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Necessary conditions of the Pontryagin maximum principle type are proved for cooperative 
many players differential games with state constraints by reducing the games to vector optimization 
problems. This principle is also proved to be sufficient for optimality under additional assumptions. 

1. Introduction 

In the game theory in general, and in differential games in particular, there 
are many mode of playing. For the games in which each Player j has his cost 
Jj(u1' ... ,um) (dependent also on the controls of the other players), there are four 
mode of play. In the first one, each player assumes that all the other players are 
collectively playing against him and he must seek a minimax solution (see, e.g., 
[7]). In the second mode of play, the Nash equilibrium solutions are accepted (see, 
e.g., [6], [9]). This type of solution is secure against any attempt by one player to 
unilaterally alter his control. The third mode is the cooperative game, where all 
m players agree to cooperate exclusively. For this case a commonly accepted 
solution concept is the Pareto optimality [3], [6]. The final mode consists of the 
situation when only s players, 1 ~ s ~ m, form a coalition and they assume that 
the coalitive Pareto optimality is the solution concept [1], [8]. 

In the present paper we consider cooperative many players differential 
games. The main difference between our consideration and the known results on 
cooperative differential games is the appearance of state constraints. In Section 
2 we derive necessary conditions in the Pontryagin maximum principle form by 
using our preceding result on vector optimization [4]. Section 3 addresses 
sufficient conditions. Here, using a scalarization result, we prove that Pontryagin 
maximum principle provides also sufficient conditions under additional assump
tions. 

--- -- - --------
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2. Necessary conditions 

The cooperative differential game we consider is 

X (t) = q> (t, X (t), u1 (t) , ... , um (t) ), (1) 

g;(t,x(t)),~O, i = 1 , ... ,k, (4) 

t 
~it1)) + J 1 

fj(t,x(t),u 1(t), ... ,um(t))dt-+inf,j = 1, ... ,m, (5) 
to 

where t0 and t1 are fixed; q>: R x R" x R,.1 ... x R'm + R"; h0 : R" --+ R"o,· h
1 

: R" 
--+ R'• ; gi: R X R 11 --+ R; ~j: R"--+ Rq!,fj: R X R" X R,., X ... xR'm--+ R'~j, R'I; being 
ordered by a closed convex cone JS, j = 1 , ... m; (1) and (2) are satisfied almost 
everywhere (a.e.) on [t0 ,t1], admissible controls are uj (.) E L'j, [t0 ,t

1
] which satisfy 

(2) a.e. on [t
0
,t1]. The set of all admissible controls uj (.) is denoted by Uj. 

To describe the game (1)- (5) as a vector optimization problem we adopt the 
following notations: 

G;(x(.)) =sup g;(t,x(t)), 

t E [tO,tl] 

y = R'~l X ... X R'Im, ql + ... + qm = q, rl + ... + rm = r, != ift, ... j~), 
u = (u1 , ... ,um), ... (the same for~' g, G, U, U, K). Next we introduce a mappi-ng 
p : C' [to, tl] X L~ [to, tl] --+ en [to, tl] X R 5

• X R 51 by 

with 
P(x(.), u(.)) = (y(.), b

0
, h1 ) 

y (t) = x (t) - x (t0) - f ~ q> (r,x (r),u (r)) dr, 

bo = ho (x (to), bi = hi (x (tl)), 

f
/1 

F(x(.),u(.)) = ~(x(t1 )) + '-of(t,x(t),u(t)) dt. · 

Then the game is reduced to the vector optimization problem 

F(x (. ), u (.))--+ inf, (6) 
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G(x(.)) ~ 0, (7) 

P(x(.),u(.)) = 0, (8) 

u(.)E U. (9) 

Recall that a point X 0 E S c X, X being a topological space, is called a local 
Pareto minimum of a mapping/: X---+ Y on S, Y being a normed space ordered 
by a convex cone C, if there is a neighborhood N of x such that there is no 
XE S n N with f(x 0

)- f(x) E C\ (-C). If there is no XE S n N with 
f(x 0

) - f(x) EriC (the relative interior), then X 0 is called local Slater minimum of 
fon S. 

Now we call controls uH. ), ... ,u::, (. ), with the resulting state x o (. ), 

local-global weakly optimal for the differential game (1) - ( 5) if (x o (. ), u o (.)) 

is a local Slater minimum of the problem ( 6) - (9), considering x (. ) elements of 
en [ t

0
, t 1] and u ( . )elements of U equipped with the trivial topology (containing 

only $ and U). 
If int K =1= $then R q (ordered by K as above-defined) is a vector lattice. For 

yE Rq let I y I denote the Euclidean norm and I y I ord stand for the absolute value 
sup {y,- y} of y. Then we have 

REMARK 2.1. For each c5 > 0, there exists y > 0 such that yE Rq and I y I ~ y 
imply 1Yiord <c5e, e being a given order unit of Rq. 

Let, further, Xn (.)denote the characteristic function of a set M c [t
0

, t 1] and, 
for a vector-valued function y (. ), 

Y(t) = J: y (r) dr, 
0 

The following technical results will be used. 

