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A phenomenological model of the dynamics of gas-solid reaction in fluidized bed reactors is 
constructed. The model is of a diffusion- advection type with intrinsic dynamics of particles 
population. A discussion of the applicable simplifications in the model is given. 
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1. Introduction 

Gas-solid reactions are involved in numerous chemical processes like iron oxide 
reduction, (extraction of metals from ores), combustion of solid fuel, coal 
gasification and burning of refuse, to give only a few examples. They may be 
conducted in a variety of technological installations, such as reactors with fixed, 
moving or fluidized bed, rotating kilns and cyclones, in particular. For all these 
installations a multitude of small solid particles is brought into contact with 
flowing gas. Since the particles are numerous, their reactions with gas and the 
resulting changes in properties cannot be considered on an individual basis. 
Instead, one must consider the. evolution of certain randomly distributed 
properties for ensambles of particles. 

The main characteristic of particles that affects the reactor dynamics is their 
reactivity, usually expressed in terms of an active surface, which in turn may 
depend on physical sizes and conversion levels. The ensambles over which the 
statistical properties are calculated may be localized (like in fixed bed), and then 
these statistics are position-dependent, or they may encompass the whole mixed 
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population of particles (like in fluidized beds), and then the statistcs are solely 
time-dependent. 

The evolution of the statistical properties of particle population in reactor 
interacts essentially with some other processes including chemical reactions, gas 
flows, diffusion, transport and thermal phenomena. There are many pub
lications devoted to problems of reactor dynamics, e.g.[6], [11], [21]. Although 
several of the factors affecting the process development are taken there into 
account, but as usual the statistical description of particles is considered only in 
static approximation. 

In this paper we propose to treat the statistics of particle population as an 
additional state variable. This variable is to be incorporated into the governing 
equations of the model. To be more specific, we have considered the case of 
fluidized bed reactor with a simple particle population consisting of full balls that 
reacted only at the outer surface; the distribution of diameters was the only 
important characteristics for that population. The model does not fully reflect 
complex nature of hydrodynamic flows around the population of particles. 
Rather then treating hydrodynamic variables as components of the state of 
process, we include them in parametrized form. 

The approach we propose may easily be extended to other space-dependent 
properties of particles, in particular to conversion levels for porous particles. 

The work was motivated by a study on fluidized bed coal gasifiers partially 
supported by the Research Program CPBP-01.16-7.5. 

2. Structure of the reactor and simplifying assumptions 

Following the available literature [11], [18], [21] we have assumed that a typical 
fluidized bed reactor consists of: 
- a chamber containing the fluidized bed, 
- a feeder for supplying solid pellets, 
- a fluidizing gas inlet, 
- a drain for removing partially reacted particles, 
- an outlet for gaseous products. 

In order to develop the appropriate numerical simulation procedures, we 
assume a number of simplifying hypotheses, similarly as in [11 ]: 

Al. A fluidized bed contains only emulsion and bubble phases. The transition 
region near gas inlet is neglected. The bubble and emulsion phases are 
uniformly mixed. 

A2. The surplus gas flows through the bed only in bubbles. It means that the 
emulsion preserves a fixed gas-solid ratio, corresponding to the critical 
fluidization stage. 
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A3. The emulsion phase is perfectly mixed, i.e. the statistical properties of solid 
particles are the same in any point of the bed. 

bed 

gas inlet --+-
-------' 

-gas outlet 

bubble 

emulsion 

solid 
removal 

Rys. 1 

A schematic form of such a reactor is shown in Fig. I. 

3. Chemical reactions 

Let us first introduce a few notation. We shall assume that the reactor contains 
a certain number N; of active gaseous ingreadients and their concentrations un 
emulsion and bubble phases are Cf, C~ respectively. Let S denote the solid 
component, and A, the active surface of solid particles per mol. The chemical 
processes taking place in the reactor may be represented as: 

a'S + .~ /31 (e) C7 !<4 .~ yi (e) Ci, r E M, 
lE i lE i 

(1) 

;~ f3 I (b) Cf--¥ ;~ y I (b) Cf, rE N~, 
I I 

(2) 

where N~, N;. are sets of reactions in bubble and emulsion phases (some of them 
may overlap). The integers f3i(e), f3i(b), yj(e), y'j(b), a' denote stechiometric 
coefficients of reactions. 

