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Necessary conditions of the Pontryagin maximum principle type are proved for cooperative
many players differential games with state constraints by reducing the games to vector optimization
problems. This principle is also proved to be sufficient for optimality under additional assumptions.

1. Introduction

In the game theory in general, and in differential games in particular, there
are many mode of playing. For the games in which each Player j has his cost
Jj(uy,...,u,) (dependent also on the controls of the other players), there are four
mode of play. In the first one, each player assumes that all the other players are
collectively playing against him and he must seek a minimax solution (see, e.g.,
[7]). In the second mode of play, the Nash equilibrium solutions are accepted (see,
e.g., [6], [9]). This type of solution is secure against any attempt by one player to
unilaterally alter his control. The third mode is the cooperative game, where all
m players agree to cooperate exclusively. For this case a commonly accepted
solution concept is the Pareto optimality [3], [6]. The final mode consists of the
situation when only s players, | < s < m, form a coalition and they assume that
the coalitive Pareto optimality is the solution concept [1], [8].

In the present paper we consider cooperative many players differential
games. The main difference between our consideration and the known results on
cooperative differential games is the appearance of state constraints. In Section
2 we derive necessary conditions in the Pontryagin maximum principle form by
using our preceding result on vector optimization [4]. Section 3 addresses
sufficient conditions. Here, using a scalarization result, we prove that Pontryagin
maximum principle provides also sufficient conditions under additional assump-
tions.
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2. Necessary conditions

The cooperative differential game we consider is

X(0) =@ x(0),u (1), u,), : (1)
w(t)eUcRY,j=1,..,m, (2)

h,(x(2,)) =0, h;(x(t,)) =0, (3)
g,-(f,x(f)),éo, i= 1,...,k, (4)

E(t)) + jj’fj(r,x(:), w, (), cyu, ())dt >inf, j=1,...,m, (5)

where ¢, and ¢, are fixed; o : RxR"X R, ... x R"m + R" ; h, : R" - R%: h : R"
— R ;g :RXxR"> R;{:R"> R% f,: Rx R"XR"x ...xR"~— R%, R% being
ordered by a closed convex cone K, j = 1,..m; (1) and (2) are satisfied almost
everywhere (a.e.) on [¢,,1,], admissible controls are u, (.) € L [£,,1,] which satisfy
(2) a.e. on [1,,t,]. The set of all admissible controls u (.) is denoted by U,

To describe the game (1) - (5) as a vector optimization problem we adopt the
following notations:

Gi(x() =sup g1, x(2)),
te 1]

Y=R4 X .. x R ¢, 4+t @, =q 1, it ro=10 f= (ffp)h
u = (u,,...,.u,),... (the same for &, g, G, U, U, K). Next we introduce a mapping
P:C[t, t,1x Ly [t, t,] = C"[t,, t,] x R*» x R* by

P(x (), u()) = (), by, by)
with

y@® = x(0) —x(t) — jfo @ (r,x(r),u(r) dr,
by = hy (x(1), b, = h, (x(1,)),

and a mapping F : C"[1), ;] x Loro [t,, t;,] = R?by

FxOu() = £(e(t,) + f fex@u) d.
a

Then the game is reduced to the vector optimization problem

F(x(.),u(.))— inf, (6)
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G(x(.)) <0, G )
P(x(.)u(.))=0, (®)
u(.)eU. ©)

Recall that a point x’e S X, X being a topological space, is called a local
Pareto minimum of a mapping /= X — Y on S, Y being a normed space ordered
by a convex cone C, if there is a neighborhood N of x such that there is no
xeSNN with f(x°) —f(x)eC\(—C). If there is no xeSnN with
f(x°) — f(x)eri C (the relative interior), then x* is called local Slater minimum of
fonS.

Now we call controls uf(.),...,u%(.), with the resulting state x°(.),
local-global weakly optimal for the differential game (1) — (5)if (x°(.), u°(.))
is a local Slater minimum of the problem (6) — (9), considering x ( . ) elements of
C" [t,, t;] and u(.) elements of U equipped with the trivial topology (containing
only ® and U).

Ifint K # ® then R? (ordered by K as above-defined) is a vector lattice. For
ye Rlet | y| denote the Euclidean norm and | y |°"® stand for the absolute value
sup {y, — y} of y. Then we have

REMARK 2.1. For each ¢ >0, there exists y > 0 such that ye R? and |y| <y
imply |y [ < Je, e being a given order unit of RY.

Let, further, y, (.) denote the characteristic function of a set M < [z,,7,] and,
for a vector-valued function y(.),

Y@=, y0d. ¥,0=] oy
The following technical results will be used.

