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The paper refers to the problem of finding ,local linear models", understood in a global manner, 
i.e. involving determination of the ,best" number of local models, the models themselves and the 
sub-samples related to these models. The problem can be formulated as a clustering problem with, 
however, predefined solution structure, and, if a classical linear regression framework for local 
models is adopted, also predefined local objective function. The paper reviews the basic questions 
pertaining to the thus defined clustering problem, both typical to clustering problems in general 
(globality of solution, numerical efficiency) and specific for the type of problems considered 
(non-uniqueness, statistical validity). Then, a number of existing approaches, whether ad hoc or 
specific, are reviewed, and their relation to questions outlined before is discussed. A proposal for an 
objective function implying globally optimal solutions in the sense mentioned and a method referring 
to it is presented. 
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1. Introduction 

Assume a general clustering problem, i.e.: for a set I of indices i, i E I, 
I = { 1 , ... ,n}, denoting n objects characterized by vectors xi, and/or by values dij 
or sij• which are interpreted as, respectively, ,distances" and ,proximi ties", to 
find such a partition p* of I that objects belonging to the same clusters- subsets 
of I be possibly ,close" or ,alike", while those belonging to different clusters be 
possibly ,far" of ,dissimilar". A partition P of I is a set P = { Aq} g ~ 1 of 
clusters Aq, such that 

I (1) 
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and, according to the standard most widely accepted, and used throughout this 
paper: 

(2) 

where q E K = {l, .. . ,p} , i.e. usually no overlapping and no fuzziness. 
In the construction of cluster analysis methods it is of primary importance to 

define the intra- and inter-cluster ,distance" and ,proximity" measures, and, 
eventually, their overall aggregate. There are a number of methods which, in 
defining these measures, refer to distances or proximities with regard to certain 
points, such as cetroids or medians, whose interpretation might often be to 
,represent" the clusters. 

Hence, if aggregate distance between clusters is denoted D (Aq, Aq'), and that 
within a cluster, for simplicity, is denoted D (Aq), then for the methods which 
refer to a ,representative" there is 

(3) 

where xq (Aq) is equivalent to description of an (actual or dummy) representative 
object or a set of objects, x (Aq) c Aq. Quite often, in fact, 

(4) 

In general, it is possible that solution structures involving ,representatives" 
take the form (P,X) = { (Aq,x)} q£ 1 . In most practical cases, however, xq can be 
uniquely determined on the basis of Aq, so that it is sufficient to refer to P. 

It should be strongly emphasized that application of a (3), together with 
definition of x (Aq) is, in an explicit of implicit manner, strongly related to an 
a priori assertion as to the , nature" of the set of objects. Most often this assertion 
points towards the spherical shape of ,natural" and - therefore, par force, also 
- algorithmically delineated· clusters. This may reflect a wish of getting away 
from other cluster-shape biasses displayed by, e.g., hierarchic agglomerative 
methods. 

Note that from the point of view of the solution structure implied by 
minimization of an aggregate of (3), the ,resulting distance" of two objects i and 
j, is, provided appropriate definition of d(.,.) is available, 

(5) 

where, as usual, d(a,b) = d(b,a), and Lis nondecreasing with respect to both 
arguments. 

It is easy to see that such clustering problem solution constructions provide 
a far less opportunity for an intuitive assessment and analysis than, for instance, 
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the classical progressive merger procedures, which, quite often, do only refer to 
the matrix Fd of {d;i}. This phenomenon is, however, inevitable as the solution 
structures become more complex. 

The solution structure implied by (1)- (3) is seen as the one in which clusters 
are determined together with their ,representatives", which can also be referred 
to as cluster ,models", i.e. models of cluster-proper objects. Thus, for instance, 
in biological taxonomy, clusters Aq may represent families, while cluster-wise 
models .X (Aq) - those species, which are the ,most characteristic" for the 
families, the model-species being either real or dummy ones. Introduction of the 
notion of cluster-wise model does not necessarily cut out of the cluster analysis 
domain a well defined area of problem formulations, i.e. assumed solution 
structures. It inakes a room, however, for a class of problems, which refer more 
directly to the notion of model. 

