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This paper presents an extension of the Brown's problem for the allocation of a single resource to 
a given number of variables to maximize the value of the smallest tradeofffunction. Instead of single 
constraint in Brown's problem several number of constraints on sums of resource quantities are 
considered. The description of algorithms for strictly increasing and continuous and mixed 
- continuous and integer - variables are presented. An illustrative example is included. 

1. Introduction 

Brown [1] developed the method of resource allocation for the following 
problem 

F* (x~, ... , xZ) max min {fnCxn)} 
nEN 

xn ~ 0, nE N, N = {1,2, ... ,N} 

(la) 

(lb) 

(le) 

This paper extends the Brown's problem for the case of several constraints. 
Therefore the problem under consideration can be stated as 

F* (x { , ... , x Z) = max min lfn(xn)} 
nEN 

L Xn ~ h,, rE R, r = {1,2, ... ,R} 

(2a) 

(2b) 

. (2c) 
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The meanings of parameters in (2a)-(2c) are as follows 
1. N is the total number of variables. 
2. N is the set of first N positive integers. 
3. R is the total number of constraints. 
4. R is the set of first R positive integers. 
5. xn is the quantity of the resource allocated to variable n. 
6 . .1;, is strictly increasing and contiuous tr:adeoff function. 
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7. D .. c N is the set containing the numbers of variables of the constraint r. 
8. h, ) 0 is the maximum quantity of the resource that can be allocated to 

variables of D,. 

It has been assumed that D .. and h,, rE R are defined in such way that no 
constraint could be replaced by another one or no h, changed to smaller value (if 
for exampleD, c Dq and hr ) hq then hr could be replaced by hq). 

The problem (2) has been considered by Dutta and Vidyasagar [2] in a more 
general form. They have proposed an algorithm for the problem having 
nonlinear constraints instead oflinear ones in (2). This means that their method, 
converting constrained minimax problem to a sequence of unconstrained 
minimization of a least-sqaures type objective function, can be applied in this 
case. However, a gradient optimization technique has to be applied in their 
method to do the unconstrained optimization at each step of the sequence. 
Therefore it is difficult to assess the computational complexity of that method. 
This question is important especially for large problems (great number of 
variables). The method proposed here has polynomial computational comp
lexity, does not require any auxiliary procedure and is very simple to code. 

The extension of problem (1) was inspired by the work of Mjelde [4] who 
considers similar extension of problem solved earlier by Luss and Gupta [3) 
where the objective functions considered are sums of tradeoff functions. While 
the method developed by Mjelde requires that D,., rE R, form a tree when ordered 
by the inclusion relation, algorithms presented here allow D = {D1' .. . ,DR} be 
any nonredundant collecion of sets D ... r E R. 

As an illustration of the problem (2) we can consider the problem of 
distribution of funds to increase the degree of environmental purity in different 
regions. It is supposed that a gain of.fn(xn) in terms of degree of purity arises when 
xn is allocated to region n, nE N. The constraints on sums of xn may be imposed by 
technological or geographical factors connected with various sets of regions. The 
aim of a decision-maker is to maximize the smallest degree of environment purity 
among all regions. Other applicational areas can be easily found, see for example 
[1], [4). 

This paper contains the descriptions of two algorithms: first for the 
continuous problem (all variables xn, nE N are continuous) and second for the 
mixed integer problem (some variables xn, n E J, J c N, must be positive 
integers). The numerical example of application of the first algorithm is 
presented. The paper ends with some final remarks. 
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2. The continuous problem 

Let us consider the problem (2) with all variables xn, nE N, being nonnegative 
real numbers and R ) 1. It turns out that the following theorem (Thebrem 1 is 
stated and proved for the case of one constraint in [1]) holds: 
THEOREM 1. Let the variables xn, n E N , be ordered and then renumbered so that 

(3) 

where an extra variable N + 1 is introduced and fN + 1 (0) = + oo. A feasible 
solution x* of the problem (2) is optimal if and only !f there exists an integer k E N , 
a real number Ak and at least one integer pER such that the following conditions are 
satisfied: 

X~) 0 nE {1, ... ,k} = Nk (4a) 

J,(x*) = 2k nE Nk (4b) 

J;,(O) ? ),k nE {k + l, .. . ,N} = N0 
(4c) 

x':; = o nE N
0 

(4d) 

L.nEDP x* = h n p (4e) 

Proof . Assume that x* is a feasible solution that satisfies conditions (4). Let us 
consider any feasible solution x such that x -=1- x*. If 

nE Dp 

it follows from the relation (4a) that there exists a variable m E Nk such that 
X

111 
< x,: (because x1 > x')' for some lE DP, l -=1- m implies X111 < x! ). This 

means that 

while the equation (4b) requires . 