LEMMA 2.2 [2,p.245]. Let y,(.): [t,.t,] = R", I =1, ...,s, be measurable boun-
ded vector-valued functions. Then for every 8>0, there exist one-parameter
Sfamilies M, (a), ..., M, (o) of measurable subsets of [t,,1,],0 < o < s™', such that
mes M,(2)=oa(t,—t)forl=1,..5,0<a<s7; (10)

M(a')=M/(a)and M,(a)n M, (a') =D
if 0<a'<a<s' and!/#k; (11)

|Y.‘M|‘(a) (t) - Y.’Mr(a'](r) - (‘:€ - C(’) Yf(t)l < 6'“ - Exrl

forall te[t, t,],l=1,..5,0 < a,and o’ < s~ Here ,,mes” means the Lebesgue
measure.
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Recall, further, that a mapping f: X — Y, X being now a Hausdorff locally
convex space, is said to be locally convex at X if its directional derivative /' (X;x)
exists for all x - X and is convex in the sense that

fixaxt+(—a) @) <af' (% x)+ (1 —a)f' (X; x%)

for all !, x2e X, a€[0, 1]. f is said to be uniformly differentiable in the direction
x at X if for every neighborhood of zero V' < Y there corresponds a neighbor-
hood N of x and y, > 0 such that

p FE+y2) (D)) =1 (X x)eV

whenever ze N and ye(0, y,). If fis locally convex and uniformly differentiable
in all directions at X we say that f is regularly locally convex at X.

LEMMA 2.3. Let U, be a neighborhood of some x°(.)e e [¢,, t,] and
V={x(t)eR"|telt, t,), x(.)eU,}. Let g: [t,, t;] x R" > R be continuous
intforeach xeV,andin x on V for each te [t,, t,]. Let, furthermore, g satisfy the
following strong uniform differentiability in all directions at the point x°(t), t€ [t,,
t,): forevery = > 0andz(.)eC" [t,, 1,], there exist y, > 0 and a neighborhood U,
of z(.) such that

| gt x°(O) +yy () —g(t, x° (1)
Y

— 8 (t, x°(); (1)) | e (12)

forallte[t, t,], y(.)eU,, and y€(0, y,).

Then the functional G(x(.)) = sup g(t, x(t)) is uniformly differentiable in
: teftyt,]
every direction z(.)at x°(.) and

G '(x°(.); z(.)) = max g.(t, x°(?) ; z(?)),
el

where T, = {1€ [t 1,] | G(x* (1)) = g(t, x (1)) }.
COROLLARY 2.4. Let g: R x R"— R be jointly continuous and continuously

differentiable in xe R". Then G ( xﬂ( .) ) is regularly locally convex on C" [t,, t,] and
0 G(x(.)) contains those x*e C [t, t,]* defined by

<xtx0) > = [, <glzOLx0)> dy

where p is a regular measure supported on T={te[t, 1,]/g(t, X)) =
G(x(.))} with total variation 1.
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For proofs of Lemma 2.3 and Corollary 2.4 see the appendix.

For general vector optimization problems of the form (6) — (9), where
F:XxU-Y, G:XxU—Z, and P: X x U— W are general mappings;
X and W are Banach spaces; U is a set; Y and Z are normed spaces ordered by
convex cones K and M, respectively, the following multiplier rule was proved.

THEOREM 2.5. [4]. Assumptions
(i) int K # O and int M # O,

(ii) for each ue U, P(.,u) is continuously differentiable at x°;

(iii) F(.,u) and G (.,u) are continuous in a neighborhood V of x° and regularly
locally convex at x° for each ue U;

(iv) for every finite set of points v',....u° of U and every 6 >0, there are
a neighborhood V' < V of x°, an ¢ > 0, a mapping v: V' x eX’ > U and
points ec K, ge M such that, for all x, x'e V and a, a'ee 5ol
v(x, 0) = u° for some u° € U,

IP(x, v(x, a)) — P(x', v(x', @’)) — P.(x’, ') (x — X')

— Y= —a) Px) || < O(llx — X || 4+ X =1 loy — ),

F(x, v(x, a)) = F(x, u’) = ) f=14,(F(x, ¥) — F(x, u°))

<o(lx—x|+Tia)e

Gx, v(x,a) — G(x, u") = ¥ j=10;(G (x, ¥) — G(x, u))

So([x—=x| = X/=19)8

where }* = {a = (¢,,....0) € R*/a; 2 0, ) /o1, < 1};
(v) P.(x°, u’) X has finite codimension.