2. Problem outline 

2.1. The alternative 

In particular, a problem may arise of determining, for a given data set, 
a solution structure sometimes called ,local linear models", see e.g. Diday 
(1986). Within this domain a particular-class can be distinguished. Assume, for 
instance, that the data matrix X containing elements xik• such that 
[x;p···,x;m] = X; , is generated by a process in which, roughly, vectors x.l' ... ,X.111 _ 1, 

x.k = [x Jk, Xzk, ... ,xik, ... ,xmd r, describe various , input" vector values of 
the proces, while x.m decribe corresponding ,output" values. (The multioutput 
case is just and extension of this one, provided there are no inter-output 
dependences.) Thus, vectors X;, i E I, represent various ,point" descriptions of the 
functioning of a process. Matrix X has therefore the structure as below: 

X = Xn ... X;k . . . X;m 
vectors X; of ,objects", i.e. 
descriptions ,input-output" 

xn J . . . Xnk ... xnm I output vector x.m 
I ___ _ 

input value vectors x.k, 

k = l, ... ,m- 1 

The alternative that one is confronted with is as follows: 
a. To treat all descriptions as generated by virtually the same (unchanged) 

process, and differing therefore only by some random error, so that all point 
descriptions can be aggregated into a one, approximate model, constituting 
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full description of the process functioning, allowing estimation of other x*m 
for given X* ... ,X* m-l· 

b. To reject the
1
hypothesis of the same generative process, stating, instead, that 

the individual descriptions X; differ so much that it becomes impossible to 
determine a valid model for a hypothetical process, and hence the descrip­
tions can rather be treated as separate objects; no projections are feasible . 

c. To assume that the descriptions do not, in fact, represent the functioning of 
the same unchanged process, and that therefore no valid overall aggregate 
model for the whole I can be determined, but that it is possible to define 
subsets of I , corresponding to distinct processes or process modes, for which 
valid models can be obtained. 
In reality, variant c of the above alternative may also take the form: 

d. To compare the quality and validity of the process model obtained for the 
whole I and for its, optimally chosen, subsets. 
Structure of this alternative is presented in Fig. 1: 

OVERALL MODEL VALID? 

I \ 
YES NO 

I \ I\ 
a. d. c. b. 

ONE MODEL A FAMILY OF MODELS NO MODEL 

Fig. I. Structure of the model adoption alternative 

The present paper looks at the variants d and c from the point of view of 
numerical feasiblility and capacity of obtaining theoretically justified results. 

2.2. Problem formulation 

Assume that the process model relating x* to x* , ... ,x* has in general the 
m 1 m-1 

linear form, i.e. 

(6) 

where a = [a1 , . .. ,am_1 ,am], and x* = [x*l'" .. ,x*m-pl]. Determination of a from X; 

subject to errors, implies, in case of one overall model , that 

(7) 
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where X; = [x;
1

, . . . ,X;m-pl]. In case of , local linear modelling" , there is 

(8) 

i.e. depending on the model, values 

X;~- e[ (9) 

will be ob~ained, for q E K. 
Assume further that models aq are obtained via the classical regression 

technique for clusters Aq c I, i.e. within the clusters the sum of error squares is 
minimized: 

(10) 

and the standard regression equation can be applied, provided all usual 
conditions hold, that is 

(11) 

where Xq is a submatrix of[x;]'i = 1 composed of vectors x; such that i E Aq, and Xqm 
is a vector of values X ;m' for which i E Aq. 

Now, the initially stated general clustering problem can be reformulated for 
the above outlined case. Thus, a partition p* of I is sought which would ensure 
minimization of intra-cluster distances according to (10), preserving, however, 
the fundamental feature previously mentioned, namely that of distinguishing 
essentially differing clusters and their models. 