LEMMA 2.2 [2,p.245]. Let y1( . ): [t
0

, t1]---+ Rn1, I= 1, ... ,s, be measurable boun
ded vector-valued functions. Then for every c5 > 0, there exist one-parameter 
families Ms ( rx ), ... , Ms ( rx) of measurable subsets of [ t0 , t1], 0 ~ rx ~ s- 1

, such that 

if 0 ~ a' ~ rx ~ s- 1 and I =I= k; (11) 

for all tE[t
0

, t1], I= 1, ... s, 0 ~ rx, and rx' ~ s-'. Here ,mes" means the Lebesgue 
measure. 

------------------- -
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Recall, further, that a mapping/: X~ Y, X being now a Hausdorfflocally 
convex space, is said to be locally convex at x if its directional derivative!' (x;x) 
exists for all x ~ X and is convex in the sense that 

for all xl, x2 eX, IX e [0, l].f is said to be uniformly differentiable in the direction 
x at x if for every neighborhood of zero V c: Y there corresponds a neighbor
hood N of x and Yo > 0 such that 

y-'(f(x + y z)- f(x))- f'(x; x)e V 

whenever zeN and ye (0, Yo). Ifjis locally convex and uniformly differentiable 
in all directions at x we say that f is regularly locally convex at x. 

LEMMA 2.3. Let U1 be a neighborhood of some X
0 
(.) e Cn [t

0
, t1] and 

V= {X (t) ERn I te [t
0

, t1], X (.) E U1 }. Let g: [t
0

, t1] x Rn ~ R be continuous 
in tfor each xe V, and in x on V for each te [t

0
, t1]. Let ,furthermore, g satisfy the 

following strong uniform differentiability in all directions at the point X 0 (t), t e [t
0

, 

t 1]: for every ~ > 0 and z ( . ) e C n [t
0

, t 1 ], there exist Yo > 0 and a neighborhood U2 

of z ( . ) such that 

I g(t, xo(t) + yy(t))- g(t, xo(t)) - g~(t, xo(t); z(t)) I ( e (12) 
y 

for all te [t 0 , t1], y (.) E U2, and yE (0, Yo). 
Then the functional G (x (.)) =sup g (t, x (t)) is uniformly differentiable in 

te[t0 t1] 

every direction z (. ) at X 0 
(. ) and 

G '(xo (.) ; z (.)) = max g_~ (t, X 0 (t) ; z (t)), 
teT0 

COROLLARY 2.4. Let g: R x Rn ~ R be jointly continuous and continuously 
differentiable in x eRn. Then G ( x (.)) is regularly locally convex on en [ t , t1] and 

n a 
8 G (x (.)) contains those x* e C [t

0
, t1] * defined by 

< x*, x(.) > = r < g~(t,x(t)),x(t) > d/1, 
0 

where J..i is a regular measure supported on T= {te [t
0

, t1] I g(t, x(t)) = 
G ( x ( . ) ) } with total variation 1. 
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For proofs of Lemma 2.3 and Corollary 2.4 see the appendix. 
For general vector optimization problems of the form (6)- (9), where 

F : X x U-+ Y, G : X x U-+ Z, and P : X x U-+ W are general mappings; 
X and Ware Banach spaces; U is a set; Y and Z are normed spaces ordered by 
convex cones K and M, respectively, the following multiplier rule was proved. 

THEOREM 2.5. [ 4 ]. Assumptions 
(i) int K # 0 and int M # 0; 

(ii) for each u E U, P (., u) is continuously differentiable at X0
; 

(i i i) F (. , u) and G ( . , u) are continuous in a neighborhood V of X0 and regularly 
locally convex at X0 for each ue U; 

(iv) for every finite set of points u1
, ••• ,us of U and every {> > 0, there are 

a neighborhood V' c V of X0
, an 8 > 0, a mapping v: V' x 8:E

8
-+ U and 

points e E K, gEM such that, for all x, x' E V and a, a' E 8 :E s, 

v (x, 0) = U0 for some U0 E U, 

IIP(x, v(x, a))- P(x', v(x', a'))- P_~(X0, U0 )(X- x') 

- L}=1 (rxj- rxj)P(x0 ,1i) 11 ~ b(llx- x'll + Lf=1lrxj- rxjl), 

F(x, v (x, a))- F(x, U
0
)- Lf= 1 rxj(F(x, li) - F(x, u0

)) 

~ C> (11 x- xo 11 + Lf= 1 rx) e 

G(x, v(x, a)- G(x, U
0
)- Lf=1rxj(G(x, u)- G(x, U

0
)) 

~ C> (11 x- xo 11- L/=1 rx)g, 

(v) P.~(X0 , U
0

) X has finite codimension. 
Then, if(x0

, u0
) is a local Slater minimum there exist A

0 
eK*, f.l

0
EM* and 

v0 E W*, not all zero, such that 

(). 0 , F~(X0, U
0

; x)) + ( f.l0 , ~~(X0 , u0
; x)) + (V0 , P~(X0 , U

0 )X) ~ 0 

for all xeX, 

.!f'(x0
, u0

, A
0

, f.l
0

, v
0

) = min !t'(x0
, u, A

0
, f.l

0
, v

0
), 

ueU 

( f.l
0

, G (x0
, u0

)) = 0, 
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where L is the Lagrangian 

st = (2, F(x, u)) + (p,, G(x, u)) + (v, P(x, u)). 