Inspection of the conditions ( 4b) and ( 4c) shows that the optimal value of 
objective function is 2k. Thus taking into account the last two formulae it is 
obvious that x is not an optimal solution to (2). 
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Similar argumentation for the case 

n e Dp 

shows that x is not an optimal solution to (2). Thus x* is the optimal solution 
because non-binding constraints (2b) do not influence the optimality. 

Assume now that x* is the optimal solution to (2). There exists always such an 
integer kEN that · 

fk (0) ~ F* < h+ 1 (0) 

where F* is the optimal value of objective function. We have to show that there 
exists a subset of zero allocations, i.e. x: = 0 for n E N0 , where 
N0 = {k + 1, .. . , N}. This will be demonstrated by contradiction. Let x;: > 0 if 
mE N0 . Hence, definition of x such that 

x~+x'! /P nENk n DP 

X~ nENk and n f/= DP 
Xn = 

0 n=m 

X~ nEN0 - {m} 

where P = I DP I, implies that for n E Nk 

min {/, (x")} > min {/, (x:)} = F* 

what contradicts the assumption, because x gives better optimal value than x*. 

Assume that there exists an integers E Nk n Dp, where IDPI ;::::: 2 (what will 

always hold if not all D,, r E Rare trivial, i.e. are at least two-element sets), such 

that 

This means, that the optimal value of the objective function can be increased by 

redistribution of some excess resource in allocation .A1,. Let us define 

x· = n { \~ -~ x~+~/(S -1) 

0 

n = s 
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here S = ID Pi and ~ is chosen so that there is fs (.X.) ) F*. This results in 

for n E nk, which leads to contradiction. The next implication is that for n E Nk 

fn(x~) = F* 

ending the proof. 
The theorem allows to propose the following solution procedure for problem 

(2). 

Algorithm 1. 
STEPl.DefineA = {an:an =fn(O),nEN}andB = {bn:bn = am;bn~bn+ 1 ;n, 

mEN and bN+I = oo}. 
Set k =N. 

STEP 2. Calculate for n E N 

ifj1 (bk) ~ 0 
n 

if J 1 (bk) < 0 
n 

and for rE R 

h: = h,- L x; 
iED, 

If h; ~ 0, r E R, go to Step 3. Otherwise k = k - 1 and repeat Step 2. 
STEP 3. Set k = k + 1. Define N 0 = {n : an ~ bk, n EN}, 

Nk = N- N0 and replace R by R -l!R, where ~R = {r : D, c T0, 

rE R} u {r : D, n Nk = Dq n Nk and h, ) hq, r, q ER, r =f. q}. 
DefineD: = D, n Nk , for rE R. 

STEP 4. For each rE R determine F; from the equation 

STEP 5. Calculate optimal value 

L .1,1 (F~ ) = h, 
nED; 

F* = mm {F; } 
rER 

and assign the following optimal values to the variables n E N 

if nE N0 
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An optimal solution has been found. STOP. 
Some comments iue necessary: 
1. The set B consists of ordered elements of the set A with the last additional 

element being bN +I = oo. 
2. The set !!.R contains the constraints which can be eliminated because some 

variables (those of N0) take zero values in the optimal solution. 
3. If explicit expressions F;. = gr (hr), where gr denotes a given function, 

cannot be derived in Step 4, then numerical methods to determine F; are 
needed. Therefore two starting points lr and ur that define the interval for 
j;, i.e. F; E < lr, ur > , can be calculated using 

lr = max {f;, (0)} 
nED; 

ur = min {f~ (hr)} 
nED; 

4. In general not all constraints are- in the optimal point x: , nE N , obtained by 
the algorithm- binding constraints. Define Rmin = {r : F; = F*, rE R} and 