Thus, the announced cluster-wise identification problem was reduced to the 
cluster-wise linear multiple regression (CLR) problem, which, though, retains all 
the essential features of the more general one. 

2.3. The issues 

Since the problem was yet formulated in such a way that its properties should 
still be made more precise, a number of issues must at this point be discussed. 

First, there is the usual globality issue. Denote 

(12) 

Then, 

(13) 
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where, naturally, PQ*o = I i.e. minimization of the sum of intra-cluster 
aggregate distances- (1 0), leads to trivial solution P Q*v = I, that is 

p = n, Aq = q, and indeterminate aq, e.g. aq = [xi~n , O, ... ,o], for which 
x,I 

min QD (P) = QD (I) = 0. 
p - -

The most frequent way around the globality issue is to analyse (13) for 
a definite class of P, e.g. for the P' s with a given p, since min QD (P) is mono­
tone with regard top, and most functions of similar nature are also. In fact, an 
important group of methods reside upon precise definitions of the class of 
P considered. It can be seen, though, that even for thus limited subsets of the 
space of partitions only local solutions can usually be reached, not ensuring 
globality with regard to a class of P considered. 

As is pointed out further on in this paper, it is feasible to construct a method 
which operates on an objective function based upon (10), and which would not 
yield a monotone dependence of Q* uponf Such a method ought namely to take 
into account, in accordance with the general problem formulation presented, 
both intra-cluster, i.e. (10), and inter-cluster distances. 

In a number of cases, however, the choice of {Aq} is made with complete 
disregard of (10), which is used only to obtain aq minimizing it for otherwise 
given Aq. Thus, for instance, one can first use a progressive merger procedure to 
obtain P and then determine { aq}: = 1 via (11). A consequent application of such 
an approach would require a choice or design of such merger criteria which 
would be justified from the point of view of (1 0). Otherwise, and this is presently 
mostly the case, there is little reason to accept thus obtained solutions. 

Hence, for both these types of methods proper formulation of objective 
functions seems to be crucial. 

There is, however, another group of approaches, which are, in fact 
. historically the oldest ones within the CLR domain, and which stem directly 
from the classical regression analysis. These approaches are meant to solve quite 
specific, and, seemingly, simpler problem of finding such division points in 
a sequence of values of an independent variable that a regression model, having 
m = 2, preserves its validity between two adjacent division points, but changes at 
each of these division points. (This fact is referred to as ,regime change" of the 
process.) In many cases existence of just one division point (p = 2) is assumed. 
The source and main interpretation of this problem is obvious: change of a model 
(say, a growth model) with time, although other interpretations are quite as 
feasible, e.g. change of a consumption model along the per capita income axis. 
Note that the independent, model shift defining, variable may enter the model or 
just stand as an index. 

In spite of apparent simplicity of the problem, approaches aimed at solving it 
for larger p and m get very soon quite difficult to devise, because their purpose is 
not just numerical operation on the data table X, in abstracto of its inter-
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pretation, but rather an in-depth statistical analysis, based upon the rules of 
statistical inference. Thus, construction of appropriate precise tests gets prohibi­
tively difficult asp and m increase above 2. That is why for more general cases, 
e.g. p » 2, heuristic approaches ar_e proposed, combining statistical analysis with 
clustering. Hence, the methodological loop closes, indicating clustering as the 
proper algorithmical framework for multi-regime regression analysis. 

At this point a more general remark is due. In such complex data settings as 
those implied by the CLR problem the classical statistical analysis is very difficult 
to carry out. Statistical analysis is virtually hindered by lack of a priori 
knowledge of assignment of objects to hypothetical subpopulations. It should be 
emphasized that not only the precise form, but also the very kind of hypotheses 
which can be forwarded depend upon the contents and dimensions of sub­
populations. These hypotheses, therefore, need not be of the same kind for 
various clusters. Thus, any reasonable analytical operation to be performed on 
such data sets has to be somehow related to cluster analysis. 