Now we are able to prove the Pontryagin maximum principle for the game 
(1)-(5). We call 

H(t, x, u, p, 2) = (p, q> (t, x, u))- ( 2,f(t, x, u)) 

the Pontryagin function and 

the Hamiltonian. 

.Yf (t, x, p, 2) =sup H(t, x, u, p, 2) 
UEU 

THEOREM 2.6. Assume that int K =/= 0 and that q>, h0 , h1, g, ~~ f are jointly 
continuous and continuously differentiable with respect to x. Let u~ ( . ) , .. . , u::, ( . ) 
be local-global weakly optimal controls, with the resulting state X 0 (.Y'. Then there 
exist 2EK*, 10 E =!=Rso, 11 E =i=RS., a mapping p(.): [t

0
, t 1]-+ R", andnonnegative 

regular measures p, i' i = 1 , ... , k, on [ t 0 , t1 ], supported on the sets Ti = { t E [ t 
0

, 

t 1 ] / gi(t, X0 (t)) = 0}, respectively, not all zero and such that 
(a) p (.) is a solution of the integral equation 

f'· 
p(t) = - ~'*(x0 (t1 ))2- h~*(X0 (t1 ))11 + 1 H~(r, X 0 (r),uf(r), ... ,u::,(r), 

with the initial condition 

(b) the equality 

H(t, X
0 (t), uf(t), ... ,u::,(t),p(t), 2) = H(t, X 0 (t),p(t), 2) 

holds a.e. on [t
0

, t 1] . 

(13) 

(14) 

Proof. Assumptions (i)-(iii), and (v) of Theorem 2.5 are trivially satisfied 
by Corollary 2.4. We consider Assumption (iv). Let u 1

(.), ... ,us(.)EU and 
o > 0 be given. We shall choose e > 0, a neighbourhood V of X 0 

( • ) and 
a mapping v: V x e ~::'-+ U of the form v (.) = v(a)(.) for all aEe I:s such that 

v(O)(t) = u(t) (15) 
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a.e. on [to' t 1 ], and the inequalities in Assumption ( iv) hold. First, consider the 
inequality for P(x(.), u(.)). Since ha and h 1 are strongly differentiable, the 
inequality for h;s part is trivially satisfied. It remains to show, for all x (. ), 
x' (.) E V and a, a' E s ~:::', that 

If: (cp(r,x(r),v(a)(r))- cp(r,x'(r) ,v(a')(r))- cp~(r, X
0 )(r),u0 (r)). 

0 

(16) 

The inequality for G is of course satisfied. To prove the one for Fit suffices to 
show that 

F(x (.), v (a)(.)- F(x (.), U0 
(.))- L~= 

1 
r:~)F(x (.), zi (.) 

-F(x(.),u0
(.))) ~ beL~=IaP 

where e is an order unit of the vector lattice Y. 

(17) 

We proceed to prove (16) and (17). Consider (n+q)-dimensional vectors 
yj(t) = (cp(t, X

0 (t), uj(t))- cp(t, X 0 (t), U 0 (t)),f(t, X0 (t), uj(t))- f(t, X 0 (t), 
U

0 (t))) fortE [ t 0 , t 1 ]. By Remark 2.1, for the given <5, there is y > 0 such that/ E Y 
and If I ~ y imply 

Ill ord · f {b e b e } 
~m 2'8(t

1
- t

0
) • 

(18) 

Next, since U 0 
(. ), u 1 

(.), ... , u·' (.)are bounded, their values are contained in 
a compact set U 1 c IR r. Hence, by the continuity and the strong differentiability 
with respect to x of cp andj, there is b > 0 such that for all uE U 1, t, x, and x' 
satisfying I x- X

0 (t) I < b, I x'- X
0 (t) I < b, we have 

lcp (t, x, u) - cp (t, X
0 (t), u)l ~ 

2 
( 

6
_ ) , (19) 

(1 to 

lcp(t, x, u)- cp(t, x', u)- cp~(t, X 0 (t),u)(x- x')l ~ gt-:=_ x'~, (20) 
!1 to 

lf(t, x, u)- f(t, X
0 (t), u)i ~ y. (21) 
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We set V= {x(.) E C'[t0 , t1]/ llx(.)- X
0

(.) 11 < b} and choose e E (o, t] 
such that 

e (t1 - t
0

) max l<tJ~ (t, X0 (t), u)l ~ b I 4, 
fE[f0 ,f1] 

(22) 

where I <p; I is the norm of the linear mapping <p_~ : Rn ~ Rn. We now construct the 
desired mapping v. For the mentioned b, y and yi (.)we have, in accordance with 
Lemma 2.2, one parameter families { MJ (et)}, 0 ~ et ~ 1 