For any gas ingredient let us introduce now the generic sets of reactions: 

pe(i) = {r I yi(e)) 0}, P(i) c Ni, 

pb (i) = {r I yi(b) ) 0}, pb (i) c N~ (3) 

and similar sets of reactions where it is consumed: 
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Ke(i) = {r I {J~(e)) 0} Ke(i) c N~ 

Kb (i) = {r I {3~ (b) > 0}, J<b (i) c N~. (4) 

Then we can write down the rates of production for gases in appropriate phases, 
denoted by R~ and Rf. 

R e = " - 1
-B(a')A k IT (Ce)P'Cel + 

1 L, '() Sr JJ' 
rEPe(i) y i e jEN; 

- L 8(a')A8 k,. IT (CJ)P;(e), (5) 
rEKe(i) jEN; 

- L 8(a')A8 k,. IT (CJ)P;(bl, (6) 
rEKb(i) }EN; 

where 

8(a') = { ~ if a' ) 0 

if a' = 0 

Coefficients k ~re the reaction's rate constants given by 

k,. = k,.0 • exp ( - E,. / RI). (7) 

Eqns (5), (6) must be accompanied by a similar rate of change for the reacting 
solid component of the bed, 

Rs = - L 8(a')A8 k,. IT (CJ)P;<el, (8) 
rEN':.(u) }E N; 

Further we shall treat the reactor as a dynamical system with state variables 
consisting of · 

and certain statistics of particles that determine A ,. Eqns. (5) (6) (8) taken 
together yield the system 
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R~ = R~(C, T, As), (9) 

R, = R,(Ce, T, AJ 

In the above foi·mulation the description of a reactor is rather abstract. To 
become more specific let us take a coal gasifier with fluidized bed fed by hot steam 
(appr. 1000 K) as an example. The reactions are [11]: 

C+H2 0 
k, 

CO+H2 

C+ C02 k, 
2CO 

C+2H2 k 
CH4 

' 
CO+H2 0 

k. 
C02 + H2 

CO+ H2 0 
k, 

C02 + H2 

with the sets of indices 

Ni = {1,2,3,4,5}, Nf = {4,5}. 

4. Gas flow and advection-diffusion processes 

For the reactor we consider a part of the hydrodynamic model is based on results 
of [11], [21] and the discussion in [5]. Although the setting is rather simple, it 
should be sufficient enough for describing low-pressure installations. As shown 
in Fig.2, the gas flow is split into two practically independent branches that 
correspond to the emulsion and bubble phases. 

X 

H 

bubble phase emulsion phase 

mass A" u• 
exchange 

p lug flaw plug flow 

0 

Rys. 2 
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Two principal parameters of the flow are: 
- umf : minimal gas velocity neccessary for fluidization, 
- amf : gas fraction in the emulsion phase, 
both are obtained experimentally as a rule. Our goal here is to determine the flow 
in each phase, i.e. ub, u", Ab, Ae, the exchange coefficient Fbe and the bed height H. 

Knowing emf, we may compute the bed height corresponding to the critical 
fluidization condition: 

(10) 

Further on, using empirical relationships established in [13], [21], we have the 
characterization of bubbles by their minimal diameter 

(11) 

maximal diameter, 

(12) 

and the distribution of diameters along the height of the bed (x-axis in Fig. 2), 

Db (x) = Dbm - (Dbm - Dho) exp ( - 0.3x I D). (13) 

The next step consists in approximating the bubles by ,equi-diametric" ones that 
correspond to the height x = H I 2, -

D = Db(H / 2), (14) 

and computing the gas velocity in bubble phase, 

(15) 