3. Classification of approaches 

3.1. A summary 

Along the lines of reasoning already deployed Table 1 presents a range of 
problem formulations pertaining to the question taken up in this paper together 
with samples of appropriate references. It can easily be seen that the set of 
approaches and techniques available require quite an analytic effort priori to 
application of any given method, so that the proper choice of method or methods 
is made. 

3.2. The ,algorithm" 

A quasi-algorithm of such a choice of methods, based upon the ranges of 
applicability and validity of the existing ones, is .outlined below. The numbers 
appearing here correspond to those of Table 1. 

A. Is approximation-type formulation more suitable? IfYes, go to 9. IfNo, go to 
B. 

B. Is the case unidimensional? If Yes, go to C. Only two submodels? If No, go to 
D. IfYes, go to 2 or 3. If No, go to 3 or 4. 

D. Is there a basis for a good guess as to the ,right" partition and models? If Yes, go 
to 6. If No, go to 5 and 1: Is the result satisfactory? If Yes, Quit. If No, go to E. 

E. Maximum number of trials not attained? IfYes, go to D. lfNo, go to 7 and/or 8. 

Strictly statistical methods fail for multidimensional cases with unknown 



Table 1 
Problem formulations and exemplary references 

No General problem Remarks I Limitations Illustrative references 
formulation I approach 

I Testing of significance of differences Analytical, and not synthetic approach , Chow (1960), Quandt (1960), Hald (1962), 
between given regresnion dependences low number of alternatives considered Williams (1967), Calinski a. Malec (1976), 

Malec (1980) 

2 Testing whether a parameter shifts Usually one independent variable and Page (1955, 1957), Kander a. Zacks (1966), 
two regimes Brown a. Durbin (1968), Hinkley (1969), Fender (1973) 

3 Finding of a breaking point over As above Quandt (1958 , 1972), Robinson (1964), Mustafi (1968), 
a time-like variable, perhaps together Farley a. Hinich (1970), Ferreira (1975), 
with the parameters of resulting Kiefer (1978, 1980), Schmidt (1982) 
regressions 

4 Identification of multiple regimes One independent variable, sequental McGee a. Carleton (1970) 
along a time-like variable regimes 

' 5 Cluster-wise regression: first cluster, Little, if any regression-wise justification Fakiner, Krieger a. Rohmeief (1'977) 
then regress for cluster; numerical efficiency Owsinski (1984 a,b) 

6 Cluster-wise regression: exchange and Local optima depending upon initial Spath (1979, 1981, 1982, 1983), Charles (1977), 
, center-and-reallocate" approaches partitions Diday et al. (1980) 

7 Sample breakdown for better regression More robust, and not varying models Hinich a. Talwar (1975) 

8 Cross-validation As above Picard a. Cook (1984) 

9 Piecewise curve fitting Similar as in 4. above Charles a. Lechevallier (1979), Dorofeyuk, 
Ibragimli a. Movsuniov (1976), Bacon a. Watts (1971 ) 

-----

[601 
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numbers of subpopulationsjsubmodels. In these circumstances the methods 
generally referred to as ,center and reallocate" turn out to be the strongest, 
especially those of the ,nuees dynamiques" kind, but also, for more precisely 
difined situations- more usual exchange algorithms (No 6 in Table 1, see, for 
instance, a clear-cut case study by Spiith (1986) ). Obviously, all these yield local 
solutions and not the global ones. The term ,local" is used here to point out the 
fact that not only the final result of a procedure working depends upon the initial 
partition-and-model structure (JX! { aq}0 ), i.e. locality of the procedure itself, but 
also, that the objective functions used have the feature that their optimum values 
for consecutive p are monotone, i.e. locality ofthe objective function, that is, 
problem formulation, itself. (Note, though, that in some methods, like e.g. those 
based upon the ,nuees dynamiques" idea, it is possible to find a par­
tition-and-model solution better than the initial one and havingp different from 
~he initial one, in particular, p* ~ p0

) . 