/.,, j = 1, ... s, of 
measurable subsets of [t

0
, t 1] such that (10), (11 ), and 

hold for all tE[t
0
,t1], j=1, ... ,s, O~et, and oc'~s- 1 • We set 

Qs = {a= (et 1, ... ,et_.)/ 0 ~ cti~ 1/
5

} (then e~s c Q") and for every aEQ" we 

define 

Then (15) is satisfied. Since MJ ( etJ ), j = 1, ... , s, are disjoint, we have 

s 

g(t, v(a))(t) = g(t, U
0 (t)) + L XMJ(etJ)(t)(g(t, ui(t))- g(t, U

0 (t))) (24) 
j= 1 

for any vector-valued function g on [t
0

, t 1] x Rr. 
Now let x (. ), x' (.) E V and a, a' E e ~s c Qs. To prove (16) we estimate, for 

all t E [ t 0 , t I], 

1J: ( <p (r, x (r), v (a) (r)) - <p (r, x' (r), v (a') (r)) - <p_~ (r, X
0 (r), U0 (r)) (x (r) - x' (r)) 

0 

- L~ = 
1 
(eti- et})( <p (r, X

0 (r), ui (r)) - <p (r, X
0 (r), U0 (r)))) drl 

~ I r ( <p (r, X (r), V (a) (r)) - <p (r, x' (r), V (a) (r)) -
0 

<p~(r, x 0 (r), v(a)(r))(x(r)- x0 (r)))drl + 1 J: (<p~(r, x0 (r), v(a)(r))-
0 

- <p~ (r, X
0 (r), U0 (r))) (x(r) - x' (r))) drl 
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+ I J: ( ({J (r, x' (r), v (a)(r)) - ({J (r, x' (r), v (a')(r)) 
0 

- ({J (r, X0 (r), v (a')(r))) dr I 

+ I J: ( ({J (r, X0 (r), v (a)(r)) - ({J (r, X0 (r), v (a')(r)) 
0 

Let us estimate each of the four terms in the right-hand side of(25). By (20) the 
(J 

first term does not exceed 2 11 x (.) - x' (.) 11 . 

By virtue of (27), the second term reads as 

1( (L~ = 
1 
xMj <rJ..} (r) ( ({J.~ (r, xo (r), u j (r)) - ({J.~ (r, X0 (r), U 0 (r))) (x (r) - x' (r)) dr 1. 

This, following (22), is dominated by 

= 2ilx(.) - x'(.)li( max i ({J~(t,X 0 (t),u) I)(L~= I a)(t1 - t0) 
t E [tO,tl) 
u E U1 

~ ~ 11 x(.)- x' (.) 11. 

By (19) and (24) the third term is equal to 

I (I~= 1(XMj(r/..J)(r)- XMj(ctJl(r))(({J(r, x'(r),uj (r)) - ({J(r, X0 (r),uj(r)))drl 

Finally, the forth term can be rewritten, by (24), as 
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- cp (r, X 0 (r), U0 (r))- (ai- aj) (cp (r, X
0 (r), ui (r))-

cp (r, X 0 (r), U0 (r)))) drl . (26) 

The difference cp (r, X 0 (r), ui (r)) - cp (r, X 0 (r), U0 (r)) constitute the first n com
ponents of the vector yi (r). Hence, by (23) and (26), it does not exceed 

I I~= 1 ( (XMj(rt.J> (t) - X MJ<a}(r)) Y (r) - (ai- aj) yi (r)) drl 

Combining the estimations of the four terms we obtain (16). To verify (17), 
making use of (18), (23) and (24) we have 

f
ii 

1 (j(t, x(t), v(a)(t)- f(t, x(t),u0 (t))) 
0 

- a/ft, x(t),ui(t))- f(t, x(t),u 0 (t))))dt 

+ IJ(t, X
0 (l), U 0 (t)) - J(t, X (t), U

0 (t)) I or") dt 

f
ii 

+ ai 1 lf(t, X 0 (t),uJ(t))- f(t, x(t),ui(t))lord 
0 

+ IJ(t, X (l), U 0 (l)) - J(t, X 0 (l), U 0 (t)) I or") dt) 

i.e., (17) holds. 
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Having all the assuptions of Theorem 2-5 satisfied we now apply this 
theorem. The Lagrangian has the form 

where 2ERI, vis a regular vector measure on [t0 , t 1], /0 ER"o, 11 ERs•, and 8ERk. 
According to Theorem 2.5 there exist 2 E K*, e E Rk, a vector measure v, /0 E R"o, 
10 E R"1, not all zero and such that 

0Ebx(.)L(x 0
(.), U

0
(.), A, V, 10, 1,, 8), (27) 

2(x0 (.),u0 (.),2,v,lo,l1,8) = min 2(x0 (.),u(.),2,v,lo,ll'8), (28) 
u(·)EU 

(8,G(x 0 (.)))=0. (29) 

First, consider (27). This means, for all X (.) E en [to' t I], that 

Substituting the differentials of P and F, and the subdifferential of G (given by 
Corollary 2.4) into this inequality leads to 

(30) 

where 'ft;, i = 1, ... ,k, are nonnegative regular measure supported on the set 
T; = { t E [t 0 , t 1] / g; (t, X