Then, if (x°, u°) is a local Slater minimum there exist 4, € K*, uy,e M* and
v, € W*, not all zero, such that

o FL(x% 0% %)) + € s G (38, 8 X)) + (¥ Po(X, 0% x) 20
for all xe X,

L(x°, w0, Ay U, v,) =min L (X% u, A, Yy, v,),
uelU

iy G(2° w) ) =0,
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where L is the Lagrangian
L=(4LFx u))+{u G(x, u))+ v, P(x, u)).
Now we are able to prove the Pontryagin maximum principle for the game
(1)—(5). We call
H(t,x,u,p, 2)=<p, o1, x,u)) — {4, f(t x, u))

the Pontryagin function and

H(t,x,p, A)=sup H(¢t, x, u, p, 1)
uelU

the Hamiltonian.

THEOREM 2.6. Assume that int K # @ and that @, h,, h,, g, &, [ are jointly
continuous and continuously differentiable with respect to x. Let u (.),...,up(.)
be local-global weakly optimal controls, with the resulting state x° ()", Then there
exist L\e K*, 1 € #R%, |,€ #R>, amapping p(.):[¢, t,] = R", and nonnegative
regular measures p,, i =1,...,k, on [1,, t,], supported on the sets T, = {t€[t,,
t,]/ gt x°(t)) = 0}, respectively, not all zero and such that

(a)p(.) is a solution of the integral equation

p() = = I* (X (DA — h*(x* (1) ], + I;H_i(r, X(r), g ()it (1),

P Ndr — Y| g, 2 () dis (13)

with the initial condition
p(t) = h'5(x(2,))1,; (14)
(b) the equality
H(t, x° (1), w(1), ... ;up (1), p(2), 2) = H(2, x°(t), p(2), 2)
holds a.e. on [t,, t].

Proof. Assumptions (i)—(iii), and (v) of Theorem 2.5 are trivially satisfied
by Corollary 2.4. We consider Assumption (iv). Let u’(.),...,u°(.)e U and
0 >0 be given. We shall choose ¢ >0, a neighbourhood ¥V of x°(.) and
amapping v: ¥V x ¢X" — U of the form v(.) = v(a)(.) for all ae ¢ X" such that

v(0) (1) =u(z) (15)
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a.e. on [z, ¢,], and the inequalities in Assumption (iv) hold. First, consider the
inequality for P(x(.), u(.)). Since h, and h, are strongly differentiable, the
inequality for A,s part is trivially satisfied. It remains to show, for all x(.),
x'(.)eVanda a'ceX’, that

nEax ] II (@ (rx(r)v(a) () — @ (rx (nw(@) () — ex(r, x°) (r),u’ ().
telt,.t #

O =X ) =X, _ =) (@0, X ()1 ()) — @ (r, X (), (1)) dr|
SI(IxO =X I+X,_ ley— o). (16)

The inequality for G is of course satisfied. To prove the one for F it suffices to
show that

FaOov@0) - FaO.w ) =Y 6F@x0).4()
—Fx(),u() < 5ezj=1af, (17)

where e is an order unit of the vector lattice Y.

We proceed to prove (16) and (17). Consider (n+ ¢ )-dimensional vectors
Y@)=(o@ x°@), W) — o x°@t), u’@t)), f(t, x°(t), W/ (1)) — f(t, x°(1),
u’(t)))forte(t,, t,]. By Remark 2.1, for the given 4, there is y > 0 such that feY
and |f| <y imply

S e, ) OB de
f°¢ < inf {—f,m} (18)

Next, since 2’ (. ), u’(.), ... ,u"(.) are bounded, their values are contained in
a compact set U, < |R". Hence, by the continuity and the strong differentiability
with respect to x of ¢ and f, there is > 0 such that for all ue U, ¢, x, and x’
satisfying | x — x°(#)| < 4, |x" — x°(¢)| < 0, we have

oGt 1) = 9t X Du1] < 57 (19)

b t)”?

10t %, 4) — 9 (t, ¥ 1) — 9(t, (), w)(x— ¥)| < %}C—:—"f') . (0

F @ x, w) = £, x* (D), u)| <y 21)
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Weset V = {x()e C"[t,, t,]/ |x(.) — x°() | { 6} and choose ¢ € (0, ﬂ
such that

e(t,—t) max | x°(2),u)| < 6/4, (22)
telt,.1,]

where | @ | is the norm of the linear mapping ¢, : R" — R". We now construct the
desired mapping v. For the mentioned J, y and y/(. ) we have, in accordance with
Lemma 2.2, one parameter families { M (a)}, 0<a<’/, j=1,..s of
measurable subsets of [z,, ¢,] such that (10), (11), and

; 0 ;
1Yy () = Yo () — (@ — &) ¥;(9) | < min {?,5} o — o] (23)

hold for all teft,t)], j=1,..,5, 0<w&, and oa'<s ' We set
Q={a=(ay,..,0,) /0<a,<'/} (then X’ = Q) and for every aeQ* we
define

v(a)()=u(t) + 3,

i=1

Xagicay (1) (u’ (t) — u’(1)).