Once a procedure stopped it may be advisable to apply a sort of statistical test 
for significance of differences among the obtained models (No.l of Table 1 ). It 
should be remembered, however that simultaneous comparison is necessary and 
that a variety of basic statistical assumptions would have to be used and/or 
verified (population-proper distribution, .. ). In fact, prior to application of a test 
to the solution obtained it would be proper to check whether for the data set at 
hand and with a given intra-cluster measure, say like in (10), there exists at all 
a possibility of obtaining significant model differences. This, though, may turn 
out to be quite difficult if no extra information on the data set is available. 

The latter remark applies equally to the choice of (JX!, { aq}0 ). Indeed, there 
may by some more or less ad hoc, more or less effective, techniques for 
determination of the starting point, usually referring to overall regression and/or 
to regression-related data set analyses (see Nos. 7 and 8, Table 1), but none of 
these is sufficiently effective to allow disregarding of possible guesses based upon 
experience and intuition of people knowing the problem at hand. 

Thus, the globality issue is still to be resolved on both the problem 
formulation (, objective function") and solution procedure levels. 

It should be noted that the globality issue is compounded with the numerical 
efficiency one. Putting aside the ,regime change" formulations, which face 
problems other than numerical efficiency, it seems obvious that approaches of 
the type ,cluster first, regress after" are much quicker and simpler than the 
,center and reallocate" approaches, even if the first ones are complemented with 
validation procedures (which are also applicable to the latter approaches, 
anyway). Hence, there arises a need for developing such approaches that will 
combine globality of formulation and, possibly, procedure, with numerical 
efficiency of the usual progressive merger procedures, which is attained by the 
,cluster first, regress after" approaches. 
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4. Suggested approach 

The paper presents just an outline for the approach that would solve the 
globality issue, first at the problem formulation level. 

4.1. The fundamentals 

The approach proposed is based upon the general philosophy sketched out in 
Owsinski (1984), this time applied to multi-model identification. According to 
previous remarks, the general philosophy mentioned resides upon the postulate 
of simultaneous consideration of intra-cluster and inter-cluster measures 
(distances, ... ). Thus, along the lines set out in Owsinski (1984) the proper 
objective function, to be minimized over the space of P, would have the form 

QZ (P) = gn(P) + Q5 (P) (14) 

where Q0 (P) is, in analogy to (13), an aggregate of intracluster distances and 
Qs (P) 1S the corresponding aggregate of inter-cluster similarities (proximi ties). 
Similarity values are by definition taken non-negative and decreasing with 
distance values for the same objects. Formula (14) omits the reference to models 
{ aq} assuming that they can be uniqu~ly defined for a given P. QZ (P) is being 
minimized, while its ,dual": 

Qf(P) (15) 

is being maximized, both under the constraint of P being a partition. It is 
relatively easy to establish conditions under which 

arg max QE (P) = arg min Q~ (P) = popt (16) 
p p 

In particular, for established forms of Q, in which only D and S (i.e. distances 
and proximities) are exchanged in order to obtain Qn, Q8 and Qn, Q8 , it is 
sufficient to apply a linear transformation of distance to proximity and vice versa 
in order for (16) to be true. Now, the situation depicted in (13) would not occur, 
since both (14) and (15) can be easily made to imply globally optimal popt. 

Additional, algorithmically convenient and interpretatively facilitating devi­
ce introduced in this approach is the use of the weighing coefficient r, rE [0, 1], so 
that 

QZ(P, r) rQ D (P) + (1 - r) Q8 (P) (17) 
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and the algorithm can proceed by optimizing Q ~ (P, r) for r starting from 1 and 
going to 0. Thereby Q ~opt (r) and corresponding popt (r) are obtained. For this 
algorithm to be really simple, though, certain limitations must be set upon the 
classes of changes that P's can undergo with decreasing r. It is namely obvious 
that the interval [0, 1] can be divided into subintervals [r 1

, rt-J] = ~rt- 1 , where 
T+l 

endpoints overlap, and U , ~r 1 = [0,1], popt (r) being constant within ~r 1 and 
t 

changing only at their endpoints. (There is, obviously, popr (,0) = I, 
p opt(rT) = {I}andrr+I = O.)Thus,changesatfinitenumberofr 1 wouldbeof 
a predefined nature. 