0 
( t)) = G; (x 0 

(.)) }, respectively, and with total varia
tion 1. Setting e; it; = J.l; and changing the order of integration in the third term 
(with the abbreviations/; = J; (t, X0 (t), U

0 (t) ), h~ = h~(X 0 (to)), ... ) we obtain, 
n[ for all x E C t 0 , t d, 

~ - -~ ~~-----



106 TRAN HUE NUONG 

Now, denotingp(t) = r dv, with Riesz's representation theorem we arrive 

at (13) and (14). 
Further, the relation (28) is equivalent to 

f
1
1 f1

1 fl 
10 (A,f(t , X0 (t),u 0 (t)))dt - 10 ( 

10
<p(r,X0 (r),u 0 (r))dr,dv) 

I
ll f 1

1 fl 
= min{ 1 (A,f(t , X0 (t),u(t)))dt - 1 < 1 <p(r,X 0 (r),u(r))dr,dv)}. 
u(')EU o o o 

Changing the order of integration in the second terms of each side we obtain 
Assertion (b). 

Finally, by (29), if G i (x0 
(.)) < 0, then () i = 0, and so Jli = () i Pi = 0. 

Therefore, only those Jli , which correspond to the indices i with G i(xo (.)) = 0, 
can be nonzero. Combining with the fact that Pi are supported on the setT; we 
see that Jli are supported on the set 

If m = q = 1, i.e., we deal with a scalar optimal control problem, and~ = 0, 
then Theorem 2.6 coincides with Theorem 1 of§ 5.2 in [2]. 

Now we pass to another cooperative differential game, namely, to the one 
with a state constraint of the integral type 

I
ll 
1 g(t, x(t), u1 (t), .. . ,um(t))dt:::::; 0, 
0 

(4') 

where g :R x R" x R'1 x ... x R ' m---+ R\ Rk being ordered by aconvex cone 
M, instead of (4). 

For this game the Pontryagin function is 

H(t, x, u,p, A, Jl) = (p, <p(t, x, u)) - (A,j(t, x, u)) - (Jl, g(t, x, u)). 

THEOREM 2.7. Assume that int K # 0, int M# 0, and <p, h
0

, h 1 , g, ~,fare jointly 
continuous and continuously differentiable with respect to x . Let u~ (.), . . . , u~ (. ) be 
local-global weakly optimal controls for m players, with the resulting state X0 

(. ) . 
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Then, there exist 2EK*, l
0
ER 5

o, l 1ER"1, a mapping p(.):[t
0

, t 1]-+R", and 
f.l EM*, not all zero, such that 

(a) p (. ) is a solution of the integral equation 

f
ll 

+ 1 H~(r, X
0 (r), uHr), ... ,u,~(r), p(r), 2, f.l) dr, 

with the initial condition p ( t 
0

) = h~* ( X 0 
( t J) 1 o; 

(b) the equality 

H(t, X
0 (t), uf(t), ... ,u:,(t), p(t), 2, f.l) = H(t, X

0 (t), p(t), 2, f.l) 

holds for almost all t E [ t 
0

, t 1]; 

f
ll 

(c) 1 (f.l, g(t, X
0 (t), U

0 (t)))dt = 0. 
0 

Proof. The proof parallels the one of Theorem 2.6 and we present only what is 

f
ll 

different. G (x(. ), u(.)) = 1 g(t, x(t), u(t)) dt is continuously differentiable 
0 

with respect to x (.) and we have 

f
ll 

G~()(X0 (.), U 0
(.)) x(.) = 10 g_~(t, X

0 (t), U
0 (t)) x(t)dt. 

To apply Theorem 2.5, only Assumption (iv) needs to be dicussed. For the 
present game, besides (14)- (16) we have also to prove the following inequality 
for G 

G(x(.), v(a)(.))- G(x(.), u0
(.)) 

, where g is an order unit of the vector lattice Rk. 
The vector yi now must be ( n + q + k )-dimensional vector 

yi(t) = (cp(t, X 0 (t), ui(t))- cp(t, X 0 (t), U 0 (t)),f(t, X 0 (t), ui(t)) 

- f(t, X 0 (t), U 0 (t)), g(t, X 0 (t), ui(t))- g(t, X 0 (t), U 0 (t))). 
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For the given £5, using Remark 2.1 we choose y > 0 such that if/ E Y, If I :::;; y 
and hEIR\ I hi:::;; y, we have 

ord · {l5e l5e } 
1/1 :::;; mf 2 ' 8 (tl - to) ' 

lhlord ~ • if {~g ~g } 
-....:: m 2 ' 8 (tl - to) . 