Then (15) is satisfied. Since M,(«;), j =1, ...,s, are disjoint, we have
gt,v(@)(® = g v () + Z: Yo D@ W (1) — gt w (D) (24)
J‘=

for any vector-valued function g on [z, ,] X R".

Nowlet x(.),x'(.)eVanda,a'eeX’ < Q°. To prove (16) we estimate, for
all teft,, t,],

II (@ x (1), v(@) (1) = @ (r, X' (1), v (@) (1) — i (r, X (1), () (x (r) — ' ()
i Zj,l(% — ) (@ (r, x°(1), ¥ (r)) — @ (r, x°(r), u* (r)))) dr]

<1, 0o xOr @) - 0t ¥ v @ ) -

@x(r, x° (1), v(a) (r)) (x (r) — x° (r))) dr| + | j  (@x(r, X7 (), v(@) () —

= @i (r, x°(r), w* () (x(r) — ' (r))) dr|
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1], 00 ¥ 0@ M) — 0 ¥ O3 @) 0)
— 00, ¥ V@ ) |
1], 00 20 @) - 90, (@ 0)
Y @)@ x(),w ) = (X Ou@))dr . (25)

Let us estimate each of the four terms in the right-hand side of (25). By (20) the
first term does not exceed g [x()—x() |l

By virtue of (27), the second term reads as

II ,o(z;lxm @) D (@L(r, x° (), u’ () = @5 (r, x° (), u” (1) (x () — X' (M) dr |.
This, following (22), is dominated by

2020 ¥ Ol@max 104t x 0, w) [, (T, %0 ) )l
1€ [t,t]
ue U,

=2[x()—x () ( max [e; (& x°(D),u)]) (Zj._,ifx)) (t, — %)
telt,t]
ue U

Ix()=x ().

<

S J %

By (19) and (24) the third term is equal to

3 G ® = 2aahr ) @ ¥ (. () = @ (¢, x° (), w (D) i

0 4 % ' .
: 2t~ Io)zf=1‘l-"alxﬂvﬁ(aﬂ(t) — Xuj oy Dldt = 52

j=1]°‘1_ ot

Finally, the forth term can be rewritten, by (24), as

15, Caar® = 1y D @ 0 20,6
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—o@r, x* (), u (1) — (@, — o) (@ (r, x* (1), u’ () —
@ (r, x (), () drl . (26)

The difference ¢ (r, x°(r), u’(r)) — ¢ (r, x°(r), u° (r)) constitute the first n com-
ponents of the vector y/(r). Hence, by (23) and (26), it does not exceed

185  Casan® = Lag @)Y ) — @,— a))y () dr

ol r I 5 ¥ r
<2, 1Yo ® = Yagah () — (4 — ) V()] < 3 Y, I — ol

Combining the estimations of the four terms we obtain (16). To verify (17),
making use of (18), (23) and (24) we have

[ ¢, x@.v@ @ - £, x @00
=X (@ x (@)@ () = £t x (), u° (1) dt
= Zj , J ] Otar @ 1@, x (@), w7 (2)) — f(2, x(2),u°(2)))
— o (f1, x (0,0 () — £(t, % (0, u° (@) di
< 3 ar O 0 3@, 0) — £2. 5O, D)
— (£t % (0,00 () — £ (8, x° (), (0))) d |
+ 3 a0 O 50,0 0) = £, 30,000
1, X @00 (0) — £(2, % (1), u° )| de
+ [ X 0,000) ~ 16, x (0,00 @)
+ U(e, (0,4 0) — 112, x° (0, u° (0) | " di)

0 0 5
< Eezj=|“.f4zj=1 @ge = de) _

i.e., (17) holds.
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Having all the assuptions of Theorem 2-5 satisfied we now apply this
theorem. The Lagrangian has the form

Lx()ul)Av, i, 1,0 = CA4,ExE) + _[ Ilnf(r, x(),u(r)dt

+ xO=x@) =], ot x(u@)drdy > + <yl (<) >

+ L Lx@) ) +<0,6(x() >,

where 1€ R', vis a regular vector measure on [{,, ¢,], [,€ R%,/, e R*,and O ¢ R*.
According to Theorem 2.5 there exist A€ K*, 0 R*, a vector measure v, [, R,
l,€ R, not all zero and such that

0ed,  ,L(x°(.), u(.), 4, v, 1,1,,0), 27
Lx()u (), AV, b, 1,,0) = min L (x*(),u(),4,v,1,1,0), (28) .
u()elU
(0,G(x°(.))>=0. 29)