4.2. Global objective function for CLR 

The same analysis as in 4.1, given after Owsinski (1984), applies to the 
objective function defined as in (13), for S,?o (P), with 

Qs ( P) = I I (R - D ( Aq. a")) (18) 
q < q' 

where R is a sufficiently large positive constant, chosen on the basis of the 
potential range of values of D(A", a") and considerations related to the balance 
of Q0 and Q8 in the overall Q's. Transformation from distance to proximity can 
also be moved from the cluster proper to the object level. 

Thus, according to (14), the minimized objective function is: 

q q < q' 

and, according to (17), its parametrized variant: 

q q < q 

Similarly, for the ,dual", maximized, objective function, one has 

q q < q' 

and therefore 

q q < q ' 

with, again, B sufficiently large. Obviously, a" can be determined according to 
Dmin(Aq) , which would then substitute D(A", a") in (19) - (22). 
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It is easy to see that formulations (19)- (22) do exactly follow the recipe of 
simultaneo~s consideration of inter and intra- measures. With that respect the 
choice of R and B is crucial. As mentioned, transformation of distance into 
proximity can be moved over to the object, rather than cluster, level. Besides that, 
the very form of this transformation, shown here, is just an exemplification. 

Obviously, thus jefined Q~ and Qf can imply globally optimal P's under 
proper choice of R and !i (or, more generally - of distance-proximity 
transformation). This particular exemplification gives p opt (r) ranging from the 
equivalent trivial partitions, obtained as optimal for r = 1, for which all the 
D (Aq, aq) = 0 and minimal pis determined by the relation between nand m, to 
just two clusters, card P opt (0) = 2, when QD is maximized or Qs is minimized. In 
between, there is a room for finding optimum P for such r value or segment, 
which, due to the a priori considerations would ~e considered proper for the 
given distance-proximity transformation and/or R and R (or vice versa: the 
transformation can be sought such that the optimum required would occur at 
r = 0.5). 

4.3. Principles of the procedure 

As mentioned, the general outline of the principles for the procedure is as 
follows. 

First, the dual objective functions considered cannot be optimiz~d in 
a straightforward manner. Certain suboptimizing heuristics have therefore to be 
applied. When applying them, care should be taken when njm is low, i.e. of the 
order of m. Namely, the alternative which arises is: while low njm allow more 
exhaustive search in the space of partitions, it incurs greater overall error in case 
of erroneous assignment of particular objects i to cluster Aq. Moreover, larger 
njm facilitate one of the , branches" of the procedure. This procedure starts, 
theoretically with D (Aq, aq) = 0, for r 0 = 1. Such a starting point would be, 
though, awkward for further steps. That is why a number of starting partitions 
P 0 1 is generated, with card P 0 1 

E (n j2m, njm). To these partitions a reallocation 
algorithm is applied as given in Spath (1983) or Diday (1986), but implemented 
for functions (20) or (22). Resulting partitions, P0 1, are subject to an operation, 
say, merger, at r 1 < r 0

, as determined through simple algebraic manipulations 
from (20) or (22), see e.g. Owsinski (1984 b), on the basis of cluster-level measures 
D and their proximity-like transformations. Thus, partitions P 1 1 are established, 
anew subject to reallocation, which yields P1 1 etc. 