This yields the volume fraction of bubble phase, 

(16) 

the gas velocity in emulsion phase, 

(17) 

and finally the bed height, 
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(18) 

The empirical value of exchange coefficient is taken as 

(19) 

The whole construction just completed can be summarised as follows: the bed 
height given as an implicit function of the bed weight, incoming gas velocity and 
constant parameters unif' enl} : 

(20) 

Equation (20) must be solved with respect to H. 
Having the characteristics of gas flow, we may write down the diffus

sion-advection equations governing the transport of gaseous substances in the 
bed: 

oc~ __ "oc~+D"o2 C7 - F cc"-c") R" Tt - u OX 1 ox2 be 1 1 + 1 ' 

(21) 

x E (0, H), t ) 0, i e E Ni 

As the emulsion phase is well mixed, by assumption 

e b 
D; » D;. (22) 

System (21) is to be complemented by the boundary conditions: 

X= 0: 
e b 

C e_D;oC;=C 
. i 1J' OX iO ' 

(23) 

X= H: 

oc~ = 0 ox ' 
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and initial conditions for t = 0: 

(24) 

The above conditions mean that the reactor is fed by gas of constant 
composition, and no chemical reaction takes place above the bed. 

5. Thermal energy flow 

The heat effects inside the bed are produced by two sources: Qvol - heat released 
by volume reactions in gas and Qswf - heat released by gas-solid reactions on 
surfaces of particles. The intensities of both effects are proportional to the 
appropriate reactions rates. Let us split the reactions into the corresponding sets: 

N,s = {rE N; I a' ) 0}. (25) 

The heat production rates may then be expressed as: 

Qvol = 'i..( - !!.H,)k, IT (C;)p,x(*), (26) 
reN' 

Qsurf = S L (- f1 H,) k, IT (Cf)/J~(*l, (27) 

Besides, there occur the following thermal effects: 
- heat exchange gas-reactor walls, characterised by heat transfer coefficient hgw' 
- heat exchange solid particles-walls, characterised by hsw 
- heat exchange between solid and gas phases, hsg' 
- heat transport by advection and diffusion. 
In the first stage we shall separately consider heat transfer in the solid and gas 
phases, with the gas phase encompassing both bubbles and gas contained in 
emulsion. Hence, the gas fraction in the bed is given by 

(28) 

In further reasoning, we shall partially use results from [12], [17], [6]. The mean 
gas velocity in both phases may be calculated as 

(29) 
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and the solids velocity 

us = u'. (30) 

For low-pressure reactor the influence of pressure and velocity on the internal 
energy of the gas is negligible, what greatly simplifies the equations. 

Let us now introduce some notations more: 
C;g - generalised concentration of i-th gas component, 

(31) 

Ig - internal energy of gas, 

(32) 

Is- internal energy of solid, 

(33) 

Tg, Ts - temperatures of gas and solids, respectively. 

In practice, partial derivatives ~~ (the specific heats of gases) can be 

assumed constant over some temperature ranges (cf. [11]). 
Finally, if the thermal effects in gas and solids are treated separately, we 

must consider the division of the heat flux produced by surface reactions into two 
streams Q ~urf and Q ~urf, going into gas and solid phases, respectively: 

(34) 

In the above notation, the energy balance for an elementary volume of the bed 
admits the characterisation: 
rate of energy accumulation = 
heat stream from volumetric reactions Qvot 

+ heat stream from surface reactions Qs!,f or Qsu~f 
- heat loss through reactor walls 
+ balance of advective streams 
+ balance of diffusive streams 
+ heat stream through interphase boundary. 
This gives rise to the following coupled pair of differential equations: 
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(35) 

( ) ols ( ) (J2 T , h ) - 1- 8 u,ps ox+ 1 -8 K, 02x + S g, (Tg- T,, (36) 

with 8 E (0, 1) representing the phase ratio . 

