S. , WILSON T.L. Vector system performance of the IBM 3090. IBM Systems Journal,

25 (1986) 1.
[14) Cray Corporation. Microtasking User's guide.
[15) Cray Corporation, Cray X-MP multitasking programmer's references. Manual SN-0222. 1986
fl6) DEMBO R. , STEIHAUG T. Truncated Newton methods for large scale optimisation. Mathematical

Programming, 26 (1983), 190-212.
[17] DENNIS J.E., ScHABEL R . Numerical methods for unconstrained optimization and nonlinear

equations. Prentice Hall , New Jersey, 1983.
[18) DICHIO P., ZECCA V. IBM ECSEC facilities: user's guide. G513-4080, December 1985.
[19) DIXON L.C.W. , PATEL K.D. , DUCKSBURY P.G. Experience in running optimization algorithms

on parallel processing systems. Tee. Rep. no 138. Hatfield Polytechnic, 1983.
[20) DIXON L.C.W. , PRICE R.C. The truncated Newton method for sparse unconstrained op­

timisation using automatic differenation. Tee. Rep. N.O.C. no 170, Hatfield 1986.
[21) DUFF I.S. The influence of vector and parallel processors on numerical analysis. AERE-R 12329,

September 1986.
[22) GIBSON D.H., RAIN D.W. , WALSH H. F. Engineering and scientific processing on the 3090. IBM

Systems Journal, 25 (1986) I.
[23) GILL P.E., MURRA Y W., WRIGHT M.H. Practical optimization. London, Academic Press,

1981.
[24) HAN S.P. Optimization by updated conjugate subspaces. DAMTP 198YNA9, University of

Illinois, 1985.
[25) HESTENES M.R. Conjugate- direction method in optimization. Berlin, Springer-Verlag, 1980.
[26) RALL L.B. Global optimisation using automatic differentiation and interval iteration. Ma­

thematics Research Centre, University of Wisconsin, 1985.
[27] RITTER. Parrallel automatic differentiation. Proc. of Parallel Optimization. Madison, 1987.
[28) SCHNABEL R.B. Concurrent function evaluations in local and global optimization. Tee. Rep.

CS-CU-345-86, University of Colorado, Boulder 1986.
[29) SPEDICATO E. Algoritmi per la minimizzazione di funzioni non lineari non vincolate. Quaderni

lAC, Serie 3, no 15, Roma, 1975.

Received, April 1988.

30 M. BERTOCCHI

Optymalizacja rownolegla

W pracy podsumowano wyniki i doswiadczenia zgromadzone w trakcie badat1 nad tworzeniem

program6w r6wnoleglych dla wybranych algorytm6w optymalizacji uzywaj (!cych dost\!pnego

obecnie SpfZ\!tU komputerowego umozliwiaj(!Cego Jiczenie rowno)egle.

IIapaJIJieJILuas onTHMHJa~us

B pa6oTe o6o6~eHhi pe3yJihTaThi H OIIhiT HaKOIIJieHHhrH BO BpeMSI HCCJie,D;OBaHHH ITO
pa3pa60TKe napaJIJieJihHhiX rrporpaMM ,D;JISI H36paHHhiX aJirOpHTMOB OIITHMH3a,D;HH,
H3IIOJih3yro~HX ,ll;OCTYITHOe B HaCTOSI~ee BpeMSI KOMIThiOTepHOe o6opy,!IOBaHHe, Il03BOJISIIO~e
IIpOBO,D;HTh rrapanJieJihHhie BhlqHCJieHHSI.