First, consider (27). This means, for all x(.)e C"[¢,, t,], that
g-:f(-)(xn(')’ un(')’ }'s v, l‘!'.-.;sills H) ? 0

Substituting the differentials of P and F, and the subdifferential of G (given by
Corollary 2.4) into this inequality leads to

Chy E0(0)) X (1)) + < J fult, 20 (0), w0 (1)) x(1) dty

t

+ .[,l(x(t) —x(t) =], oi(r, x°(r), u(r)) x(r) dr, dv)
+ (o Bp(x(2)) > + <1y, Bi(x (1)) +

k t %
30, [ <t (1), x()> diiy = 0, (30)

where u;, i=1,...,k, are nonnegative regular measure supported on the set
T,={telt, 1,1/ g1, x°(t)) = G,(x°(.)) }, respectively, and with total varia-
tion 1. Setting 0, i, = u, and changing the order of integration in the third term
(with the abbreviations f, = 17 (¢, x° (), u°(t)), h, = hy(x°(z,)),...) we obtain,
for all xe C"[¢,, t,],
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4| 4 k
[lcama-ot ], avyaet av+ Seidu, x>
il
PR L= dv, x(1)> + <& A+ B 1, x(1)) =0,

4
Now, denoting p (1) = J, dv, with Riesz’s representation theorem we arrive

at (13) and (14).
Further, the relation (28) is equivalent to

II Il r
LUJ(L x (1), u’(t)) ) dt — J;[,(Lp o (r, x°(r), u(r)) dr, dv >

=min{j A (e x2 (), u(e)) >dt — I I cp(r, x°(r), u(r))dr, dv)}.
u()et

Changing the order of integration in the second terms of each side we obtain
Assertion (b).

Finally, by (29), if G,;(x°(.)) <0, then 0,=0, and so u,=0, ;t‘ = 0
Therefore, only those u,, Wthh correspond to the indices i with G, (x* ( ) =
can be nonzero. Combining with the fact that ,ur are supported on the set T we
see that u, are supported on the set

T,={telt, t,]/8:(t. x*(1))=0}.

Ifm = g = 1, i.e., we deal with a scalar optimal control problem, and & = 0,
then Theorem 2.6 coincides with Theorem 1 of § 5.2 in [2].

Now we pass to another cooperative differential game, namely, to the one
with a state constraint of the integral type

f:;g(t, x(0), uy (1),...,u,,(1))dt <0, (4)

where g: R x R" x R"t x ... x R — R*, R* being ordered by a convex cone
M, instead of (4).
For this game the Pontryagin function is

H(t, x,u,p, 4 p) =<p, @(t, x, u) ) — A4, f(t, x, u) ) — <, g(8, X, u) ).

THEOREM 2.7. Assume thatint K # @, int M # @, and ¢, h,, h,, g, &, fare jointly
continuous and continuously differentiable with respect to x. Let u{(.),...,u’(.) be
local-global weakly optimal controls for m players, with the resulting state x°(.).
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Then, there exist A€ K*, I € R%, l,€ R\, a mapping p(.):[t, t,]—> R", and
we M*, not all zero, such that
(a) p(.) is a solution of the integral equation

p(t) ==& (x° (1)) A — " (x° (1)) 1,
w1 HL G X0 0, 0,0, p (), 1 ) i,
with the initial condition p(t,) = h. (x°(t,))1,;
(b) the equality
H(t, x° (), ui(2),...,uy (1), p(0), 4, p) = H(t, x°(2), p(1), A, )
holds for almost all te(t,, t,];

(c) Ll(u, g(t, x°(1), u"(1)) >dt = 0.

Proof. The proof parallels the one of Theorem 2.6 and we present only what is
4
different. G (x(.), u(.)) = I,Og (t, x (1), u(t))dt is continuously differentiable

with respect to x(.) and we have
N
Gy (x°C.), u°(.)) x(.) =J,08_L(f, x?(1), u®(2)) x(r)dt.
To apply Theorem 2.5, only Assumption (iv) needs to be dicussed. For the
present game, besides (14) — (16) we have also to prove the following inequality
for G
G(x(.), v(a)(.)) = G(x(.), u’(.))
— 251G (x () W ()= G(x(.),u(.))) < dg)so, (16)

where g is an order unit of the vector lattice R*.
The vector y’/ now must be (n + g + k)-dimensional vector

y() = (@ (t, x°(1), w/ (1)) — @ (1, x° (1), u*(2)), f(t, x° (1), u/ (1))
—f(t, x°(2), u°(2)), g(t, x°(2), v/ (1)) — g (t, x° (1), u’(1))).
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For the given J, using Remark 2.1 wechoose y > Osuch thatiffe Y, | f| <7y
and he|R*, |h| <y, we have