Unfortunately, some of the parameters that enter (35), (36) are non
measurable. In particular this concerns the way Q swf is decomposed into two 
parts and heat transfer coefficients hwg• hgs• h11 5 • The only measurable coefficient 
specifies the global heat transfer between the bed and walls. In this connection, 
we shall further assume that the gas and solids have the same temperature 
throughout, 

(37) 

This hypothesis is approximately correct provided that solid particles are small 
enough to contribute to heat transfer faster than their movement in the bed. 

Upon combining (35) and (36) in (37) we end up with a single equation for 
temperature distribution in the bed: 

a azr 
--

0 
(suj g + (1- 8) + (8Kg + (1- 8)K,.) -

02 
, 

X . X 
(38) 

accompanied by initial conditions 

T = Tofor t = O,x E [0, H] , (39) 

and boundary conditions encompassing the heat exchange between solids and 
bed: 

for x = 0: 

for x = H: 

Let us notice that equation (38) is nonlinear, because/, represents a combination 
ofCf · Tand Cf · T. , 
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6. Evolution of particle population 

Throughout this section we shall assume that the emulsion phase contains pure 
reacting solid in the form of nonporous particles. Their diameters diminish in the 
course of reactions. In such a case the active surface of solids per unit volume of 
emulsion may be expressed as 

(41) 

where rx - constant factor. 
In turn, the active surface of solids per unit mass As, depends on the 

distribution of particle diameters. This contributes to the coupling between the 
distribution of particle diameters and reaction intensities. 

The ideas for the following derivations are partially adopted from [3] , [4] , 
where a class of simplified models of reacting particle populations have been 
studied. 

All solid particles in the bed may be classified into two groups: reacting 
particles and inert particles which contribute only to the mass of the bed. We 
shall be concerned solely with reacting particles. Therefore, two effects must be 
accounted for : evolution of their diameters distribution and the total mass 
change. By using the distribution of absolute numbers of particles as a function 
of radius we can combine both effects in a single equation. So instead of using the 
radii distribution p (r), r E [0, r maJ we shall use function N (r) that satisfies the 
equality 

(42) 

where Ns- the total number of reacting particles. 
According to the formula (8), the local rate of mass change for solid particles 

may be rewritten as 

For uniform balls of the radius r, the area As is given by 

3 
A s (r) = 

Ps ~"· 

(43) 

(44) 

Since the solids in emulsion phase are well-mixed, the total mass change rate due 
to reactions is: 
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where 
- H -
R~ = Ae J o R's(C, T)dx. 

I 

Due to (44), for ball-shaped particles the rate of shrinking for particles radii is 
equal 

(45) 

hence, eventually, 

(46) 

Then the balance of particle number with radii in the interval [r,r + dr] may be 
written as (see Fig. 3): 

i-'r=::..::0~-----1---------.!.,r+~d~r __ ___,rmax 

N(r,t)dr 

Rys. 3 

w 
N (r - V dt,t + dt) dt = N (r,t) dt + Nim (r) dr dt - ;urN (r,t) dr dt. ( 47) 

Hence N (r,t) satisfies the differential equation 

(48) 

with initial condition N(r, 0) = No (r). 

In general, the transport equation ( 48) has to be solved on the whole line 
x E ( - oo, oo ). However, since vis always positive, we may extend the functions 
N;n (r), N

0 
(r) by 0 outside the interval [0, rmaxl and solve (48) only in this interval. 
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In some cases the characteristics of particles fed into reactor are given in 
terms of radii distribution. We then use formula 

4 
Wp(r) = 3rrp,r3 N(r), (49) 

where W - mass of a given portion of solids. 
Let us also notice that the function N (r,t) takes on extreme values and 

requires scaling. The normalising factor is defined as a hypothetic number of 

particles in the bed if all of them had the same radius ~ r max; then 

6W 
No = IT r3 

Ps max· 

The corresponding normalised variables are 

1 
n (r,t) = N N(r,t). 