First results obtained with the new objective function and with the variants of 
the procedure outlined, differing by 

* the choice od reallocation algorithm, 
* class of the r'-driven operations, and 
* the forms of distance-proximity transformation, 
are promising enough to go further in this direction. 
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5. Conclusions 

The main issue in multi-model identification turns out to be the globality of 
solutions. This issue appears on the level of problem formulation and on the level 
of solution finding. The paper asesses this situation and proposes a clear way out 
for the level of problem formulation. Some work is still to be done on the solution 
finding procedures, which refer partly to existing methods based upon matrix 
calculus. 
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0 optymalnosci globalnej w regresji dla skupien 

Artykul dotyczy zagadnienia , liniowych modeli lokalnych" w perspektywie globalnej, tj. 
zagadnienia obejmujqcego: wyznaczenie , najlepszej" liczby modeli lokalnych, tych modeli i pod­
zbior6w pr6bek odnosz4cych si~ do tych modeli. Tak sformulowane zagadnienie moi:e bye 
przedstawione jako zadanie analizy skupien, z zadan4 z gory struktur4 rozwi4zania, a taki:e, 
w pewnej mierze, postaci4 funkcji celu, odpowiadaj4c4 zadaniu regresji liniowej. Artykul zawiera 
przegl4d podstawowych·kwestii odnosz4cych si~ do tak postawionego zadania, wlasciwych zar6wno 
dla wszystkich zadan analizy skupien (globalnosc rozwi4zan, sprawnosc numeryczna), jak i dla 
rozwazanego zadania (niejednoznacznosc, wlasnosci statystyczne). Podano takZe przyklady metod 
rozwi4zania tego zadania, wraz z ich charakterystyk4 w odniesieniu do podanych kwestii . Na koricu 
zaproponowano postac funkcji celu implikuj4C4 rozwiqzania globalnie optymalne i zarys odpowied­
niej metody. 

0 rJI06a:JILHOH OUTHM3JibHOCTH B perpeCCHH ~JIH KJiaCTepOB 

CTaTb.ll KacaeTC.II BOnpoca ,JlHHeHHbiX JlOKaJibHbiX MO):leJieif" B rno6aJibHOH nepcneKTHBe, T.e. 
Bonpoca oxBaThiBaiDm:ero: onpe):leJieHHe ,HaanyqUiero" 'IHCJia JIOKaJibHbiX MO):leneii, 3THX 
MO):leJieH H ITO):lMHO)l(eCTB Bbi60pKH, OTHOC.IIW:eHCll K 3THM MO):leJl.IIM. TaK c<f>opMyJIHpOBaHHbiH 
Bonpoc MO)l(eT paccMaTpHBaTbC.II KaK Ja):la'la KJiacTepHoro aHaJIHJa, c JapaHee Ja):laHHOH 
CTpyKTypoH peUieHH.II, a TaK)l(e B HeKOTOpOH Mepe, BH):IOM <f>yHK~HH ~eJIH, COCTBeTCTBYIO'IHM Ja):la'le 
JlHHeHHOH perpeCCHH. CTaTb.ll CO):lep)l(HT o63op npo6JieM, OTHOC.IIm:HXC.II K TaK ITOCTaBJieHHOH 
Ja):la'le, CBOHCTBeHHbiX KaK )J;Jl.ll Bcex Ja):la'l KJlaCTepHoro aHaJIHJa (rqofiaJibHOCTb peUieHHH, 
'IHCJleHHall 3<f><f>eKTHBHOCTb), TaK H )J;Jlll paccMaTpHBaeMOH Ja):la'IH (HeO):lHOJHa'IHOCTb, 
CTaTHCTH'IeCKHe CBOHCTBa). ,[l;alOTC.II TaK)l(e npHMepbl MeTO):lOB peUieHHli3TOH Ja):la'IH, BMeCTe C HX 
xapaKTepHCTHKOH B OTHOUieHHH paCCMOTpeHHbiX npo6JieM. B JaKJllO'IeHHe npe):lJiaraeTC.II BH):l 
<f>yHKIIHH IIeJIH, HMllJlHIIHPYIOW:HH rno6aJibHO OITTHMaJibHbie peUieHH.II H JapHCOBKa 
COOTBeTCTBYIOW:ero MeTO):la. 
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