(18') 

Next, we use (18 ' ), (23) and (24) to get (17') in the same way as to get (17). 
Making use of Theorem 2.5 we obtain also (27)- (29). In this case (27) implies 
the following, instead of (30), 

f
ll fll fl 

(-1,~'x(t 1 )+ 1 f~x(t)dt)+ 1 (x(t)-X(t 0 )- 1 q>~x(r)dr,dv) 0 0 0 

Changing the order of integration in the third term and applying Riesz's 
representation theorem we arrive at Assertion (a). Assertion (b) is obtained by 
the same way as for Theorem 2.6 and (c) is nothing else than (29). • 

3. Sufficient conditions 

In this section we shall demonstrate, for cooperative differential gatnes, the 
common assertion that under additional assumptions multiplier rules are also 
sufficient conditions. Namely, with the aid of some scalarization results we shall 
show that under additional assumptions the Pontryagin maximum principle 
stated in Section 2 is also a sufficient condition even for global optimal controls 
and global weakly optimal controls. However, we are able to consider only 
problems with fixed left end-point, i.e., with h

0
(x(t

0
) = x(t

0
)- X 0 for some 

fixed X 0 E Rn. 
We recall at first the needed notions and scalarization results. For a cone 

C in a linear space X, the sets 

q. int C' = {x'EX' j (x' , x) >0 for all xEC \ {0} }, 

q. int c· = {x · Ex· j (x *, x) > 0 for all XEC \ {0}} 

are called (algebraic and topological, respectively), quasiinteriors of C' and c·, 
respectively. 
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A functional! defined on a subsetS of an ordered linear space X with the 
ordering cone e is called: 

+increasing (on S) if x 1 ~ x 2 impliesf(x 1
) ~f(x2 ); 

+strongly increasing if x 1 ~ x 2
, x 1 =I= x 2

, impliesf(x 1
) <f(x 2

); 

+ strictly increasing, in the case core =1= 0, if x 2 
- x 1 E core implies 

f(x 1) <f(x2
), 

where x 1 and x 2 are points in S. 
It is easy to see that each x' E C' (and each x· E e*) is increasing on X, that 

each x' E q-intC' (and each x· E q-inte*) is strongly increasing on X, and that, in 
the case core=1=0, each x'Ee'\{0} (and each x·Ee*\{0}) is strictly 
increasing on X. 

The following scalarization result (see, e.g., [3]) will be used to derive 
sufficient conditions. 

LEMMA 3.1. Let X be an ordered linear space. LetS c X and x E S be given. Then 
(a) if the ordering cone e is pointed and there is a strongly increasing 

functional f on S with 

f(x) ~ f(x) for all xES, (31) 

then x is a Pareto minimum of S. 
(b) if core =1= 0 and there is a strictly increasing functional f on S with ( 31 ), 

then .X is a weak minimum of S. 
Recall further that a Frechet differentiable functional f: X-+ R, X being 

normed space, is said to be quasiconvex at .X if, for each x E X,J( x) ~ f( .X) implies 
J'(x) (x- .X)~ o. 

We now consider the game (1)-(5) with fixed left end-point, i.e., with 
h

0
(X(t

0
))-;;;;; x(t

0
)- X0 for some fixed X0 ER". 

THEOREM 3.2. Let the ordering cone K of the objective space Y be pointed. Let 
u~ (.), ... , u~ (.) be admissible controls and X 0 

(.) be the resulting state. Let the 
following differentiability conditions be satisfied: h 1 and~ are Frechet differentiab
le at X 0 (t 1 );f(t,.,. ), cp (t,.,.) and gi (t,.) have partial derivatives at (x 0 (t), U 0 

( t)) 
and at X 0 (t), respectively, for all tE[t

0
, t 1]. Moreover, assume that there exist 

AEq.int K*, l1ER'1, a mapping p(.):[t
0

, t 1]-+R", and nonnegative regular 
measures J.l.i, i = 1, ... ,k, on [t

0
, t 1] such that 

(a) p ( . ) is a solution of the integral equation 

f
tl 

+ I H;(r, X
0 (r), uf (r), ... ,u~(r), p(r), A.)dr-
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(b) the equality 

H(t, X 0 (t), uHt), ... , u:,(t), p(t), A)= H(t, X
0 (t), p(t), A) 

holds for almost all t E [ t 
0

, t 1 ]; 

(c) the following convexity assumptions are satisfied: 

U = U 1 x ... x U, is convex; <A, ~ ( . ) ) is convex at X 0 
( t 1 ); < 11, h 1 ( • ) ) 

k f'I 
is quasiconvex at X

0 (tJ; (A, f(t,.,.)) and (p(t) + Lj=l 1 g;x dJli, 

<p ( t,.,.)) are convex and concave, respectively, at (xo ( t), U 0 
( t)) for 

almost all tE[t
0

, t 1]. 

(d) for almost all t E [ t 
0

, t 1] we have 

<p_~· ( t, X
0 

( t), uo (t)) I:= I rl g;x (t, X 0 
( t)) dJl i = 0 

and 

for all admissible controls uj(. ), j = 1, ... ,m. 
Then uf (.), ... , u,7, (.) are global optimal controls. 

P r o o f. Let u 1 ( • ) , ••• , u"' ( . ) be arbitrary admissible controls with the corres
ponding state x (. ). By (a), the quasiconvexity of< 11, h 1 (.)) and the convexity 
of < A, ~ ( . ) ) we obtain 

- <Cp(t) + I:=l J:l g;xcr, xo(r))dJLJ,=tl' x(tl)- xou~D 

= ( ~~· A + h;" 11> X (t 1) - X 0 
( t 1)) ~ (A, ~ (x (t 1)) - ~ (X 0 (t 1)) ). 