0 

(50) 

(51) 

Given the functions n (r,t), it is easy to determine the active surface of solids per 
unit volume of emulsion phase 

S ( ) - 4 IT No J' max t - HA (1 _ b) o n (r,t) y2 dr. (52) 

Some discussion is needed concerning the feeding rate Wiw According to 
(20), in order to stabilise the bed height we have to maintain its weight. This 
implies the requirement 

win = 4ITps V No J~max n (r,t) y2 dr + WOUI' . (53) 

which must be imposed (e.g. by using a certain controller with current bed height 
as an input). 

Eventually, the complete, normalised model of particles evolution can be 
given the form: 

n (r,O) = n0 (r) , r E [O,rmaJ, (54) 
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V = V (Ce, 'r). 

7. Transformations of the model 

The general model of reactor we have introduced consists of equations (20) (21) 
(38) (54). Taken together they form the system: 

an 
at 

a _ a ( ac) _ - a)u C)+ OX D; ax' + /;(C, T , n), i EN;, 

- an -
v(C, T)ar + g(C, T, n) , X E [0, H], rE [0, rmax], 

with boundary and initial conditions (23) (24) (39) (40). Here: 

E(C, T) = slg + (1- s)I,p,, 

E 11 (C, T) = sujg + (1- s)u/,Ps• 

K = sKg + (1 - s) Ks, 

(55) 

andJ;,fT> g represent the remaining terms on the right-hand sides of equations. 
There are three ways of simplifying such a model. One involves the 

assumption of isothermal conditions in the reactor, based on physico-chemical 
consideration. The next two consist in mathematical operations of averaging 
along the x-axis and transition to the stationary state (t - oo ). For nonlinear 
functions, as in our case, the averaging operation imposes an additional error. 

All kinds of models we have introduced may be classified in a diagram 
shown in Fig.4. Making the models isothermal requires only removing the energy 
equation, so we shall not discuss them separately. 
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The most general model M1'1 is described by equs. (55). Upon applying the 
averaging operation 

- 1 H 
(e) = H fo (e) dx 

and taking into account boundary conditions we get from them the system 
including transport equation for n (r,t) and ordinary differential equations: 

(56) 

d ;;;; - ;;;; 
dtE(C,T) = Fr(C, n) , 

on "" - on "" -
8t- v(C, T) or+ g(C, T, n), X E [0, H], rE [O,rmax], 

with suitable initial conditions for C, T and n. This constitutes the model M 21. 
Taking the other path, i.e. passing to the stationary state involves assuming 

all time derivatives equal zero. This operation changes character of the model, 
which takes on the form: 
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d - d2 T -
- -d Eu(C, 1) + K -d , + JT(C, T, n) = 0, 

x x-
(57) 

- dn -
v(C, T) - + g(C, T, n) = 0, X E [0, H], r E [O ,rmaxl, 

dr . 

with appropriate boundary conditions at x = 0, x = H, and r = rmax· Here we 
have a two-point boundary value problem for a system of ordinary differential 
equations (for C and T) and the one-sided boundary problem for ordinary 
differential equation for n. This constitutes a model M 1;. 

The simplest model M2~ may be obtained in two ways: by averaging M 1; or 
making M2~ stationary. It has the form 

(58) 

- dn -
v(C, 1) -d + g(C, T, n) = 0, rE [0, rma J , r . 

with additional constraint n (r maJ = 0. This is a system containing algebraic 
equations for C, T and ordinary differential equation for n. 

Each type of models described above requires a different solution tech
nigues. The classification given above and in Fig. 4 is intended as an aid in 

.chosing a strategy for solving the modelling problem in case of a particular 
reactor and chemical process. Besides, the models of different types may serve for 
mutual checks of solution accuracy. 

There are several theoretical questions of mathematical nature concerning 
the general model (55) and its simplified versions. The very first problem is that of 
the well-posedness. Indeed, let us note that system (55) contains free boundaries, 
as a matter of fact. There exist several phases whose geometric evolution is by no 
means a priori prescribed. 

Our approach to the model is equivalent with imposing regularisation on 
equations, based on replacing sharp phase separation by boundary layers, where 
all involved phases coexist in equilibrium (with phase ratio varying smoothly), cf. 
[14]. 