1 < inf {5—"’ w‘i“’——}

28, —1t)
(18')
1) 0

Next, we use (18"), (23) and (24) to get (17’) in the same way as to get (17).
Making use of Theorem 2.5 we obtain also (27) — (29). In this case (27) implies
the following, instead of (30),

Ch & x(t) + ], frx@dey + ], <x @) = x(t) = [, ot x(r)dr, v

 Cly B x (1)) + <l b x(0)) + <o | gl x (0 dey =0,

Changing the order of integration in the third term and applying Riesz’s
representation theorem we arrive at Assertion (a). Assertion (b) is obtained by
the same way as for Theorem 2.6 and (c) is nothing else than (29). =

3. Sufficient conditions

In this section we shall demonstrate, for cooperative differential games, the
common assertion that under additional assumptions multiplier rules are also
sufficient conditions. Namely, with the aid of some scalarization results we shall
show that under additional assumptions the Pontryagin maximum principle
stated in Section 2 is also a sufficient condition even for global optimal controls
and global weakly optimal controls. However, we are able to consider only
problems with fixed left end-point, ie., with &, (x(z,) = x(z,) — x° for some
fixed x°e R".

We recall at first the needed notions and scalarization results. For a cone
C in a linear space X, the sets

g.int C'={x'eX'/{x',x)>>0forall xeC\ {0}},
qg. int C* ={x'eX'/(x', x)y>0forall xeC\{0}}

are called (algebraic and topological, respectively), quasiinteriors of C’ and C",
respectively.
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A functional f defined on a subset S of an ordered linear space X with the
ordering cone C is called:

+ increasing (on S) if x' < x? implies f(x') < f(x?);

+ strongly increasing if x' < x% x' # x% implies f(x') < f(x?);

+ strictly increasing, in the case corC # @, if x? — x'ecorC implies
F(x) < f(x),
where x' and x? are points in S.

It is easy to see that each x’e C’ (and each x" e C") is increasing on X, that
each x’ e ¢-intC’ (and each x" € ¢-intC") is strongly increasing on X, and that, in
the case corC # @, each x'eC’\ {0} (and each x’eC"\{0}) is strictly
increasing on X.

The following scalarization result (see, e.g.,[3]) will be used to derive
sufficient conditions.

LEMMA 3.1. Let X be an ordered linear space. Let S = X and X € S be given. Then
(a) if the ordering cone C is pointed and there is a strongly increasing
Sfunctional f on S with

f(X) < f(x) for all xe8, (31

then X is a Pareto minimum of S.
(b) if corC # @ and there is a strictly increasing functional f on S with (31),
then X is a weak minimum of S.
Recall further that a Fréchet differentiable functional f: X — R, X being
normed space, is said to be quasiconvex at X if, for each xe X, f(x) < f(X) implies
f(X)(x—x)<0.
We now consider the game (1)—(5) with fixed left end-point, i.e., with
h,(x(t,))= x(t,) — x° for some fixed x°e R".

THEOREM 3.2. Let the ordering cone K of the objective space Y be pointed. Let
ui(.),....us(.) be admissible controls and x°(.) be the resulting state. Let the
following differentiability conditions be satisfied: h , and ¢ are Fréchet differentiab-
leat x°(1,);f(¢,.,.), ¢ (2,.,.) and g;(t,.) have partial derivatives at (x°(t),u°(t))
and at x°(t), respectively, for all te[t, t,]. Moreover, assume that there exist
ieqint K, I,e R", a mapping p(.):[t, t,]— R", and nonnegative regular
measures i, i=1,...,k, on [t, t,] such that
(a) p(.) is a solution of the integral equation

p()=—=&"(x(,)) A — hi" (x* (1)) 1,

+ [ ' 20, 8 )i (), P (), A)dr —



110 TRAN HUE NUONG
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(b) the equality
H(t, x°(8), u3(1),..., us (1), p(2), 4) = H(t, x°(¢), p(2), 1)

holds for almost all t€(t,, t,];

(c) the following convexity assumptions are satisfied:
U=U, x...xU,isconvex; {A,E(.) ) isconvex at x°(t,); {{, h,(.)>

t
is quasiconvex at x°(t,); <A, f(t,.,.)> and {p(t) + ZLJ{!g}x du,,

@(t,.,.) ) are convex and concave, respectively, at (x°(t), u°(t)) for
almost all te[t,, t,].

(d) for almost all telt,, 1,] we have
o (X (, w NI, [ gr, (6 x0(0) du = 0
and
e ), T (0 0, (0= ) <0

for all admissible controls u;(.), j=1,...,m.
Then u$(.),...,u’(.) are global optimal controls.