Nmin = U Dr 
rE Rmin 

Thus variables xn, nE Nk- Nmin can be increased by!!. x: ~ 0 without violation 
of any constraint and without an increase of the value of F* , where for 
rE R- Rmin 

I !!.x: = hr- I 
nEDrn(Nk- Nmin) nED; 

x * 
n 

The optimality of the solution x* , n E N, is established by the following 
n 

theorem. 
THEOREM 2. Algorithm 1 gives the optimal solution to the continuous problem (2). 
Proof. We have to show that the Algorithm 1 finds the solution x*, 
nE N satisfying the conditions (4) and terminates in finite number of steps. 

n 

The first task of the algorithm is to determine an integer k so as to partition 
the set N into two sets Nk and N0 , such that Nk u N0 = N. This is done 
iteratively, by a process of trial and error starting with k = N

0 
and determi

nimg x,; using the formula in Step 2. If all h; ~ 0 the process is stopped because 
the optimal value k has been found and set N can be partitioned. Next, zero 
variables can be eliminated from the sets D,, rE R (this is done in Step 3). Owing 
to this the sets Dr contain only nonzero variables. Assuming temporarily that 
all constraints (2b) are binding constraints we find in Step 4 at least one of the 
potential objective optimal values. Minimum of these values is in fact the optimal 
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value F*. This allows finding of the optimal allocations x* , n E N (Step 5). 
n 

The way in which k, F* and x* are determined ensures that the optimal 
solution satisfies ( 4). 

The number of computations in each step of the algorithm is bounded from 
above by N log N in step 1, NR in step 2, max {R2 , N} in step 3, R in step 4 and 
N in step 5. 
This means that the number of computations in the whole algorithm is finite , 
which ends the proof. 

The final considerations in the above proof make it possible to evaluate the 
computational complexity of Algorithm 1 as equal to 0 (N Q), where Q = max 
{log N, R2 }. 

Computations performed by Algorithm 1 can be illustrated by the following 
example with N = R = 4, h (x1 ) = .5 + .5ln (x1 + 2), fz (xz) = 

= 1 + .5ln(x2 + 1), h(x3 ) = 1 + ln(x3 + 3), h(x4 ) = 1 + 2ln (x4 + 2) and 
constraints x1 + x2 + x3 + x4 ~ 3, x1 + x2 ~ 2, x1 + x3 + x4 ~ 2, x2 ~ 1, xn 
?: xn ?: 0 for n E N. 

Sets A and B obtained in Step 1 are A = {.846,1 ,2.098,2.386} , 
B = { .846, 1 ,2 .098,2.386, oo}. For k = 4 calculations in Step 2 result in 
x~ = 41.492, x~ = 15, x~ = 1, x'4 = 0 what gives h~ = - 54.492, 
h~ = - 54.492, h~ = - 40.492, h~ = - 14. This causes that Step 2 is repeated 
for k = 3. Algorithm may enter Step 3 after a yet another repetition of Step 
2 because finally fork = 2 we obtain x~ = .718, x~ = x'3 = x~ = 0 and all 
h ',. )0, r = 1,2,3,4. 

Application of Step 3 gives N 0 = {3,4}, Nk = {1,2} , 11 R = {1 }, 
R = {2,3,4}, D~ = {1,2} , D~ ' = {1 }, D~ = {2}. The values ofF ; calculated in 
Step 4 are Fd = 1.148, F; = 1.346, and consequently, Step 5 gives optimal 
solution F* = 1.148 for allocations xi = 1.655, xi = .345, xj = x! = 0. 

3. The mixed integer problem 

The algorithm presented below for the problem (2) in which some variables 
xn, n E J and J c N are positive integers and some xn, n E C, J u C == · N, 
J n C = 0 are nonnegative reals differs slightly in first two steps from the 
original algorithm developed by Brown [1]. The difference in Step 1 is that 
Algorithm 1 is applied instead of Brown''s algorithm. The difference in Step 2 is 
caused by different number of constrains in problem (1) and (2). Therefore the 
sets M,. , rE R, are introduced. The rest of calculations are the same or analogical 
and can be easily explained. 