By (b) H~ ( t, x 0 
( t), U 0 

( t), p ( t), A, Jl) is a support functional of U at the point 
U

0 
( t) for almost all t E [to' t 1]. That means, for each admissible u/. ),j = 1, ... ,m, 

and for almost all t E [ t 
0

, t d, 

This together with (a) and (d) implies 
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(A,f(t, x(t), u(t))- f(t, X 0 (t), U
0 (t))) 

d k Ill 
- dt ( p(t) + Lj=l I g';xdf.L;, x(t)- xo(t)) 

k Ill 
~ (A;f(t, x(t), u(t))- f(t, X

0 (t), U
0 (t))) - (p(t) + Lj=l 1 g;xdf.L;, 

<p(t, x(t), u(t)) - <p(t, X
0 (t) , U

0 (t))) - (/~·A - <p;• p(t), x(t)- X
0 (t)) 

- L111

_ (f~· A- <p~· p(t), u
1 
(t) - u9 (t)) 

.1- 1 1 1 

+ ( L~= 
1 
t g;x df.L;, <p_~(x(t) - X

0 (t)) + Ln~= 1 <p~/ u/t) - uj(t)) ). 

k Ill 
By the convexity property of (A, f(t , .,.)) and <p(t) + Lj=l 1 g;xdf.L;, 

<p ( t,.,)) this quanity must be nonnegative. 
Consequently, integrating leads to the inequality 

I
ll 
1 <A,f(t, x(t), u(t)- f(t, X

0 (t), U
0 (t)))dt 

0 

This together with Lemma 3.1 (a) completes the proof. 
With Lemma 3.1 (b), instead of(a), used in the proof, we get in the same 

way following sufficient condition for weakly optimal controls. 
THEOREM 3.3. Let the cone K (not necessarily pointed) have corK = 0. If the set 
q-int K* is replaced by K* \ { 0 } , and the words ,optimal controls" are replaced by 
,weakly optimal controls", then Theorem 3.2. is still in force. 

Note that Condition (d) is also of the maximum condition type. It is rather 
restrictive, especially its first part. However, we can intuitively imagine that this 
conditions is essential, because the maximum condition (b) does not involve the 
mappingsg .. The situation will be simpler when we deal with the game (1) - (3), 
(4), (5) as th~ following two theorems assert. Namely, no condition of the type (d) 
is needed. The proofs are quite similar, even with less complexity since the 
Pontryagin function H involves the mapping g, and therefore are omitted. 

THEOREM 3.4. Consider the game (1)- (3), (4'), (5). Let the ordering cone K of 
Y be pointed. Let uf (.), ... , u~ (.)be admissible controls and X 0 (.)be the resulting 
state. Let the following differentiabilitY assumptions be satisfied: h 1 and ~ are 
Frechet differentiable at X

0 (t 1), f(t,.,.), <p(t,.,.) and g(t,.,.) have partial 
derivatives at (x 0 (t), u 0 (t))for all tE[l 0 , td. Moreover, assume that there exist 
A E q-int K*, 11 E R'1, a mapping p (.): [t

0
, t 1]--+ Rn, and f.L EM* such that 
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(a) p ( . ) is a solution of the integral equation 

I
ll 

+ I H,(r, X
0 (r), uHr), ... ,u:,(r), p(r), A, f.L)dr; 

(b)for each admissible uj(.),j = 1, ... ,m, we have,for almost all tE[t
0

, t 1], 

(f~*_(t, X 0 (t), U 0 (t))A + g;,*(t, X 0 (t), U0 (t))f.L 
.I 1 

(d) the following convexity assumptions are satisfied: U is convex; ( A, ~ ( . ) ) 
is convex at X 0 (t 1), < 11, h 1 (.)) is quasiconvex at X 0 (t 1), < ).,f(t,. ,.)) 
and (J.l, g(t,.,.)) are convex at (x 0 (t), U 0 (t))for almost all tE[t

0
, t 1], 

and (p (t), qJ ( t,.,.)) is concave at (X 0 
( t), U 0 

( t) )for almost all tE [t
0

, t 1]. 

Then uH.), ... , u:, (.) are global optimal controls. 

THEOREM 3.5. Let the cone K (not necessarily pointed) have corK =I= 0. If the set 
q-intK* is replaced by K* \ { 0}, then Theorem 3.4 remains true for weakly optimal 
controls, i.e., in this case u~ (. ), ... ,u:, (.) are global weakly optimal controls. 

Theorems 3.2- 3.5. include Theorems 10.7 and 10.8 of[3], as special cases 
when g; ~ 0 and g ~ 0. 