Within such setting, the existence of solutions is ensured by the standard 
results on semilinear parabolic systems with smooth coefficients, [8] , [10]. 

Other questions of concern are related to: 
- global stability and asymptotic behaviour of solutions, 
- their invariance properties. 
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As far as the stability questions are concerned, one usually obtains the possibility 
of multiple steady states, [8]. Since we are mostly involved with transient stages of 
the process, we do not explore further this line. 

Of relevance for us are, instead, the invariance aspects. In particular, to 
acquire physically reasonable results, we must provide non-negativness of all 
state components. Fortunately, the arguments developed by Henry [8] for 
parabolic systems that describe combustion processes (see Chapters 6.1 and 1 0.2) 
apply to our model, yielding invariance properties and the desired 
non-negativness as a consequence. 

Let us note that for simplified versions of the model (56) through (58) one 
still faces the possibility of multiple steady states. A discussion of these questions, 
based on computational experiments, will be given in a forthcoming paper [22]. 

Notation: 

A 
As 
c~, c~ 

cig 

Dt D~ 
f!_bo, Dbm 

D 

Er 
Fbe 

n (r, t) 

No 
Q vo/' Q surf 

- reactor crossection area, [nr] 
- the active surface of particles per unit mass, [nr /kg] 
- concentration ofi-th gas in bubble an emulsion phases, [kmoljm3] 
- average concentration of i-th gas in the reactor, [kmoljm3] 

- gas diffusion coefficients in bubble and emulsion phases, [nr js] 
- minimal and maximal bubble diameters, [m] 
- mean bubble diameter, [m] 
- activation energy for r-th reaction, [kJjkmo~ 
- gas exchange coefficient between bubble and emulsion phases, 

[1 /m] 
- bed height, [m] 
- bed height corresponding to the minimal fluidization velocity, [m] 
- enthalpy change for r-th reaction, [kJjkmo~ 
- internal energy of gas and solids, [kJjkg] 
- frequency factor for r-th reaction, [m/s] for gas-solid reaction, 

[m3 jkmol' s] for gas-gas reaction 
- normalised number of reacting particles with radius r at the 

moment t 
- normalising factor for n(r, t) 
- heat energy production for volume reactions, [kJjm3 · s], and 

surface reactions, [kJjm2 · s] 
- universal gas constant 
- rate of production for i-th gas in bubble and emulsion phases, 

[kmoljm3 ·s] 
- rate of change for the mass of reacting solids in bed, [kgjs] 
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Fenomenologiczny model reakcji gaz-cialo stale dla populacji cz~stek z wewn~trzn~ 
dynamik~ 

W pracy przedstawiono model dynamiki reakcji gaz-cialo stale w reaktorach ze zloi:em 
11uidalnym. Model ten .ma charakter ukladu adwekcyjno-dyfuzyjnego z wewn~_:trzni! dynamiki! 
populacji CZi!Stek. Przedyskutowano moi:liwe metody uproszczenia modelu. 

«<leHOMeHOJIOl'H'IeCKaH MO,LJ;eJib peaK~HH ra3-TBep,LJ;Oe TeJIO ,LI;JIH COBOKyDHOCTH 
'laCTH~ C BHyTpeuueii ,lJ;HHaMHKOH 

B pa6oTe rrpe):ICTaBJieHa MO):IeJib ):IHHaMHKH peaKIIHH ra3-TBep):IOe TeJIO B peaKTOpax C KHIIJUI(HM 
CJIOeM. 3Ta MO):IeJib HOCHT xapaKTep a,[IBeKTHBHO-):IHcpcpy3HOHHOH ClfCTeMhl C BHyTpeHHeH ):IHHaMHK
OH COBOKYIIHOCTH '!aCTHl\. PaCCMOTpeHhl B03MO)I(Hb!e MeTO):Ibl yrrpOII(eHHJI MO):IeJIH. 