Algorithm 2. 
STEP 1. Allowing all xn, n E J be nonintegers solve _the problem (2) using 

Algorithm 1. Let xn for n E J u C represent continuous solution. 
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STEP 2. Set 
F = minf,([xn]) 

nEJ 
where [x] is the largest integer not greater than x. Let S contain the 
variable numbers n, n E J such that fn ([xnD = F. 
Calculate 

if 

if 

nEJ 

nEC 
(5) 

where [x] is the smallest integer not less than x. Define for x E R sets 
M,= {n:nEJnD,andfn(x~) = F}andM = UM,.Calculatefor 
rER rER 

h; = I x:. + I x:. (6) 
nEJnDr nECnDr 

If h; + IM,I ) h,, where IM,I means the number of elements of M,, for at 
least one r E R, then go to Step 3. If h; + IM,I ::::; h, for all r E R, 
h; + IM,I = h, for at least one r E R and C = 0, then go to Step 4. 
Otherwise go to Step 5. 

STEP 3. Set x ~ = x;. for all n E JuC. STOP. 
STEP4. Set x~ = x~ + 1 for all nE M and x~ = x~ for n.E N - M . STOP. 
STEP 5. Set x~ = x;. + 1 for nE Sand replace h, by h, - L x ~ for rE Rand J 

nES 

by J- S. If J = 0 then STOP. Otherwise go to Step 1. 

The calculations performed in and the features of the solutions produced by 
the Algorithm 2 are discussed in the proof of the following theorem. 
THEOREM 3. Algorithm 2finds the optimal solution x ~,nE N to the mixed integer 
problem (2). 
Proof. (Analogous to the proof for the single-constraint mixed integer 
problem [I]. · 

Calculations performed in Step 1 and in the beginning of Step 2 are aimed at 
determining lower and upper bounds for the optimal value of the objective 
function. If the integer variables from the set J are allowed to be conti:t:mous, then 
the continuous solution to the appriopriate continuous problem gives the value 

0 

of objective function F which is the upper bound to the optimal value F* of the 
objective function of the mixed integer problem. A feasible solution to the integer 
problem can be obtained from the continuous solution by dropping fractional 
parts of those variables which belong to J. Thus, value ofF computed in the step 
2 is the lower ,bound to the optimal value of the integer problem, i.e. F ::::; F * 

0 0 

::::; F But we desire to have the value ofF* being as close to F as possible without 
violation of any constraint of the problem. Hence, if the optimal value of the 
objective function for the integer problem would have been greater than F, then 
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all variables n E S should be equal to [xn] + 1. But f.. ([xnD + 1 is greater than 
0 

F. Hence, we have to check whether the value of variables from the set S should 
be [xn] or [xn] + 1. Using (5) we determine x~ for nE J such that it is possible to 
attain more than F'. But solution x~, nE N computed this way may not be feasible. 
That is why we calculate next the smallest possible sums of allocations with all 
integer constraints being satisfied and the value of objective function being at 
least F' for nE N. These sums are denoted h; in the algorithm and are determined 
for all constraints rE R, using the formula (6). The set M,. rE R consists of those 
variables of J for whichfn(x~) = F' and M, c D,. To obtain a solution with the 
objective function greater than F', each variable in M = U M, has to be 

rER 

increased by 1. This will result in an increase of the sum of allocations from the 
value h; to the value h; + IM,i, r E R. Thus, h; + IM,I are the smallest sums 
possible such that all variables n E J can be set so that their tradeoff function 
values are greater than F', while all continuous variables n E C have tradeoff 
function values equal to F', i.e. fn (x~) = F' for all n E C. Hence if there exists at 
least one constraint r E R such that h; + IM,I ) h, then x! = x~, n E N is an 
optimal solution because it is not possible to gain more than F' (see Step 3). If 
h; + IM,I = h, for at least onerE R , while for all rE R the inequalities h; + IM,I 
~ h, hold and the set of continuous variables is not empty C =1- 0, then x! = x~, 