Proof.Letu,(.),...,u,(.) be arbitrary admissible controls with the corres-

ponding state x (.). By (a), the quasiconvexity of (!, &, (.) ) and the convexity
of {4, £(.)) we obtain

e +3t L g ), @) - X))

=& A+ 1, x(8) — x0(4) ) < (4 E(x (1)) — E(x°(2)) ).

By (b) H(t,x°(t),u’(t),p (1), A, ) is a support functional of U at the point
u’(t)foralmostallze[z,, ¢,]. That means, for each admissible u;(.),j = 1,...,m
and for almost all 7€z, #,],

2

i x2(@, u(8)) A= @2 (1, x(1), w* () p (1), w,(1) — u;(1) ) > 0.

This together with (a) and (d) implies
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(A, (@, x(2), u(0)) = f(1, x°(2), w (1)) )

~ 2 0+ L dn, x0 -2 )

1

> (a0, u (D) = £t 20, w2 (0)> = <P+ X, |, gledn,
o (1, x (1), u(1)) — (1, x° (1), u*(D)> = <fL &~ @l p(1), x(1) = x*(1))

m

=3 S a0l p(0, 1 (D) = (D))

+ <Zi=;L1gi—x du, @L(x(1) —x°(1)) + Z'L @i (u, (1) — ul(1))>.

"1
By the convexity property of (4, f(¢,.,.))> and (p(r)+2i=lj, g du,

¢ (t,.,) ) this quanity must be nonnegative.
Consequently, integrating leads to the inequality

[ e, %0, ut) = 1, 32 (0), wo (1) e
G E(x (1)) = E(x° (1)) 2 0.

This together with Lemma 3.1 (a) completes the proof.

With Lemma 3.1 (b), instead of (a), used in the proof, we get in the same
way following sufficient condition for weakly optimal controls.

THEOREM 3.3. Let the cone K (not necessarily pointed) have cor K = @. If the set
g-int K* is replaced by K* \ { 0 }, and the words ,,optimal controls” are replaced by
weakly optimal controls”, then Theorem 3.2. is still in force.

Note that Condition (d) is also of the maximum condition type. It is rather
restrictive, especially its first part. However, we can intuitively imagine that this
conditions is essential, because the maximum condition (b) does not involve the
mappings g . The situation will be simpler when we deal with the game (1) - (3),
4),(5)as thé following two theorems assert. Namely, no condition of the type (d)
is needed. The proofs are quite similar, even with less complexity since the
Pontryagin function H involves the mapping g, and therefore are omitted.

THEOREM 3.4. Consider the game (1) — (3), (4'), (5). Let the ordering cone K of
Y be pointed. Let uf{(.),...,u’(.) be admissible controls and x° (. ) be the resulting
state. Let the following differentiability assumptions be satisfied: h, and & are
Fréchet differentiable at x°(t,), f(t,.,.), ¢(t,.,.) and g(t,.,.) have partial
derivatives at (x°(t), u’(t)) for all te[t, t,]. Moreover, assume that there exist
Aeg-int K*, ,e R", a mapping p(.): [t, t,]— R", and ue M* such that
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(a) p(.) is a solution of the integral equation
p(t)=—&"(x°(1))) 4 —_hi‘(x”(h))fl
+ [ H 5 0, 00 (0, p ), 1 )
(b) for each admissible u;(.),j = 1,...,m, we have, for almost all te[t, t,],
(f,,’,:_(t, x°(1), u (1)) A + g.',;(t, x°(0), u® (1)) p

=0y (1 x° (1), w (1)) p(8), u(6) = w5(1)) > 0;
© ], < gt %), w () >di = 0;

(d) the following convexity assumptions are satisfied: U is convex; {4, E(.) >
is convex at x°(t,), {1,, h,(.) ) is quasiconvex at x°(t,), {4, f(t,.,.)>
and {u, g(t,.,.)) are convex at (x°(t), u°(t)) for almost all te[t,, t,],
and{ p(1), p(t,.,.) > isconcave at (x°(1),u’(t)) foralmostallte[t , t|].

Then ui(.),...,u.(.) are global optimal controls.

THEOREM 3.5. Let the cone K (not necessarily pointed) have corK # . If the set
g-intK* isreplaced by K*\ { 0 }, then Theorem 3.4 remains true for weakly optimal
controls, i.e., in this case u{(.),...,u.(.) are global weakly optimal controls.

Theorems 3.2 — 3.5. include Theorems 10.7 and 10.8 of [3], as special cases
when g, =0 and g = 0.