Finally, we note that in this paper we consider necessary conditions only for 
local-global solutions of differential games. In [5] we prove the Pontryagin 
maximum principle for local solutions but with more restrictve differentiability 
assumptions. 
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APPENDIX 

Proof of Lemma 2.3. Note first that g(., X
0

( . )) is continuous on [t 0 , tJ The sequence n(g(t, 
x" (t) + l fn z (t))- g(t, x" (t))) of continuous functionals on [t

0
, t 1] uniformly converges to g~(t, 

x" ( t) ; z ( t) ). So, the functional g~ (. ,x" (. ); z (.)) is continuous on [t "' t 1], and the maximum in the 
expression for G' is indeed attained, and To is a compact subset. 

To prove the lemma we have to convince ourselves that for every e > 0 and z(.)eC"[t
0

, t 1], 

there exist a neighborhood V of z (.) and some y 1 > 0 such that 

I -
G_(x_" (_.) _+_y y_(_. ))_-_G_(_x"_(._)) . , ( ( ) ( )) I < 

- max gx t, x" t ; z t e 
}' tET

0 

for all y (.) E V and y E (0, y 1 ). We have, for y (.) E V 2 and y E (0, }'0 ), 

G(x"(.) + y y(.)) ~sup g(t, x"(t) + y y(t)) 
tE T 0 

(32) 

Therefore, to get (32) it suffices to find V c V 2, y 1 ~ y o so that y (.) E V and y E ( o, y 1) would imply 

G(x"(.) + y y(.)) < G(x"(.)) + y max g~(t, x"(t); z(t)) +ye. 
!ET0 

(33) 

We proceed to do this. Since g~ (., x" (.); z (. ) ) is continuous there is a neighborhood W c [ t 
0

, t 1] of 
To such that 

e 
sup g~ (t x" (t); z (t)) = max g; (t, x" (t); z (t) + -. . 2 
tEW tET

0 

(34) 

On the other hand, we can show the existence of a neighborhood V o of x" (. ) such that, for all 
x(.)EV 0 , 

G(x(.)) =sup g(t, x(t)) =sup g(t, x(t)). 
lE W 

Indeed, we have, for some et.> 0, sup g(t, x"(t)) = G(x"( .))- et.. Setting z(t) = 0 in (12) we 
lE[l 0 , t1J \ W 

find a neighborhood V o of x" (.),for all x (.)of which we have lg(t, x (t))- g(t, x" (t)) I < Cl.f2 for 
all t E [t 

0
, t 1]. This is just a required neighborhood, since, for x ( . ) E V o and t E [ t 0 , t 1] \ W, 
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C( C( 

g(f, x (f) ( g(t, X 0 (f)+- <i; G (x0
(.) -- <i; G (x(.)). 

2 2 

Now we can check directly (33) for y 1 = min {)1
0

, y), where y2 is a number such that 

X
0
(.) + y2 z( . )E U

0
(z( . )givenin(32)),And U= 1'21(yp 1 n(U

0
- X

0 )).By(12)and(34)wehave, 
for y (.) E U and yE (0, y 1 ), 

G(x0
( . ) + y y( . )) =sup g(f, X0 (f) + y y(f)) 

fEW 

<sup g(f, X
0 (f) + y sup g~(t, X 0 (f); z(f)) + ~ 

fEW tEW 2 

<i; G(x 0 (.))+ y max g~(t, X 0 (f); z(f)) +ye. 
fE T

0 

Proof of Corollary 2.4. By Lemma 2.3, G is uniformly differentiable in every directions at each point 
xEC"[f

0
, f 1]. Since g;(t, X 0 (f); z(t)) = g~(f, X 0 (f)) z (f) the convexity of G'(x 0

( . ); z( . )) with 
respect to z (.) follows immediately from its expression. Thus, G is regularly locally convex. 

The second part of the corollary follows from Subsection 4.5.3 of [2). 

Received, December 1987. 

Warunki optymalnosci w kooperatywnych grach roi:niczkowych 

W pracy udowodniono koniecznosc warunk6w typu zasady maksimum Pontriagina dla 
'wieloosobowych kooperatywnych gier r6:i:niczkowych ze zmiennymi stanu przez sprowadzenie gry 
do zadania optymalizacji wektorowej. Udowodniono r6wnie:i:, ze te same warunki s~ wystar
czaj~cymi do optymalnosci przy pewnych dodatkowych zalo:i:eniach. 

Y CJIOBHH OUTHMaJibHOCTH B KOOUepaTHBHbiX .z.urt-rt-epeH .. H8JibHbiX urpax 

B pa6ore llOKa3aHa Heo6xop;HMOCTh ycnoBHH BHlla npHH~Hna MaKCHMyMa IloHrpHrHHa llJIH 

KOOTiepaTHBHhiX llH<lJ<lJepe~HaJihHhiX Hrp CO MHOfHMH HrpOKaMH nyTeM CBep;eHHH Hrpbl K 3ap;aqe 
BeKTOpHOH OTITHMH3a~HH. ,[(oKa3aHO TaKlKe, '!TO TIOCJie npHHHTHH HeKOTOpHbiX llOTIOJIHHTebHhiX 
npellllOChiJIOK, TaKHe lKe yCJIOBHH HBJIHIOTCH llOCTaTO'IHhiMH llJIH OTITHMaJihHOCTH. 