n .EN is also an optimal solution, because the continuous variables nE C cannot 
be increased, without violating constraints, so that their tradeoff function values 
are greater than F', despite the fact that the integer variables can be increased to 
obtain function values greater than F. Of course, if C = 0 and h; + IM,I = h,, 
then the variables from the set M can be increased by 1. Thus the optimal solution 
is x! = x~ + 1 for nE M and x! = x~ for nE N- M (Step 4). If none of these 
cases is valid it means that h; + IM,i < h, for all rE Rand obviously the objective 
function is greater than F' and optimal values of variables in S are x~ + 1. This 
means that variables from S can be eliminated from the old problem and the 
limits h, on sum of allocations can be reduced (Step 5). This new problem has 
a lower number of integer variables. The whole solution procedure is repeated 
for the new problems formed this way until the set J is empty. By this process all 
optimal allocations x!, nE N are obtained one after another. The process is finite 
because the set J is finite and each iteration removes at least one variable from J. 

We have shown that the algorithm is finite and that it determines the optimal 
allocation x!, n EN with the optimal value of the problem being 

F* = min ifn (x!)} 
nEN 

0 

such that F* ~ F. This ends the proof. • 
The computational complexity of the Algorithm 2 is easily evaluated using 

the observation that it depends on the maximum number of Algorithm 1 calls. 
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This number is at most N. Thus the computational complexity of Algorithm 2 is 
0 (N2 Q) because all other steps of this algorithm are 0 (N) or 0 (R). It is worth 
while to note that its computational complexity does not depend on max {h,}, 
rE R. 

4. Concluding remarks 

Brown [1] considers more types offunctionsfw For the linear case he develops 
an algorithm a little bit simpler than for the non-linear case because the solution 
of the equation in Step 4 can be derived as a closed-form expression. Since 
Algorithm 1 can be also applied to linear functions the modification of Linear 
Algorithm [1] is omitted herein. 

The modifications of Algorithm 1 and 2 for piecewise linear functions, 
piecewise nonlinear functions and any other such functions will be obvious when 
reader confronts Brown's paper. 
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Minimaksowe zadanie rozdzililu zasob6w z wieloma ograniczeniami 

W pracy przedstawiono rozwini~cie problemu Browna rozdzialu zasob6w pomi~dzy okreslon4 
liczb~ zmiennych w celu maksymalizacji najnmiejszej z wartosci funkcji ce1u odpowiadaj4cych tym 
zmiennym. Brown rozwaza przypadek z jednym ograniczeniem na sum~ ilosci przydzielonego 
zasobu. Natomiast algorytmy opisane w pracy dopuszczaj4 dowo1n4 skoi:tczon4 liczb~ tego typu 
ograniczei:t. Opracowano je dla zmiennych ci4glych oraz dyskretnych. Zal4czono przyklad 
ilustrujqcy jeden z opisanych algorytm6w. 
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MnnHMaKcnaH Ja)J;atfa pacnpe,ll;eneunH pecypcos eo MHornMn orpaull'lennHMH 
• B pa6ore rrpe.n:craBJieHo pa3BHTHe 3a.n;a'IH EpayHa pacrrpe.n:eJieHHH pecypcoB MeJK.n:y 

OIIpe.n;eJieHHhiM KOJIJIH'IeCTBaM rrepeMeHHhlX C IJ;eJihlO MaKCHMH3au;HH H3 3Ha'leHHH <iJyHKIJ;HH qeJIH, 

COOTBeTCTBYIOIIlHX 3THM rrepeMeHHhiM. EpayH paCCMaTpHBaeT CJiy'laH C O.ll:HHM orpaHH'IeHHeM IIO 

CYMMe KOJIH'IeCTBa IIpe.ZJ:OCTaBJieHHOfO pecypca. B CBOIO O'!epe.n;h amOpHTMhl, OIIHCaHHhie B pa6ore, 

.ll:OIIYCKaiOT IIpOH3BOJihHOe KOHe'!HOe 'IHCJIO 3TOfO THIIa orpaHH'IeHHH. 0HH pa3pa6oTaHhl .LJ:JIH 

Herrpepb!BHhiX H .ZJ:HCKp'eTHhiX rrepeMeHHhiX. flpe.n:cTaBJieH IIpHMep HJIJIIOCTpHpyiOru;HH O.ll:HH H3 

OIIHCaHHhiX aJirOpHTMOB. 