Finally, we note that in this paper we consider necessary conditions only for
local-global solutions of differential games. In [5] we prove the Pontryagin
maximum principle for local solutions but with more restrictve differentiability
assumptions.
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APPENDIX

Proof of Lemma 2.3. Note first that g(., x°(.)) is continuous on [z, ¢,]. The sequence n(g(t,
x(t)+ 1/nz(t)) — g(t, x"(1))) of continuous functionals on [z,, ¢,] uniformly converges to g, (¢,
x°(t); z(t)). So, the functional g;(.,x"(.); z(.)) is continuous on [¢,, ¢,], and the maximum in the
expression for G' is indeed attained, and T, is a compact subset.

To prove the lemma we have to convince ourselves that for every ¢ > 0 and z(.)e C"[1,, ¢,],
there exist a neighborhood U of z(.) and some y, > 0 such that

G(x()+yy()—GHx() '
| @) +yy0) W) —max g (1, x*(1); z(0) | { & (32)
v teT,

]

for all y(.)eU and ye(0, y,). We have, for y(.)e U, and ye(0, y,),

G(x"()+yy())=sup g(t, x(1) + 7 y(2)
teT,

Therefore, to get (32) it suffices to find U = U,, y, < y,s0 that y(.)e Uand ye(o, y,) would imply

G(x(.)+yr())<G(x°(.)) +ymax g(1, x°(2); 2(2)) + ye. (33)
teT,

We proceed to do this. Since g, (., x°(.); z(.)) is continuous there is a neighborhood W < [¢, t,] of
T, such that

sup g.(¢ x°(0; z(1)) = max g.(t, ¥ (t); 2(0) + = @9)
eW teT 2

o

On the other hand, we can show the existence of a neighborhood U, of x*(.) such that, for all
x(.)eU,,

G(x(.))=sup g(t, x(1)) =sup g(t, x(1)).
tet, 1] te W

Indeed, we have, for some « > 0, sup g(t, x°(1))=G(x°(.)) — o Setting z () = 0 in (12) we
IEEIO, Ii]\W

find a neighborhood U, of x*(.. ), for all x(.) of which we have |g(z, x(£)) — g(r,x°(£))| < %/ for
all te[t,, t,]. This is just a required neighborhood, since, for x(.)e U, and te[t,, ¢,]\ W,
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&
gt x() { glt, x*(1) +5 € Gx()—= < G(x()).

ST

Now we can check directly (33) for y, = min {}-0, yz}, where 7, is a number such that
x°(.)+7,2(.)eU,(z(.)givenin (32) ), and U = 33" (y,U, n (U, — x°)). By (12) and (34) we have,
for y(.)e U and ye(0, y,),

G(x"(.)+yry(.))=sup g(t, x°(t) +7yy(1))
te W

£
< sup g(1, (1) + 7 sup g (t, X (0); 2(1) +
W teW 2

<G(x°(.) +ymax gl(1, x°(0); (1) + ye.
teT,

Proof of Corollary 2.4. By Lemma 2.3, G is uniformly differentiable in every directions at each point
xeC"[I‘,, t,]. Since g/ (1, x°(£); z(t)) = gi(r, x°(2)) z (1) the convexity of G'(x°(.); z(.)) with
respect to z(.) follows immediately from its expression. Thus, G is regularly locally convex.

The second part of the corollary follows from Subsection 4.5.3 of [2].

Received, December 1957,

Warunki optymalnosei w kooperatywnych grach rdéiniczkowych

W pracy udowodniono koniecznos¢ warunkéw typu zasady maksimum Pontriagina dla
wieloosobowych kooperatywnych gier rézniczkowych ze zmiennymi stanu przez sprowadzenie gry
do zadania optymalizacji wektorowej. Udowodniono réwniez, ze te same warunki sa wystar-
czajacymi do optymalnosci przy pewnych dodatkowych zalozeniach.

VYe/0BHA ONTHMAJBHOCTH B KOONEpaTHBHLIX In(depeHumnaibibIX HIpax

B pabGoTte moxasaHa HeOOXOOHMOCTH YCIIOBHI BHAAa NpHHNMNA MakcHMyma [loHTpsarmHa mis
KOOnepaTHBHBIX MubdepeHIHaIbHEIX HIP CO MHOTMMH HIDOKAMMY IIYTEM CBEIEHHS HIPHL K 3a1a4e
BEKTOPHOH onTUMH3amuK. JIoKa3aHO TakikKe, YTO MOCJE NPHHATHS HEKOTOPHBIX AOIOJHHTEHHBIX
TIPE/TOCKHINIOK, TAKHE Xe YCIIOBHA ABJIAIOTCA JOCTATOUHLIME /IS ONTHMATLHOCTH.



